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Abstract— Iterative learning control emerged from the prob-
lem area of increasing the accuracy of finite-duration repetitive
operations performed by robots, often termed trials. The ILC
laws use past trial information to adjust the current trial’s
control signal. Most often, only data from the previous trial is
used. A higher-order ILC law uses information from several
previous trials. Recently, interest in these laws has increased in
the literature with, in particular, robotic additive manufacturing
problems. This paper develops a new higher-order ILC design
for discrete linear uncertain systems that makes greater use of
information generated over previous trials. An example using a
model developed from measured frequency response data from
a laboratory testbed illustrates the new design.

I. INTRODUCTION
After the appearance of the first results, widely credited

to [1], ILC quickly established itself as a research theme in
theory/control design and applications. One starting point for
the early literature is the survey papers [2], [3]. Currently,
ILC laws are effectively used in additive manufacturing,
in particular in high-precision multilayer laser deposition
installations [4], [5] robotic-based rehabilitation of patients
who have suffered a stroke [6], [7], in ventricular-support
devices [8], and in numerous other applications. Some of
these applications have seen supporting experimental and
clinical trial results reported.

Speed of error convergence from trial to trial is a critical
feature of an ILC design, i.e., given a reference trajectory,
the error on each trial is the difference between the supplied
reference trajectory and the output on this trial. Hence, the
speed of convergence of the resulting error sequence is
critical. Consequently, the use of optimization methods is
well-established in this area. A very large number of the
currently available ILC laws only make use of previous trial
data to generate the control signal to compute the control
input for the current trial. At the cost of storage, data from
all previously completed trials is available. Such an ILC law
is generally termed higher order, where ‘higher order’ means
using data from a finite number, say d > 1, of previous trials
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to update the control law for the subsequent trial. If d = 1,
the law is termed first order in this paper.

Higher order ILC laws have been considered in previ-
ous research [9]–[18]. In this previous work, it has been
demonstrated [10], [11] that higher-order ILC can provide
a higher trial-to-trial error convergence rate than a first-order
alternative, see also [12]–[16]. Moreover, in [12]–[14], it
is argued that the acceleration effect of higher-order laws
is achieved due to the effects of learning during several
previous trials.

Other properties of higher-order ILC have also been
studied in the literature, where [17] states that the essential
motivation for using higher-order ILC is to reduce the impact
of interference and noise. In [18], the optimality of the
control system is considered in the sense of minimizing
the trace of the covariance matrix of control errors in the
presence of uncorrelated random disturbances. It is shown
that a higher-order ILC does not reduce the minimum value
compared to a first-order ILC. Thus, the conclusions of [17]
and [18] contradict each other.

The results reported in [17] do not provide sufficiently
complete evidence, and in [18], the ILC algorithm uses a dis-
crete analog of the derivative of a raw random signal. It could
be very problematic, especially in a physical implementation,
due to numerical conditioning issues. This previous work
did not consider the convergence rate of learning errors.
Moreover, there has recently been active interest in devel-
oping and applying higher-order ILC algorithms in additive
manufacturing problems [19], motivated by the features of
the application area.

This paper develops a new method for higher-order ILC
design for linear discrete-time uncertain systems. This law
uses more information from a finite number of previous trials.
Consider a particular sample point along the trial denoted by
p,, then information from sample point p ± λ can be used,
where λ > 0 is an integer. Such a control law is termed
non-causal in the literature.

Control law design uses the stability theory for discrete
linear repetitive processes where conditions for trial-to-trial
error convergence of the learning error are developed in terms
of the divergence properties of a vector Lyapunov function.
This analysis leads to a linear matrix inequality (LMI) based
design. The new design’s performance is demonstrated using
a model of one axis of a gantry robot (executing a ‘pick and
place’ operation that is an example where ILC can be used
to advantage) where the model used has been constructed
from measured frequency response data. The paper concludes
by discussing the possibilities of obtaining a result that
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quantifies the convergence of properties of high-order ILC
laws relative to the first-order case.

II. PROBLEM SPECIFICATION

The systems considered are described by the following
state space model in the ILC setting on trial k

xk(p+ 1) = A(δ(p))xk(p) +B(δ(p))uk(p),

yk(p) = Cxk(p), 0 ≤ p ≤ N − 1, k = 1, . . . (1)

where xk(p) ∈ Rn is the state vector, uk(p) ∈ R and yk(p) ∈
R are the input and trial profile, respectively. No loss of
generality arises from assuming that the boundary conditions
are xk(0) = 0 and y0(p) = f(p), where f(p) is known and
specified a priori. The uncertainty is represented as

A(δ(p)) = A+

l∑
j=1

δj(p)Aj , B(δ(p)) = B +

l∑
j=1

δj(p)Bj ,

(2)

where A and B are matrices of the nominal model; Aj

and Bj , (j = 1, 2, . . . , l) are known constant matrices of
compatible dimensions; δj(p) are uncertain parameters. For
brevity, the dependence of δ on p will be omitted from this
point onwards.

