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Abstract— Advanced machine learning (ML) models have
been developed for battery lifetime prediction in different use
cases at all stages of a battery’s life. As the first step to
enable the transferability of ML models for battery lifetime
prediction across multiple use cases, a scenario-aware machine
learning pipeline is proposed, in which two feature engineering
methods that have been able to generate input features with
outstanding predictive power are used to learn the best ML
model for battery lifetime prediction in a chosen usage sce-
nario. The experimental results show that the histogram-based
feature engineering method is able to generate input features
with predictive power generalized across two usage scenarios
(i.e., identical cycling and protocol cycling). Thus, to enable
transferability of ML models for battery lifetime prediction
across different scenarios, and even battery chemistries, this
histogram-based feature engineering method will be further
investigated together with online fine-tuning strategies.

I. INTRODUCTION

In order to decarbonize transportation systems in Europe,
EU-wide CO2 emission standards for light-duty vehicles
(Regulation 2019/631) and heavy-duty vehicles (Regulation
2019/1242) are set in 2019, in which emission reduction
goals require technologies to enable significant transitions
from internal combustion engine vehicles to zero-emission
vehicles [1]. As one of the key enabling technologies,
lithium-ion batteries are widely adopted by major automo-
tive companies due to their decreasing costs, high energy
densities, and long lifetimes [2]. To further improve lithium-
ion battery technology, battery lifetime prediction has gained
considerable academic attention and research interest in
recent years. As a result, a large number of battery lifetime
prediction methods have been proposed for various use cases
at all stages of a battery’s life [3].

More recently, spurred by the ever-increasing availability
of battery data and the success of machine learning (ML),
substantial efforts have been made in data-driven methods
for battery lifetime prediction. As a matter of fact, there are
many different use cases for these battery lifetime prediction
ML models spanning battery design, manufacturing, usage,
and repurposing stages, and the feature engineering method
is generally specific to each use case. To exemplify, 7
use cases for battery lifetime prediction are listed here.
Firstly, the elemental compositions of the liquid electrolytes
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were used as features to develop ML models that assist
the design of high-performance electrolytes [4]. Secondly,
experimental variables were used as features to develop ML
models for the design of electrode manufacturing processes
[5]. Thirdly, features extracted from discharge data were
used to develop ML models for the evaluation of intrinsic
cell-to-cell variations in quality control [6] [7]; Fourthly,
features extracted from half discharge data were used to
develop ML models for battery grading before its usage [8];
Fifthly, features extracted from early degradation data were
used to develop ML models for protocol optimization (e.g.,
formation protocol optimization [9], fast-charging protocol
optimization [10] [11]); Sixthly, the time spent in specific
voltage, current and temperature ranges were used to develop
ML models for battery health estimation and prediction in
the battery management system (BMS) [12] [13] [14]; Lastly,
features extracted from incremental capacity curves were
used to develop ML models for second-life battery health
estimation and prediction at the repurposing stage [15].

Different ML models have proven to give highly accurate
lifetime prediction in the aforementioned use cases with
possibly quantified uncertainty. However, the input features
generated in the feature engineering process in one use case
can vary from another. Therefore, the goal of this work
is to find feature engineering methods that are capable of
generating input features with generalized predictive power
across different use cases. As a result, the transferability of
ML models for battery lifetime prediction can be enabled
across multiple use cases at different stages of a battery’s
life.

Specifically, our key results and contributions are sum-
marized as follows:

• We first classify typical use cases for battery lifetime
prediction into three scenarios based on battery usage
profiles, i.e., identical cycling, protocol cycling, and
dynamic cycling (see Table I), then a scenario-aware
machine learning pipeline (see Fig. 1) is proposed
to automate the process of selecting the best feature
engineering method for developing the best ML model
in a chosen battery usage scenario.

• Gaussian process regression using input features gener-
ated by the histogram-based feature engineering method
is found to be the best choice in two of the usage
scenarios (i.e., identical cycling and protocol cycling).
Thus, to enable the transferability of ML models for
battery lifetime prediction across multiple use cases,
this histogram-based feature engineering method will
be further investigated.
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The remaining of the paper is organized as follows: Section
II classifies typical use cases for battery lifetime predic-
tion into three scenarios and then introduces the scenario-
aware pipeline; Section III validates the effectiveness of
our proposed scenario-aware pipeline for battery lifetime
prediction in two scenarios; Section IV draws conclusions
and recommends future work.

