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Abstract— In this paper, we examine how adding memory to
nodes of a network system impacts its controllability properties.
Specifically, we analyze the behavior of the control energy of a
continuous-time linear network system and that of its lifted ver-
sion, obtained by allowing each node to have nontrivial internal
dynamics. We discuss how to compare the effect of a control
input on the original and lifted network, and show that, for line
networks, adding memory may reduce the worst-case control
energy by a factor that is exponential in the network size.

I. INTRODUCTION

In the last decade the research in control theory has
focused on the analysis of increasingly interconnected sys-
tems of possibly heterogeneous components. This interest is
motivated by the wide range of applications which can be
framed in the context of networks, such as power networks
[1], social networks [2], robotic networks [3] and traffic flow
networks [4]. Exploiting the capabilities of all different units
composing these systems to achieve a common objective
holds great potential. However, controlling large-scale net-
work systems may easily become difficult and expensive [5].
In fact, for many complex networks the system parameters
are not precisely known, the connections between different
units are several and intricate, and the energy necessary to
control them scales exponentially with their size [6], [7].

Among all the possible aspects related to the control of
complex networks, in this work we focus on the reduction
of the control effort. We do so by borrowing an idea used in
the Markov chain context to obtain faster spreading of the
process distribution on the underlying graph: a directional
evolution can be induced by introducing suitable memory
effects [8]–[10]. In our case, the memory is added by
introducing local internal dynamics in the network nodes,
effectively lifting the evolution to an expanded graph. We
show that, when suitably tuning the internal dynamics pa-
rameters, the network with extra memory can outperform
the original one in terms of control energy performance.

Contribution. The contribution of this paper is threefold.
First, we extend the idea of graph lift, initially proposed for
Markov chains, to continuous-time linear network systems
with inputs, and introduce constraints that ensure a compara-
ble impact of inputs on both the lifted and original networks.
Next, we apply the lifting operation to line networks and
establish an analytical condition guaranteeing that the worst-
case control energy in the lifted network grows exponentially
slower than in the original network as their sizes increase.
Lastly, we complement our theoretical results with a set
of numerical experiments, offering further insights into the
conditions under which the lifted network exhibits a control
energy advantage over its original counterpart.

Organization. The paper is organized as follows. Section II
contains some background on energy-related controllability
of linear network systems and presents the control energy
metrics employed in our analysis. Section III introduces
the notion of graph lift and illustrates how to apply it
to networks with inputs. Section IV examines the worst-
case control energy behavior of lifted line networks and
provides a condition that guarantees an improvement in the
control energy performance for the lifted network. Section V
expands upon the findings from the previous section through
the use of numerical simulations. Section VI concludes the
paper with some remarks and future research directions.

Notation. We let Re(z) and |z| be the real part and the
absolute value of a complex number z ∈ C. We denote
with Rn×m the set of n × m matrices with real entries.
We let [v]i denote the i-th entry of vector v ∈ Rn, and
A⊤, [A]ij denote the transpose, (i, j)-th entry, respectively,
of matrix A ∈ Rn×m. The symbols In, 0n, ei,n stand for the
identity matrix, the n-dimensional vector of zeros, and the
i-th canonical vector of Rn, respectively. We will drop the
subscript n when the dimension is clear from the context.
We denote with ∥A∥ the 2-norm of matrix A. For a square
matrix A ∈ Rn×n, det(A), trace(A) and λ(A) stand for
the determinant, trace and set of eigenvalues (or spectrum)
of A, respectively. A matrix A is Hurwitz if Re(λ) < 0,
∀λ ∈ λ(A). For a symmetric matrix A ∈ Rn×n we let
λmin(A) := min{λ : λ ∈ λ(A)} and λmax(A) := max{λ :
λ ∈ λ(A)}. We label with 1C(·) the indicator function of a
subset C ⊆ R. Finally, we let diag{a1, . . . , an} indicate the
diagonal matrix with diagonal entries a1, . . . , an ∈ R.