The set of uncertain parameters is given by

D = {δ = [δ1 . . . δl]
T, δj ∈ [δj , δj ], j = 1, 2, . . . , l}

with the finite vertex set of 2l elements:

Dv = {δ = [δ1 . . . δl]
T, δj ∈ {δj , δj} j = 1, 2, . . . , l},

and the control law has the form

uk(p) =

d∑
i=0

τivk−i(p), (3)

vk+1(p) = vk(p) + ∆vk+1(p), k = 1, 2, . . . (4)

where vk = 0, if k ∈ [−d, 0], d is the number of previous
trials, information from which is used in the current trial,
∆vk+1 is update or correction taw for trial k+1, τi, i ∈ [0, d]
are weighting coefficients.

Assume that CB(δ) ̸= 0, δ ∈ D and let yref (p), 0 ≤
p ≤ N − 1, denote the specified reference trajectory for (1).
Then the error on trial k is

ek(p) = yref (p)− yk(p). (5)

The ILC design problem is to construct a sequence of trial
inputs {uk} such that for 0 ≤ p ≤ N − 1, the following
conditions on the error ek(p) and input uk(p) hold

|ek(p)| ≤ κϱk, κ > 0, 0 < ϱ < 1, (6)
lim
k→∞

|uk(p)| = |u∞(p)| < ∞. (7)

(In some parts of the literature, u∞(p) is termed the learned
control.) Moreover, the case when the first Markov param-
eter is zero can be considered as in, e.g., [20]. Similarly,
the extension to multiple-input multiple-output examples is
straightforward.

The analysis and design of this paper use an incre-
mental model of the controlled dynamics, which results
in a repetitive process description of the dynamics. Intro-
duce the scalar variables x̌k,1(p) = vk(p), x̌k,2(p) =
vk−1(p), . . . , x̌k,d(p) = vk−d+1(p), x̌k,d+1(p) = vk−d(p)
and vector x̌k = [x̌k,1 . . . x̌k,d+1]

T. Then by construction

x̌k(p) = Adx̌k−1(p) +Bdvk(p), (8)

where

Ad =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , Bd = [1 0 0 . . . 0]T. (9)

Using (8) the first equation in (1) can be written as

xk(p+ 1) = A(δ)xk(p) +B(δ)θx̌k(p), (10)

where θ = [τ0 τ1 . . . τd]. Introduce, for the design purposes
only,

ηk(p) = xk(p)− xk−1(p),

η̌k(p) = x̌k(p)− x̌k−1(p). (11)

(these vectors are the difference between the state vectors and
trial profiles on two successive trials, and hence are termed
incremental). Hence from (8) and (11) it follows that

η̌k(p) = Adη̌k−1(p) +Bd∆vk(p), (12)

where ∆vk(p) = vk(p)− vk−1(p).

Making use of (11), the state dynamics on any trial are
described by

ηk(p+ 1) = A(δ)ηk(p) +B(δ)θAdη̌k−1(p)

+ B(δ)θTBd∆vk(p). (13)

Also, using (5) with yk(p) = Cxk(p), the dynamics in terms
of the incremental variables can be written in the form

ηk(p+ 1) = A(δ)ηk(p) +B(δ)θAdη̌k−1(p)

+ B(δ)θBd∆vk(p),

η̌k(p) = Adη̌k−1(p) +Bd∆vk(p), (14)
ēk(p) = −CA(δ)ηk(p)− CB(δ)θAdη̌k−1(p)

+ ēk−1(p)− CB(δ)θBd∆vk(p), (15)

where ēk(p) = ek(p+ 1).