II. SCENARIO-AWARE MACHINE LEARNING PIPELINE

In the literature, many machine learning (ML) models
have been developed to provide accurate and reliable battery
lifetime prediction in various use cases. In Table I, we
classify typical use cases in the literature into three scenarios
based on their battery usage profiles, i.e., identical cycling,
protocol cycling, and dynamic cycling.

• Identical cycling: Batteries are repeatedly cycled under
identical or nearly identical conditions to quantify their
intrinsic cell-to-cell variations, such as battery lifetime
spread, capacity spread, etc.

• Protocol cycling: Batteries are repeatedly cycled under
various cycling protocols to characterize the impact of
different protocols (e.g., formation protocols or fast-
charging protocols) on battery health degradation and
lifetime.

• Dynamic cycling: Batteries are cycled under varying
conditions to characterize battery aging in real-world
applications.

Based on use case classification results for battery lifetime
prediction in Table I, a scenario-aware machine learning
pipeline that automates the process of producing the best
ML model for each scenario is proposed in Fig. 1.

A. Feature engineering

The main objective of feature engineering is to reduce
data dimensionality, improve model performance, and en-
hance model interpretability [13]. To develop ML models for
battery lifetime prediction in various use cases (see Table I),
different feature engineering methods have been proposed in
the literature. Among them, two feature engineering methods
have been able to generate input features with excellent pre-
dictive power while retaining a good level of interpretability.
As listed in Table II, the first feature engineering method
that extracts features from discharge data of the first 100
cycles was initially proposed by Severson et al. [16], and
this MIT 6-feature set is selected as the first feature set in
this work. In contrast, the second feature engineering method
that extracts features from full cycling data was initially
proposed by Greenbank et al. [13], and a histogram-based
3-feature set was selected with an optimal tradeoff between
model accuracy and complexity. This Oxford 3-feature set is
selected as the second feature set in this work.

B. Train-test split

In our prior experience, the train-test split has been ob-
served to have a significant impact on ML model perfor-
mance. Therefore, in order to improve model generalization
performance and ensure reliable model evaluation on the test

set, the stratified random sampling method [17] is used to
split the dataset, with 80% in a training set, and 20% in a
test set. Specifically, retrieved battery cells are first classified
into different groups based on a desired criterion for each
scenario. Then, equal ratios of cells that belong to different
groups are maintained in the training and test set at each
split. Note that the specific criterion for classifying cells into
different groups may differ from one use case to another (see
Section III). Lastly, to reduce the randomness of experiments,
the stratified random sampling is repeated 5 times, and the
results of 5 train-test splits are averaged.

C. Model selection

1) Elastic net: The elastic net is a regularized method
used in the fitting of linear or logistic regression models [16].
The elastic net linearly combines the L1 and L2 penalties of
the lasso and the ridge methods. The combination will result
in a sparse model where only a few coefficients are non-
zero. The elastic net has been shown to perform well when
there are high correlations between the features, as is often
the case for capacity predictions.

2) Gaussian process regression: The Gaussian process
regression (GPR) has been widely employed to address
battery health prognostic problems due to its advantages
of being nonparametric, probabilistic, and customizable [12]
[18] [19]. For the input x, a Gaussian process (GP) defines a
probability distribution of a function f(x). Then the property
of f(x) is specified by its mean function m(x) and covari-
ance function k(x,x′). For a finite number of input samples
from the training set, {xi}ND

i=1, the GPR calculates the joint
Gaussian probability distribution p(f(x1), ..., f(xND

)), with
mean function m and covariance function K. For simplicity,
the mean function is usually assumed to be zero [20]. The
Matérn 5/2 covariance function is used as it has previously
shown good performance in battery lifetime prediction [12].

3) Quantile regression forest: The quantile regression
forest (QRF) provides conditional quantiles of an output
variable given input features [21]. To construct the condi-
tional distribution of the output variable, all observations of
the output variable in every leaf of each tree are stored in
the QRF [22]. The 95% prediction intervals are constructed
from the predictive quantiles of the output variable, i.e.,
Î(x) = [Q̂.025(x), Q̂.975(x)].