II. PRELIMINARIES ON ENERGY-RELATED
NETWORK CONTROLLABILITY

We consider a network described by a directed graph
G = (V, E) where V = {1, ..., n} is the set of nodes
and E ⊆ V × V is the set of edges. The state of the
network at time t ∈ R is described by the vector x(t) =[
x1(t), . . . , xn(t)

]⊤
, whose entry xi(t) ∈ R is the state

of node i ∈ V . We label with K := {k1, . . . , km} ⊆ V
the set of control nodes, i.e., the set of nodes within the
network where a vector of independent external control
signals u(t) = [u1(t), . . . , um(t)]⊤ enter the network.

We assume that the evolution of the state x(t) of the
network is described by the following continuous-time linear
and time invariant dynamics

ẋ(t) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n is the adjacency (or network) matrix of G,
that is, the entry [A]ij is the weight associated to the edge
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(j, i) ∈ E and [A]ij = 0 if (j, i) /∈ E , and B ∈ Rn×m is
made of a subset of canonical vectors of Rn, namely,

B = [ek1
, . . . , ekm

], {k1, . . . , km} ∈ K. (2)

The network system (1) is said to be controllable if for
any final state xf ∈ Rn there exists an external input able to
steer the system state from x(0) = 0 to x(T ) = xf within a
certain, possibly infinite, time horizon [0, T ]. Controllability
can be checked using Kalman’s rank condition [11] which
makes use of the controllability matrix, defined as

CT =
[
B AB · · · AT−1B

]
. (3)

The system is controllable in [0, T ] if and only if the
controllability matrix (3) has full row rank. The concept of
controllability is qualitative and does not provide a measure
of the specific control effort necessary to reach a desired
state configuration. Whenever we want to quantitatively
characterize controllability of a network system, we can rely
on the controllability Gramian of (1), defined as

WT =

∫ T

0

eAtBB⊤eA
⊤tdt. (4)

The Gramian WT is a positive definite matrix for T > 0 if
and only if the system is controllable in [0, T ]. Moreover,
for T → ∞, the Gramian is well defined if and only if the
matrix A in (1) is Hurwitz. If we assume the system (1) to
be controllable, the minimum energy control input steering
the system from x(0) = 0 to x(T ) = xf is given by [11]

u∗(t) = B⊤eA
⊤(T−t)W−1

T xf, t ∈ [0, T ], (5)

and the energy of this optimal input is

E(u∗(t)) =

∫ T

0

∥u∗(t)∥2dt = x⊤
f W−1

T xf. (6)

Equation (6) highlights how the (minimum) energy required
to control the network system (1) is related to the inverse
of the Gramian WT . As a consequence, it is possible
to employ scalar functions of the eigenvalues of WT to
define quantitative controllability metrics. Different metrics
have been proposed over the years, including λmin(WT ),
trace(W−1

T ), det(WT ), λmax(WT ) [7], [12].
In the remaining of this paper, we restrict the analysis

to Hurwitz stable systems and infinite horizon (T → ∞)
controllability Gramians, which we denote simply by W .
Further, we focus on the metric λmin(W), whose inverse is
equal to the worst-case control energy to reach a unit-norm
target state xf. Notably, it has been shown that for networks
with symmetric (or almost symmetric) adjacency matrices
controlled by a limited number of nodes, λmin(W) decays
exponentially in the network size n, which implies that the
worst-case control energy 1/λmin(W) grows exponentially
in n [6], [7]. In this situation, the degree of controllability
of networks can be quantified via the asymptotic exponential

rate of the worst-case control energy, namely,1

ρ = lim
n→∞

1

n
ln

(
1

λmin(W)

)
. (7)

This metric has been introduced in [13] under the name of
worst-case control energy exponent.

Finally, when the natural quantity of interest for control is
an output of the system

y(t) = Cx(t), C ∈ Rp×n,

rather than its state, we can introduce the output controlla-
bility Gramian which is defined as Wo = CWC⊤, where W
is the (infinite-horizon) controllability Gramian introduced in
(4). It is possible to quantify the output control energy (i.e.,
the energy required to control the system output) and its
asymptotic exponential rate by evaluating the same metrics
defined before on Wo rather than on W .