Consider the case when

∆vk(p) = K1ηk(p) +K2ēk−1(p), (16)

where K1 and K2 are matrices of compatible dimensions
to be designed. Then, using (14) and (16), the controlled
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dynamics are described by the state space model

ηk(p+ 1) = (A(δ) +B(δ)θBdK1)ηk(p)

+ B(δ)θAdη̌k−1(p) +B(δ)θBdK2ēk−1(p),

η̌k(p) = BdK1ηk(p) +Adη̌k−1(p)

+ BdK2ēk−1(p),

ēk(p) = −C(A(δ) +B(δ)θBdK1)ηk(p)

− CB(δ)θAdη̌k−1(p)

+ (1− CB(δ)θBdK2)ēk−1(p). (17)

The model (17) describes the dynamics of discrete linear
repetitive processes [21]. Such processes are a distinct class
of 2D systems where in the last model ηk(p) is the state vec-
tor and ēk(p) is the trial profile. This paper uses the stability
of these processes based on vector Lyapunov functions [22].
to obtain conditions for trial-to-trial error convergence of the
controlled ILC dynamics and control law design to ensure
this property.

III. CONVERGENCE ANALYSIS AND CONTROL LAW
DESIGN

Introduce the vector ϵk(p) =
[
η̌Tk (p) ēk−1(p)

]T
and

define the vector Lyapunov function on the trajectories of
the system (17) as

V (ηk(p), ϵk(p)) =

[
V1(ηk(p))
V2(ϵk(p))

]
, (18)

where V1(ηk(p)) > 0, ηk(p)) ̸= 0, V2(ϵk(p)) >
0, ϵk(p) ̸= 0, V1(0) = 0, V2(0) = 0. Define on
the trajectories of the system (17) the following discrete
counterpart of the divergence operator

DV (ηk(p), ϵk(p)) = V1(ηk(p+ 1))− V1(ηk(p))

+ V2(ϵk+1(p))− V2(ϵk(p)). (19)

(For brevity (19) will be termed the divergence from this
point onwards.) Based on Theorem 1 in [22], the following
result on the trial-to-trial error convergence for the controlled
dynamics can be established (where || · || denotes the norm
on the underlying function space).

Theorem 1: Suppose that there exist a vector Lyapunov
function of the form (18) and positive scalars c1, c2 and c3
such that on the trajectories of the system (17):

c1||ηk(p)||2 ≤ V1(ηk(p)) ≤ c2||ηk(p)||2, (20)

c1||ϵk(p)||2 ≤ V2(ϵk(p)) ≤ c2||ϵk(p)||2, (21)

DV (ηk+1(p), ϵk(p)) ≤ −c3(||ηk+1(p)||2 + ||ϵk(p)||2).
(22)

Then the ILC law given by (3), and (16) guarantees that
the convergence conditions (6), and (7) hold for dynamics
described by (17).

Proof: Using Theorem 1 from [22] in the case
when (20) – (22) hold there exist α > 0 and 0 < λ < 1
such that

||ηk(p)||2 + ||ϵk(p)||2 ≤ αλk+p ≤ αλk. (23)

Therefore, ||ηk(p)|| ≤ κϱk, where κ =
√
α, ϱ =

√
λ and it

follows that |ek(p)| ≤ κϱk, and hence (6) holds. Next, since
∆vk(p) is defined by the relation (16), using (4) and (23)
gives

|vk+1(p) ≤ |vk(p)|+ α0λ
k+p+1

2 , (24)

where α0 =
√

2αmax{||K1||, |K2|}. From (24) it follows
that

|vk(p)| ≤ |v0(p)|+ α0λ
p+1
2

k−1∑
h=0

λ
h
2 .

On the right side of the last inequality, there is a geometric
progression converging as k → ∞, hence the limit on the
left side |v∞(p)| for k → ∞ exists and therefore

|v∞(p)| ≤ |v0(p)|+
α0λ

p+1
2

1− λ
1
2

.

Given (3), it follows that (7) holds.
Remark 1: The results in this paper are established us-

ing vector Lyapunov functions in explicit form, i.e., V =
[V1 V2]

T , V1 > 0, V2 > 0 and (19). An alternative would
be to use the scalar form Vc = V1 + V2 with V1 > 0
and V2 > 0, but the increment of this function along
trajectories of (17) would have to be calculated in addition
to the right-hand side (19). However, the divergence gives a
more straightforward physical interpretation, which, similar
to the usual Lyapunov function, can be interpreted as the
generalized energy of the system.

Remark 2: Due to the finite trial length, trial-to-trial error
convergence in ILC can occur even if, for linear dynamics,
the state matrix is unstable. In such cases, one option is to
design a stabilizing feedback control action and then apply
the ILC law to the resulting dynamics, resulting in a two-step
design procedure. Using the repetitive process/2D systems
setting leads to a control law regulating the trials’ dynamics.
Also, using vector Lyapunov functions naturally extends to
design for nonlinear dynamics.