D. Model performance evaluation

1) Point prediction evaluation: To evaluate the quality of
battery lifetime point predictions, three metrics are used in
this work, namely, root-mean-square error (RMSE), mean
absolute percentage error (MAPE), and coefficient of deter-
mination (R2). They are defined as

RMSE(yj , ŷj) =

√√√√ 1

NT

NT∑
j=1

(yj − ŷj)2 (1)

MAPE(yj , ŷj) =
1

NT

NT∑
j=1

∣∣∣∣yj − ŷj
yj

∣∣∣∣ (2)
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TABLE I
USE CASES CLASSIFICATION FOR BATTERY LIFETIME PREDICTION

Scenario Battery usage profile Use case Battery life stage

1 Identical cycling

High-performance electrode design [4] Design
Graphite electrode manufacturing process design [5] Manufacturing
Product quality control [6] [7] Manufacturing
Battery grading [8] Manufacturing

2 Protocol cycling Formation protocol optimization [9] Manufacturing
Fast-charging protocol optimization [10] Usage

3 Dynamic cycling Onboard battery health estimation and prediction [14] Usage
Second-life battery health estimation and prediction [15] Repurposing
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Feature
Engineering

Feature
Selection

Stratified Train-
Test SplitTraining Sets

Test Sets

Model
Selection
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Model Verification
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Model

80%

20%

Fig. 1. The scenario-aware machine learning pipeline for battery lifetime prediction.

TABLE II
TWO FEATURE SETS BY TWO FEATURE ENGINEERING METHODS

Feature engineering method Data type Feature Output variable

MIT 6-feature set [16] Discharge data

Minimum, variance, skewness, and kurtosis of
difference of the discharge voltage curve between
cycle 100 and cycle 10 (i.e., ∆Q100−10(V ))

Cycle lifeDischarge capacity at cycle 2 (i.e., Q2)
Difference between maximum discharge capacity
within the first 100 cycles and discharge capacity
at cycle 2 (i.e., ∆QMax−2)

Oxford 3-feature set [13] Full cycling data

Time spent between voltages corresponding to
1st and 33rd percentiles over every 12 hours (i.e., V12) Capacity change

over every 12 hours (i.e., ∆Q)Time spent between voltages corresponding to
33rd and 67th percentiles over every 12 hours (i.e., V23)
The calendar time (i.e., t)

R2(yj , ŷj) = 1−
∑NT

j=1(yj − ŷj)
2∑NT

j=1(yj − ȳ)2
(3)

where NT denotes the number of samples to be evaluated in
the test set, and yj and ŷj denote the observed cycle life and
the predicted cycle life of cell j, respectively. The average
cycle life for in total NT samples in the test set is calculated
as ȳ = 1

NT

∑NT

j=1 yj .
2) Range prediction evaluation: To evaluate the quality

of battery lifetime range prediction, three metrics are used
in this work, namely, prediction interval coverage probability
(PICP), mean prediction interval width (MPIW), and aver-

aged interval score (AIS). They are expressed by

PICP =
1

NT

NT∑
j=1

cj (4)

MPIW =
1

NT

NT∑
j=1

|uj − lj | (5)

AIS =
1

NT

NT∑
j=1

((uj − lj) +
2

0.05
(lj − yj)1{yj<lj}

+
2

0.05
(yj − uj)1{yj>uj})

(6)
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where cj is a binary variable. Specifically, if the observed
battery lifetime of cell j in the test set is within the range
constructed by the lower bound lj and the upper bound uj ,
then cj = 1; otherwise, cj = 0. 1{·} is an indicator function
and equal to 1 if the specified condition is satisfied; otherwise
equal to 0.

III. EXPERIMENTS AND RESULTS

A. Battery dataset

To demonstrate the effectiveness of our proposed scenario-
aware machine learning pipeline for battery lifetime pre-
diction, we apply it to a battery dataset generated by
Toyota Research Institute together with Stanford University
and Massachusetts Institute of Technology [16]. In total,
this dataset consists of 124 lithium iron ferrous phosphate
(LFP)/graphite cylindrical cells manufactured by A124 Sys-
tems (model APR18650M1A, 1.1 Ah nominal capacity). The
test purpose is to characterize the impact of different fast-
charging protocols on battery health degradation and then
identify the best high-cycle-life fast-charging protocol. All
the cells were charged with either a one-step or a two-step
charging protocols from 0% to 80% state-of-charge (SoC),
and then charged with a 1C constant current–constant voltage
(CC-CV) charging step from 80% to 100% SoC. Thereafter,
all the cells were identically discharged with a 4C CC-CV
discharging step to 0% SoC. All the tests were conducted
in an environmental chamber at a constant temperature of
30◦C. The cells were cycled until they reached the end of
life (EoL) threshold (80% of initial nominal capacity in this
dataset).