III. LIFTING NETWORKS WITH INPUTS

In this section, we discuss how it is possible to endow
each of the nodes in the network system (1) with a local
memory on the direction of the received control inputs from
neighboring nodes or from the external environment. We will
later exploit this extra memory to improve the controllability
performance of the network.

The way we endow nodes with additional memory is by
enlarging the dimension of the state space of the nodes.
Specifically, we associate to G a new graph Ĝ called lifted
graph, which is defined as follows.

Definition 1: (Lift of a graph) A graph Ĝ = (V̂, Ê) on
n̂ nodes is called a lift of G if there exist a surjective map
ζ : V̂ → V such that

(i, j) ∈ Ê =⇒ (ζ(i), ζ(j)) ∈ E .

Further, we denote with ζ−1 the map which takes as input a
node k ∈ V and outputs all nodes j ∈ V̂ for which ζ(j) = k.

The lift is said to be regular if for each node of the original
graph G the lifted graph Ĝ contains the same fixed number
K of associated nodes. More formally, in a regularly lifted
graph the cardinality of the set V̂j = ζ−1(j) is equal to K
for all j ∈ V . We may hence think of the regularly lifted
network as a network composed by n subgraphs of K nodes
Ĝi = (V̂i, Êi), i ∈ V , where V̂i = {1, . . . ,K} and Êi ⊆
V̂i × V̂i. Moreover, if the interconnections between the K
nodes in the same subgraph are identical, the lift is called
homogeneous. In this paper, we restrict the attention only to
regular homogeneous lifts.

By performing a lift we are introducing a new network
system different from the original one, whose topology is
characterized by the graph Ĝ = (V̂, Ê). The state of the lifted
network at time t ∈ R is described by the vector x̂(t) ∈ RnK ,
where K is the number of nodes in V̂i, i ∈ V , whereas û(t) ∈
Rm̂ denotes the vector of external inputs. The evolution of

1In what follows, when taking the limit for n → ∞, we implicitly assume
the existence of a sequence of systems as in (1), with state matrices and
input matrices of increasing dimension n.
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the state x̂(t) is governed by the following continuous-time
linear and time invariant dynamics:

˙̂x(t) = Âx̂(t) + B̂û(t), (8)

where Â ∈ RnK×nK is the adjacency matrix of Ĝ and
B̂ ∈ RnK×m̂ is an input matrix. The lifted system (8) is
the interconnection of n subsystems, each describing the
dynamics running on subgraph Ĝi, i = 1, . . . , n. The state
x̂i(t) of the i-th subsystem obeys the dynamics

˙̂xi(t) = Âix̂i(t) +
∑
j ̸=i

Âi,j x̂j(t) + B̂iû(t), (9)

where Âi ∈ RK×K is the adjacency matrix of Ĝi, Âi,j ∈
RK×K are matrices encoding the interconnections between
subsystems, and B̂i ∈ RK×m̂ is an external input matrix.

To maintain a relation with the original network we need
to impose some topological constraints on the lifted network
system. In particular, we assume that:
A.1) If (i, j) ∈ E then there exist h ∈ ζ−1(i), k ∈ ζ−1(j)

such that (h, k) ∈ Ê .
A.2) The lifted network has the same number of inputs of

the original network, that is, m̂ = m.
A.3) The i-th subsystem (9) receives an external input (B̂i ̸=

0) if and only if the i-th node of the original network
is fed with an external input.

Depending on the choice of the internal dynamics in (9) of
the subsystems, the collective behavior of the lifted network
can significantly differ from that of the original network.
Hence, whenever we want to compare the controllability
properties of the two networks, it is necessary to understand
under which conditions such comparison is meaningful.

It is known that proximity to instability positively influ-
ences the amplification of input signals and, consequently,
controllability [14]. In light of such interplay, we impose the
following stability constraint on the lifted subsystems:
A.4) maxλ∈λ(Âi)

Re(λ) ≤ [A]ii, i = 1, . . . , n.
Condition A.4 ensures that the i-th subsystem in (9) is not
closer to instability than node i of the original network. This
implies that the impact of stability on the controllability of
the i-th subsystem is, at most, equivalent to that of node i.