Denote ξk(p) = [ηTk (p) η̌
T
k−1(p) ek−1(p)]

T and introduce
the following matrices of compatible dimensions

Ā(δ) =

 A(δ) B(δ)θAd 0
0 Ad 0

−CA(δ) −CB(δ)θAd 1

 ,

B̄(δ) =

 B(δ)θBd

Bd

−CB(δ)θBd

 .

Choose the entries of (18) as the quadratic forms

V1(ηk(p)) = ηTk (p)P1ηk(p),

V2(ϵk(p)) = ϵTk (p)P2ϵk(p), (25)

where P1 ≻ 0 and P2 ≻ 0. Calculating divergence along the
trajectories of (17) gives

DV (ηk+1(p), ϵk(p)) = ξT[(Ā(δ) + B̄(δ)K̄H)TP (Ā(δ)

+ B̄(δ)K̄H)− P ]ξ, δ ∈ D,
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where P = diag[P1 P2], K̄ = [K1 K2], H =[
I 0 0
0 0 1

]
. Assume also that the matrices P and K

satisfy the bilinear matrix inequality

(Ā(δ) + B̄(δ)K̄H)TP (Ā(δ) + B̄(δ)K̄H)

− P +Q+KTRK ⪯ 0, δ ∈ D, (26)

where Q ≻ 0 and R ≻ 0 are weighting matrices that
can (as one option) be chosen based on linear quadratic
regulator theory recommendations. Then if (26) is solvable
relative to P ≻ 0 and K, conditions (20), (21) and (22)
of Theorem 1 hold for the controlled dynamics. Using
Schur’s complement formulas and using the affine type of
the inequality describing the uncertainties, (26) is reduced to
the following set of LMIs:

X (Ā(δ)X + B̄(δ)Y H)T

Ā(δ)X + B̄(δ) X
X 0
Y H 0

X (Y H)T

0 0
Q−1 0
0 R−1

 ⪰ 0, δ ∈ Dv, (27)

where X = diag[X1 X2], Y = KZ and Z is the solution
of

HX = ZH. (28)

Hence, the following theorem is established.
Theorem 2: Assume that for some matrix Q ≻ 0 and

scalar R > 0 the set of linear matrix inequalities (27)
and (28) is solvable with respect to matrices X =
diag[X1 X2] ≻ 0, Y and Z. Then conditions (20), (21)
and (22) of Theorem 1 hold and the ILC law (3), (4),
(16) ensures that the convergence conditions (6) and (7)
hold for the controlled dynamics. The entries in the vector
Lyapunov function (18) are given by (25) with P1 = X−1

1

and P2 = X−1
2 . Moreover, the matrices in (16) are given

by

K = [K1 K2] = Y Z−1. (29)
Remark 3: When choosing entries in (25) as

quadratic forms, c1 = min{λmin(P1), λmin(P2)}, c2 =
max{λmax(P1), λmax(P2)} and c3 = λmin(Q + KTRK),
where λmin(·) and λmax(·), denote, respectively, the
minimum and maximum eigenvalues of a matrix. It follows
from [22] (Theorem 1) that in (6) κ depends on c1 and c2
and ϱ depends on c3. Hence, selecting Q and R based on
the recommendations of the LQR theory affects the rate of
convergence of the learning error.

IV. NUMERICAL CASE STUDY

Consider the controlled movement of a manipulator along
a horizontal axis orthogonal to the movement direction of the
conveyor belt of a multi-axis portal robot test facility, where
in [23] frequency response measurements have been used to

Fig. 1. The reference trajectory.

develop and verify the following transfer function model as
a starting point for control design

G(s) =
23.736(s+ 661.2)

s(s2 + 426.7s+ 1.744 · 105)
. (30)

Moreover, Fig. 1 shows the reference trajectory for a trial
length of 2 secs.

A sampling period of 0.01 secs was used to obtain a
discrete state space model in [23]. Nominal values of the
matrix A and vectors B and C for this model can be obtained
using the standard MATLAB functions ss and c2d. The
main focus in this section will be on the trial-to-trial error
convergence rate, so only the gain from input to output is
considered an uncertain parameter. This type of uncertainty
is reflected only in the form of matrix B(δ(p)) in the state
space model. Namely

B(δ(p)) = g(δ(p))B0,

where B0 is the nominal matrix from the discrete approxima-
tion of (30) and g ≤ g(δ(p)) ≤ g. Moreover, the particular
case of g = 0.5 and g = 2 is considered in this section. For
application, the control law of (3) and (4) is

∆vk(p) = K1(xk(p)− xk−1(p))

+K2(yref (p+ 1)− Cxk−1(p+ 1)),

vk(p) =

{
0 if k ∈ [−d 0],

vk−1 +∆vk(p) if k ≥ 1,
(31)

uk(p) =

d∑
i=0

τivk−i(p),

where the second term on the right-hand side of this law
uses the information at sample p+1 on the previous trial at
sample p on the current trial. For d = 0 and τ0 = 1, these
relations give the usual first-order ILC law; when d = 1,
they give a second-order ILC algorithm, and so on.