In terms of data availability, time-series cell voltage,
current, and (surface) temperature in each cycle were con-
tinuously measured, while two battery health metrics, i.e.,
rated capacity (4C discharge, 30 ◦C) and internal resistance
(±3.6 C pulse current, 30 or 33 ms pulse width, 80% SoC)
were measured per cycle. To evaluate the effectiveness of two
feature engineering methods (see Table II) on this dataset,
features versus output variables at one stratified train-test
split are illustrated in Fig. 2 and Fig. 3, respectively. It can
be observed from both figures that there is a strong overlap
between training and test data.

B. Battery lifetime prediction in scenario 1

In scenario 1, batteries are repeatedly cycled under iden-
tical or nearly identical conditions with the objective of
quantifying their intrinsic cell-to-cell variation. In order to
capture the cell-to-cell variations of a larger population, a
sample size of 8-10 cells is recommended in Ref. [23]. In
the chosen dataset, one charging protocol, i.e., ”5.3C(54%)-
4C” has been repeated on 8 cells. Therefore, for this charging
protocol, the battery lifetime is used as the criterion to first
classify these 8 cells into long-lived (i.e., greater than or
equal to observed median lifetime) cells and short-lived (i.e.,
less than observed median lifetime) cells. Then the battery
data is split into a training set (6 cells) and a test set (2
cells). Moreover, equal ratios of long-lived cells and short-
lived cells are kept in the training and test set at each split.

Fig. 2. Cycle life versus MIT 6 features at one stratified train-test split.

Fig. 3. Capacity change versus Oxford 3 features at one stratified train-test
split.

The battery lifetime point and range prediction results for
three ML models using two different feature sets in scenario
1 are summarized in Table III. In terms of battery lifetime
point prediction quality, as measured by RMSE, MAPE, and
R2, it can be seen that the elastic net using MIT 6-feature
set performs the best, while the GPR using Oxford 3-feature
set performs the second best among all ML models using
two feature sets. In terms of battery lifetime range prediction
quality, as measured by PICP, MPIW, and AIS, it can be seen
that the GPR performs better than QRF using the same MIT
6-feature set. Moreover, the GPR using Oxford 3-feature
set is also capable of predicting battery capacity fade with
uncertainty quantified by confidence intervals (see Fig. 4).

In scenario 1, the objective is to quantify intrinsic cell-to-
cell variation, and then these information is used for refining
battery design and manufacturing process, grading batteries
before their usage, etc. In line of this, the experimental results
in Table III suggest that the elastic net using MIT 6-feature
would be the best choice if only battery lifetime spread
is to be quantified, while the GPR using Oxford 3-feature
set would be preferred if both battery lifetime spread and
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capacity spread are to be quantified.
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Fig. 4. Predicted versus observed ∆Q (left) and predicted capacity versus
time (right) of a sample cell [b3c39] in the test set. Note that the GPR with
Matérn 5/2 covariance function is selected for battery lifetime prediction
here.

C. Battery lifetime prediction in scenario 2

In scenario 2, batteries are repeatedly cycled under inten-
tionally varied conditions with the objective of characterizing
the impact of different protocols (e.g., formation protocols
or fast-charging protocols) on battery health degradation and
lifetime. In the chosen dataset, there are 72 different charging
protocols whose nominal charging time from 0% to 80% SoC
ranges from 9 to 13.3 min. Therefore, the nominal charging
time from 0% to 80% SoC is used as the criterion to first
classify cells into fast-charged (less than 10.5 min) cells,
medium-charged (between 10.5 and 11.7 min) cells, and
slow-charged (greater than 11.7 min) cells. Then the battery
data is split with 80% in a training set (99 battery cells) and
20% in a test set (25 battery cells). Moreover, equal ratios of
fast-charged cells, medium-charged cells, and slow-charged
cells are kept in the training and test set at each split.

The battery lifetime point and range prediction results for
three ML models using two different feature sets in scenario
2 are summarized in Table IV. In terms of battery lifetime
point prediction quality, as measured by RMSE, MAPE, and
R2, it can be seen that the GPR using Oxford 3-feature
set performs the best, while the elastic net using Oxford 3-
feature set performs the second best among all ML models
using two feature sets. In terms of battery lifetime range
prediction quality, as measured by PICP, MPIW, and AIS,
it can be seen that the QRF performs better than the GPR
using the same MIT 6-feature set. Instead of proving battery
lifetime range prediction, the GPR using Oxford 3-feature
set predicts battery capacity fade trajectories with uncertainty
quantified as confidence intervals (see Fig. 5).