Finally, to compare the state of the lifted and original
network systems, we introduce the notion of state induced
by the lift. This state is defined as

xI(t) = Ĉx̂(t), (10)

where Ĉ ∈ Rn×nK will be referred to as the lift output
matrix. The vector xI(t), which can be thought as an output
for the lifted dynamics, has a number of entries equal to the
number of nodes of the original network and represents the
state of the original network after the internal dynamics of
the nodes has been lifted. In particular, let x̂i,j(t) be the j-th
component of x̂i(t), we will assume that the i-th component
of the induced state consists of the sum of the states of the
i-th subsystem in (9), that is:
A.5) [xI(t)]i =

∑
j x̂i,j(t), i = 1, . . . , n.

In what follows, we compare, under assumptions A.1–
A.5, the worst-case control energy exponents of the original
network and the lifted network with output matrix as in (10).

IV. CONTROL ENERGY OF LIFTED LINE NETWORKS

In this section we show how the lift operation introduced
in the previous section can be applied to a simple yet insight-
ful network topology. For this topology, we analytically show
that, by lifting the network, the energy required to control it
can be reduced by an exponential factor in the network size.

Our case study will be the symmetric bidirectional line
network of n nodes with a single input applied to the
first node, as depicted in Figure 1. The network system is
governed by the linear time invariant dynamics in (1), with
state and input matrices defined as

A =


−δ α 0 . . . 0
α −δ α . . . 0
... α

. . . . . .
...

0 0
. . . . . . α

0 0 0 α −δ

 , B =


β
0
0
...
0

 , (11)

where α, β, δ are positive real parameters and n ≥ 2. For
large n the eigenvalues of A take values in the interval Λ :=
[−δ − 2α,−δ + 2α] with density (see e.g. [13]):

p(λ) =
1

π
√
4α2 − (λ+ δ)2

1Λ(λ). (12)

Finally, we impose A to be Hurwitz by setting δ > 2α.

1 2 i n− 1 n
α α α α

−δ −δ −δ −δ−δ

β

Fig. 1. The symmetric bidirectional line network considered in this work.
The input enters from node 1 with weight β > 0, the parameter α > 0 is
the edge weight and −δ < 0 is the self-loop weight.

The following lemma characterizes the worst-case control
energy exponent (7) of the above network.

Lemma 1: (Worst-case control energy exponent of line
networks) Consider the line network described in (11). The
worst-case control energy exponent of the network is

ρ = 2 ln

(
1 +

√
δ2 + 2δα+ δ

α

)
. (13)

Proof: From [13, Theorem 4], the worst-case control
energy exponent of the network in (11) can be computed as

ρ = max
λ∈Λ

∫
Λ

2 ln

∣∣∣∣λ+ µ

λ− µ

∣∣∣∣ p(µ)dµ,
where p(·) is the asymptotic eigenvalue density in (12). Let

f(λ) :=

∫
Λ

2 ln

∣∣∣∣λ+ µ

λ− µ

∣∣∣∣ p(µ)dµ
=

∫
Λ

ln(λ+ µ)2p(µ)dµ−
∫
Λ

ln(λ− µ)2p(µ)dµ.

(14)
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From [15, Corollary 3], the following identity holds:∫
Λ

ln(λ− µ)2p(µ)dµ

=

2 lnα if λ ∈ Λ,

2 lnα+ 2 ln

(∣∣ δ+λ
2α

∣∣+√( δ+λ
2α

)2 − 1

)
if λ ̸∈ Λ.

(15)

Note that if λ ∈ Λ then −λ ̸∈ Λ, since A is Hurwitz. As a
consequence, if λ ∈ Λ, equation (15) yields∫

Λ

ln(λ+ µ)2p(µ)dµ =

∫
Λ

ln(−λ− µ)2p(µ)dµ

= 2 lnα+ 2 ln

δ − λ

2α
+

√(
δ − λ

2α

)2

− 1

 .

Therefore, by plugging (15) into (14) and assuming λ ∈ Λ,

f(λ) = 2 ln

δ − λ

2α
+

√(
δ − λ

2α

)2

− 1

 .