As a first study into the relative performance of this higher-
order law against first order, the weights τi are chosen on
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the premise that the previous trial has the most significant
contribution to the control input for the subsequent trial. The
others used in the control law follow the same principle, and
starting with τ0 = 1 is feasible. The weights for the other
previous trial signals used in the control law are then chosen
as a decreasing sequence of fractions of τ0.

A performance measure for the design is the root mean
square error, denoted by E(k), for each trial

E(k) =

√√√√ 1

N

N−1∑
p=0

|ek(p)|2. (32)

plotted against the trial number k, which should decrease
monotonically from trial to trial. A practically-minded crite-
rion is to count the number of trials until the error reduces
to a specified percentage of the initial value.

The results in the remainder of this section are for the case
when

Q = diag[1 1 1 10 10 10 5 · 105], R = 10−3.

This choice provides a tenfold reduction in E(k) for the
nominal system when applying first-order ILC in 10 trials.
Consider also the case when d = 2 (a third-order law). Then,
the special case when τ0 = 1 and τ1 = τ2 = 0 gives the first
order law for which the matrices are

K1 = [−15.5 − 12.7 − 5174.1], K2 = 167.5.

Consider also the case when τ1 = 0.8 and τ2 = 0, for which

K1 = [−6.8 − 5.3. − 2186.0], K2 = 174.1.

Fig.2 shows a comparison of these two designs. The increase
in the trial-to-trial error convergence for the higher-order law
is evident.

Fig. 2. E(k) progression with nominal gain (g = 1) for a first order (blue
line) and a second order law (with τ1 = 0.8) (red line).

Calculations and simulations have concluded that for τ0 =
1, the third-order ILC law has good robustness properties.
Fig. 3 shows that this law gives almost the same acceleration
in the convergence of the learning error if the gain g(δ(p))

takes a value on the lower bound of uncertainty. A typical
progression of the control input is shown in Fig. 4

Fig. 3. E(k) progression with nominal gain (g = 1) for a first order law
(blue line) and a third order law with gain on lower bound (g = 0.5) and
τ1 = 0.8 τ2 = 0.4 (red line).

Fig. 4. Control progression for a third order law with τ1 = 0.8 τ2 = 0.4.

To compare the non-causal and causal law, in the latter
case, the first equation in (31) is replaced by

∆vk(p) = K1(xk(p)− xk−1(p)) +K2(yref (p)− Cxk(p)).

Fig. 5 shows that the rate of trial-to-trial error convergence
for the same K1 and K2 is faster for the non-causal law.

A logical next step is to seek to develop results that allow
measurement of the trial-to-trial higher-order ILC against the
standard case. One possible way forward is to investigate the
Nesterov accelerated gradient method [24], [25].

V. CONCLUSIONS AND FURTHER RESEARCH

The paper has developed a new higher-order ILC law
that is non-causal in the ILC sense. It makes more use
of information from previous trials, where once complete,
all such information is available to construct the input for
the subsequent trial. Examples confirm that such a law can
accelerate trial-to-trial error convergence, including when
there is uncertainty associated with the dynamics.

This paper has developed a new higher-order ILC law
that is non-causal in the ILC sense. It makes more use
of information from previous trials, where once complete,
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Fig. 5. E(k) progression for a causal third order law (blue line) and a
non-causal law (red line).

all such information is available to construct the input for
the subsequent trial. Examples confirm that such a law can
accelerate trial-to-trial error convergence, including when
uncertainty is associated with the dynamics.

A significant area for future research is to develop mea-
sures that quantify the benefits of trial-to-trial error conver-
gence of higher-order ILC laws. In other areas, multi-step
methods in optimization theory have been investigated to
speed up the convergence of iterative algorithms, e.g., [26],
[27]. For example, two-step methods such as the heavy
ball and conjugate gradient can significantly speed up the
gradient method’s convergence, e.g., [25]–[27]. Gradient-
based algorithms have been extensively used in ILC design.
Considering a trial in ILC as a step, further investigation
could lead to significant progress, similar to the gradient
method algorithm, see [24] for the non-ILC case. In the
ILC case, [28] has reported some results but established a
convergence rate slower than that for the non-ILC case.
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