In scenario 2, the objective is to characterize the impact of
different protocols (e.g., formation protocols or fast-charging
protocols) on battery health degradation and lifetime, and
then this information is used for protocol optimization.
Therefore, the experimental results in Table IV suggest that

the QRF model using MIT 6-feature set, or the GPR using
Oxford 3-feature set, would be preferred in scenario 2 as they
both provide more information for decision-making under
uncertainty via prediction intervals or confidence intervals
than point prediction alone. For an example of how uncer-
tainty information facilitates decision-making that reduces
the occurrence of unacceptably short cycle life, we refer to
Ref [24].

−1 0

Observed ∆Q(%)

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

P
re

d
ic

te
d

∆
Q

(%
)

0 1

Time (s)×106

0.85

0.90

0.95

1.00

1.05

1.10

D
is

ch
a
rg

e
ca

p
a
ci

ty
(A

h
)

Observed capacity

Predicted capacity

95% confidence interval

End of life

Fig. 5. Predicted versus observed ∆Q (left) and predicted capacity versus
time (right) of a sample cell [b2c26] in the test set. Note that the GPR with
Matérn 5/2 covariance function is selected for battery lifetime prediction
here.

IV. CONCLUSION

Various machine learning (ML) models have been devel-
oped for battery lifetime prediction in different use cases at
all stages of a battery’s life. To enable the transferability
of ML models across multiple use cases, a pipeline-based
approach was proposed to automatically select the best fea-
ture engineering method for developing the best ML models
in a chosen usage scenario. With the aid of our proposed
pipeline, it has been demonstrated that the Gaussian process
regression (GPR) using Oxford 3-feature set would be the
overall best choice as it provided uncertainty information
via confidence intervals in addition to predicted capacity
fade trajectories with high accuracy, which was desired in
both usage scenarios (i.e., identical cycling and protocol
cycling). Moreover, this histogram-based feature engineering
method was found to be able to generate input features (e.g.,
Oxford 3-feature set in this work) with predictive power
generalized across two usage scenarios (i.e., identical cycling
and protocol cycling).

These findings lead to our future research, i.e., to fur-
ther validate the generalized predictive power of input fea-
tures generated by this histogram-based feature engineering
method in usage scenario 3 (i.e., dynamic cycling), a bat-
tery dataset with cells aged under real-driving scenarios is
needed. To enable transferability of ML models for battery
lifetime prediction across different scenarios, online fine-
tuning strategies also need to be investigated.
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TABLE III
BATTERY LIFETIME PREDICTION PERFORMANCE IN SCENARIO 1

Feature set + Point prediction evaluation Range prediction evaluation
ML models RMSE (cycles) MAPE (%) R2 PICP (%) MPIW (cycles) AIS (cycles)
MIT 6-feature set + Elastic net 37 3.2 0.79 - - -
MIT 6-feature set + GPR 82 7.0 0.28 0.7 260 906
MIT 6-feature set + QRF 79 7.2 0.07 0.7 315 963
Oxford 3-feature set + Elastic net 333 21.5 0.01 - - -
Oxford 3-feature set + GPR 54 4.7 0.62 - - -
The charging protocol ”5.3C(54%)-4C” has been repeated with 8 cells in the dataset. Hence, these 8 cells are retrieved
from the battery database in this scenario.

TABLE IV
BATTERY LIFETIME PREDICTION PERFORMANCE IN SCENARIO 2

Feature set + Point prediction evaluation Range prediction evaluation
ML models RMSE (cycles) MAPE (%) R2 PICP (%) MPIW (cycles) AIS (cycles)
MIT 6-feature set + Elastic net 190 20.7 0.72 - - -
MIT 6-feature set + GPR 165 17.2 0.78 95.2 607 865
MIT 6-feature set + QRF 151 12.2 0.83 93.6 451 635
Oxford 3-feature set + Elastic net 73 7.3 0.94 - - -
Oxford 3-feature set + GPR 41 4.9 0.99 - - -
In total, 124 cells are retrieved from the battery database in this scenario.
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