Finally, the maximum of the above function in the interval
Λ is attained at λ∗ := −δ − 2α, which yields

ρ = max
λ∈Λ

f(λ) = f(λ∗) = 2 ln

(
1 +

√
δ2 + 2δα+ δ

α

)
,

and concludes the proof.
We now apply the lift operation to the line network (11)

by enlarging the state space of each node, as described
in the previous section. Note that in the symmetric line
network (11) each node (except for the first and last node)
receives inputs from either its left neighbor or its right
neighbor, and possibly from the external environment. To
retain the information on the direction of the received control
input, we associate to each node in the original network
two nodes in the corresponding lifted line network. More
formally, we consider the lifted graph Ĝ = (V̂, Ê) where
V̂ = {1, 2, . . . , 2n}, Ê = V̂ × V̂ and a map ζ : V̂ → V so
that ζ−1(i) = {i, n+i}. The first node of the lifted subsystem
receives inputs from the left neighbor and propagates them to
the right, the second node instead receives signals form the
right neighbor and propagates them to the left. Furthermore,
we allow for some exchange of information between the two
nodes in each subsystem of the lifted network. The resulting
network is depicted in Figure 2. The dynamics of the lifted
network is described by (8) with system matrices set as:

Â =

[
Â1 ϵ̂In
ϵ̂In Â2

]
, B̂=


β̂

0n−1

β̂
0n−1

 , (16)

where α, β̂, δ̂, ϵ̂ are real parameters with α, β̂, δ̂ > 0 and

Â1=


−δ̂ 0 · · · 0

α −δ̂
. . .

...
. . .

. . . 0

0 α −δ̂

, Â2=


−δ̂ α 0

0
. . .

. . .
...

. . . −δ̂ α

0 · · · 0 −δ̂

.

In designing the lift, the degrees of freedom are the self-
loop weight −δ̂, the input weight β̂, and ϵ̂ which is the weight
associated to the (symmetric) interconnection between the
two nodes within the same lifted subsystem. To preserve
the topology of the original network we impose the same
interconnection weight α between neighboring subsystems.
Moreover, to split equally the control signal within the two
nodes in the first subsystem we set β̂ = β/2.2 Notice that
the designed lift respect the topological constraints A.1, A.2,
A.3 of the previous section. As for the stability constraint
(condition A.4) we need to impose −δ̂ + ϵ̂ ≤ −δ. Lastly,
following assumption A.5, we define the lift output matrix as

Ĉ =
[
In In

]
. (17)

1 2 i n− 1 n

n+ 1 n+ 2 n+ i 2n−1 2n

α α α α

α α α α

β̂

β̂
ϵ̂ ϵ̂ ϵ̂ ϵ̂ ϵ̂

−δ̂ −δ̂ −δ̂ −δ̂ −δ̂

−δ̂ −δ̂ −δ̂ −δ̂ −δ̂

Fig. 2. The lifted line network considered in this work. The i-th subsystem
of the lifted network comprises nodes i and n+ i.

In the following lemma we establish an expression for the
worst-case control energy exponent of the lifted line network
with output matrix Ĉ in (17). This expression applies to
the particular case of no interconnection between the nodes
within each subsystem, i.e., ϵ̂ = 0. Note that in this case the
matrix Â is Hurwitz for any choice of α, δ̂ > 0. Observe
also that, in this case, the lifted network is not controllable;
indeed the nodes n + 2, . . . , 2n cannot be reached by the
input. However, as shown in the proof of the lemma, the
lifted network is output controllable, i.e., the induced state
xI can be steered to any desired value via suitable inputs.

Lemma 2: (Worst-case control energy exponent of lifted
line networks for ϵ̂ = 0) Consider the lifted line network
(16) with output matrix Ĉ as in (17) and ϵ̂ = 0. The worst-
case control energy exponent of the network is

ρ̂ = 2 ln

(
1 +

2δ̂

α

)
. (18)

2It can be shown (see the proof of Lemma 2) that the particular choice of
β̂ > 0 does not impact the controllability performance for large networks,
as quantified by the worst-case control energy exponent.
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Proof: The (output) controllability Gramian of the lifted
network with ϵ̂ = 0 can be written as

Wo =

∫ ∞

0

ĈeÂtB̂B̂⊤eÂ
⊤tĈ⊤dt

= β̂2

∫ ∞

0

(eÂ1te1+eÂ2te1)(e
⊤
1 e

Â⊤
1 t+e⊤1 e

Â⊤
2 t)dt

= β̂2

∫ ∞

0

eÂ1te1e
⊤
1 e

Â⊤
1 tdt︸ ︷︷ ︸

W1

+ β̂2

∫ ∞

0

eÂ2te1e
⊤
1 e

Â⊤
2 tdt︸ ︷︷ ︸

W2

+ β̂2

∫ ∞

0

(eÂ1te1e
⊤
1 e

Â⊤
2 t+eÂ2te1e

⊤
1 e

Â⊤
1 t)dt︸ ︷︷ ︸

W3

. (19)

We next compute separately the three matrices W1, W2, W3.
From [16, Proposition 1], it holds

[eÂ1te1]i=e−δt(αt)
i−1

(i−1)!
. (20)

Further,

[eÂ2te1]i=

{
e−δt if i = 1,

0 if i ̸= 1.
(21)

By using (20) and (21) in (19), it follows that

[Wo]ij = [W1 +W2 +W3]ij

=


4[W1]ij if i = j = 1,

2[W1]ij if i = 1 or j = 1 and i ̸= j,

[W1]ij otherwise.

The above Gramian can be written more compactly as

Wo = DW1D, with D = diag{2, 1, . . . , 1}.

From the previous expression, it holds

λmin(Wo) = min
x∈Rn

x̸=0

x⊤Wox

x⊤x
= min

x∈Rn

x ̸=0

x⊤DW1Dx

x⊤x

= min
y=Dx∈Rn

y ̸=0

y⊤W1y

y⊤D−⊤D−1y
, (22)

Moreover, it is possible to observe that

y⊤D−1D−1y ≥ λmin(D
−1D−1)y⊤y = y⊤y/∥D∥2,

y⊤D−1D−1y ≤ λmax(D
−1D−1)y⊤y = ∥D−1∥2y⊤y.

From (22) and the above inequalities, it follows that

λmin(Wo) ≤ ∥D∥2 min
y∈Rn

y ̸=0

y⊤W1y

y⊤y
= ∥D∥2λmin(W1)

= 4λmin(W1),

λmin(Wo) ≥
1

∥D−1∥2
min
y∈Rn

y ̸=0

y⊤W1y

y⊤y
=

1

∥D−1∥2
λmin(W1)

= λmin(W1).

The latter bounds readily imply that

ρ̂ = lim
n→∞

1

n
ln

(
1

λmin(Wo)

)
= lim

n→∞

1

n
ln

(
1

λmin(W1)

)

Finally, from the asymptotic behavior of λmin(W1) derived
in [7, Table 1], we conclude that

ρ̂ = lim
n→∞

1

n
ln

(
1

λmin(W1)

)
= 2 ln

(
1 +

2δ̂

α

)
. (23)

The following result, which builds on the previous lemmas,
provides a condition under which the lifted line network
outperforms the original network in terms of control energy.

Theorem 1: (Control energy advantage of lifted networks
for ϵ̂ = 0) Consider the line network (11) and its lifted
version (16) with output matrix Ĉ as in (17). Let ρ and ρ̂
denote the worst-case control energy exponent of the original
and lifted network, respectively. It holds

ρ > ρ̂ ⇐⇒
√
δ2 + 2δα > 2δ̂ − δ. (24)

Proof: From the expressions of ρ and ρ̂ in Lemma 1
and 2, the inequality ρ > ρ̂ holds if and only if

2 ln
(
1 +

√
δ2 + 2δα+δ

α

)
> 2 ln(1+

2δ̂

α
)

⇐⇒
√
δ2 + 2δα+ δ

α
+ 1 > 1 +

2δ̂

α

⇐⇒
√
δ2 + 2δα+ δ > 2δ̂.

This yields (1) and concludes the proof.
A few comments on the above result are in order. First,

notice that, by setting δ̂ = δ, the condition in Theorem 1
reads as

ρ > ρ̂ ⇐⇒
√

δ2 + 2δα > δ,

which is always satisfied because α, δ > 0. In this case, we
always have an advantage in employing the lifted dynamics.
Second, and more importantly, we remark that the condition
in Theorem 1 is in terms of control energy exponents. This
means that, when this condition is satisfied, the gap between
the worst-case control energy of the original network and its
lifted counterpart grows exponentially with the network size.

V. NUMERICAL ANALYSIS

In this section we present some numerical simulations
which complement the theoretical analysis of the previous
section. In particular, we focus on an empirical comparison
between the behavior of the worst-case control energy of the
line network (11) and its lifted counterpart (16).

In Figure 3, we compare the worst-case control energy
exponent of the original and lifted network. Specifically, we
plot the quantity

∆ = γ̂ − γ, (25)

as a function of network parameters δ̂ and ϵ̂ (Fig. 3, top plot)
and δ̂ and α (Fig. 3, bottom plot), where

1) γ is an empirical worst-case control energy exponent of
the line network (11), computed as

γ =
ln(1/λmin(W(n2)))− ln(1/λmin(W(n1)))

n2 − n1
,
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where W(n) denotes the controllability Gramian of the
line network with n nodes, and n2 > n1.

2) γ̂ is an empirical worst-case control energy exponent of
the lifted line network (16), computed as

γ̂ =
ln(1/λmin(W(2n2)

o ))− ln(1/λmin(W(2n1)
o ))

n2 − n1
,

where W(n)
o denotes the output controllability Gramian

of the lifted line network with n nodes and n2 > n1.

Worst-case control energy exponents:
empirical comparison

Fig. 3. Empirical comparison between the worst-case control energy
exponents of the line network (11) and the lifted line network (16). We
choose line network parameters δ = 2, β = 1, β̂ = 0.5, α = 0.9 in the
top plot, and δ = 2, β = 1, β̂ = 0.5, ϵ̂ = 0 in the bottom plot. The plots
show the values of the empirical metric ∆, as defined in (25), computed for
n1 = 5 and n2 = 8. The white area highlights the set of parameters that
do not satisfy the constraint A.4 defined in Sec. III. The red line indicates
the values of parameters yielding ∆ = 0.

Observe that a negative value of ∆ in (25) indicates that
the lifted network exhibits a worst-case control energy lower
than the one of the original network. Further, the white area
in the plots denotes the region of parameters for which the
stability constraint in A.4 is not satisfied.

It is interesting to notice that the lifted network does
not outperform the original one for all choices of network
parameters. In particular, when the lifted network exhibits
a high degree of stability (corresponding to a large value
of δ̂) we have ∆ > 0 meaning that the original network
requires less energy to be controlled compared to the lifted
one. On the other hand, the choice of parameters offering the
greatest advantage in control energy for the lifted network is
δ̂ = δ and ϵ̂ = 0. This is, as expected, a particular case of
the configuration that has been shown to exhibit advantages
for the lifted dynamics in Section IV, and corresponds to
two decoupled, fully directed dynamics. Finally, it is worth
to mention that ∆ slightly increases whenever we lower
the value of the parameter α, showing less advantage in
employing memory to improve control energy performance
for networks featuring weak interconnections.

VI. CONCLUSIONS

This paper represents an initial exploration of the role of
memory effects in the control of network systems. Our study
demonstrates how these effects can be effectively designed
to reduce the effort needed to control a network. Specifically,
our analytic and numerical findings reveal that, for line
network topologies, adding local memory and exploiting
it to induce directionality in the evolution can provide an
advantage in control energy. Interestingly, such advantage
grows exponentially with the cardinality of the network.

A number of issues still remain open for further investi-
gation. For instance, constraints alternative to A.4 that more
effectively encapsulate a desired non-amplifying behavior of
the lifted subsystems can be explored. In addition, analytical
expressions of control energy exponents could be derived
for more general choices of line network parameters. This
would provide a more precise quantification of the control
benefits of the proposed strategy. Additional future work
directions include the description of lifted dynamics for
networks with multi-dimensional node states and the analysis
of the interplay between memory and control energy in more
complex network topologies.
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