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Abstract— This paper offers a formal compositional frame-
work for the construction of control barrier certificates (CBC)
for an interconnected network comprised of a countably infi-
nite number of discrete-time control subsystems. Inspired by
small-gain type conditions designed inherently for the stability
analysis of large-scale interconnected systems, our proposed
approach aims to synthesize control strategies that ensure safety
properties across infinite networks using local certificates of
their individual subsystems. Specifically, this is achieved by
employing a notion of control sub-barrier certificates (CSBC)
for individual subsystems, using which one can ensure that the
interconnected network avoids entering unsafe regions over an
infinite time horizon under specific small-gain type conditions.
We utilize a sum-of-squares (SOS) optimization approach to
systematically search for CSBC and their associated control
strategies that align with the desired safety criteria. We show-
case the efficacy of our compositional approach through its
application to a vehicle platooning scenario, which involves a
countably infinite number of vehicles with a single leader and
an unlimited number of followers.

I. INTRODUCTION

Large-scale interconnected networks have garnered con-
siderable attention in the past decade as a rich modeling
framework that encompasses a wide array of applications,
ranging from transportation to pivotal domains such as en-
ergy, biology, and critical infrastructures. To address systems
potentially involving an unspecified number of subsystems, it
is commonly considered reasonable to model a vast yet finite
network as an infinite one, symbolizing the interconnection
of numerous subsystems, each possessing finite dimensional-
ity. This approach finds relevance in applications like vehicle
platooning [1], [2], road traffic control [3], and multi-robot
systems [4], where a substantial number of agents is engaged,
justifying the representation of the system as an infinite
coupling. In such applications, the presence of infinitely
many subsystems in the network invalidates the assumption
of treating it as finite. As a result, the exiting frameworks
proposed for finite networks are not applicable to infinite
ones.

The existing body of research concerning the formal
verification and controller synthesis of complex dynamical
systems heavily relies on the utilization of finite abstrac-
tions, as a discretization-based technique. In essence, finite
abstractions act as a simplified representation for control
systems that operate within continuous spaces, achieving
this by associating discrete states and inputs with aggregated
continuous counterparts [5], [6]. Various abstraction methods

A. Aminzadeh is with the K. N. Toosi University of Technology,
Iran. A. Lavaei is with the School of Computing, Newcastle Univer-
sity, United Kingdom. Email: aliaminzadeh@email.kntu.ac.ir,
abolfazl.lavaei@newcastle.ac.uk.

have been developed to synthesize controllers that enforce
complex specifications, as exemplified by works [7], [8], [9],
[10], [11], [12]. By leveraging computational tools rooted
in discrete-event systems, it becomes feasible to synthesize
controllers to fulfill high-level logic specifications, such
as those expressed through linear temporal logic formulas
(LTL) [13], which are often challenging to address using
classical control design methods.

While finite-abstraction techniques hold a great promise,
a significant limitation lies in their reliance on state and
input discretization parameters. This dependency makes them
susceptible to the curse of dimensionality, wherein computa-
tional complexity increases exponentially as the system’s di-
mensionality grows. In practice, constructing such finite ab-
stractions entails partitioning the state and input sets of con-
crete models based on predefined discretization parameters,
rendering these approaches impractical for large-dimensional
networks. To address this challenge, one promising solution
is to construct a finite abstraction for the interconnected
network by abstracting its individual subsystems with smaller
dimensions using a compositional technique (see e.g., [14],
[15], [16], [17], [18], [19], [20], [21]).

In recent years, there has been a growing interest among
researchers in approaches that do not rely on discretization
when verifying and synthesizing complex systems. Notably,
attention has been directed towards employing control bar-
rier certificates, as initially introduced in [22], [23]. In
particular, control barrier certificates are increasingly recog-
nized as a promising discretization-free method for controller
synthesis of complex systems (see e.g., [24], [25], [26]).
Compositional techniques have also been proposed to con-
struct control barrier certificates for interconnected systems,
building upon local certificates of smaller subsystems [27],
[28], [29], [30], [31].

The aforementioned compositional techniques, designed
primarily for finite networks in both abstraction and barrier
methodologies, faced limitations when dealing with networks
composed of an infinite number of subsystems. While some
efforts have been made to address the stability analysis of
infinite networks (e.g., [32], [33], [34], [35]), or to focus on
the finite abstraction of infinite networks (e.g., [36]), there
has been no prior work addressing the compositional syn-
thesis of safety barrier certificates in the context of infinite
networks of subsystems, without resorting to discretization.

The primary contribution of this work lies in developing,
for the first time, a formal compositional scheme for the
construction of control barrier certificates within an intercon-
nected network consisting of a countably infinite number of
discrete-time control subsystems. Drawing inspiration from
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small-gain type conditions originally designed for the stabil-
ity analysis of interconnected systems, our approach aims to
synthesize control strategies that guarantee safety properties
across infinite networks by utilizing local certificates of
individual subsystems. To achieve this goal, we introduce
the concept of control sub-barrier certificates (CSBC) for
individual subsystems. These CSBC are instrumental in en-
suring that the interconnected network avoids entering unsafe
regions subject to specific small-gain type conditions. We
employ a systematic sum-of-squares optimization approach
to search for CSBC and the corresponding control strategies
that meet desired safety requirements. Proofs of all state-
ments are omitted due to space constraints.

II. DISCRETE-TIME CONTROL SYSTEMS

A. Notation and Preliminaries

We employ the symbols R,R>0, R≥0, N0, and N, to
represent the sets of real numbers, positive real numbers,
non-negative real numbers, non-negative integers and posi-
tive integers, respectively. For any b ∈ R, |b| represents the
absolute value of b, and for any x = [x1; . . . ;xn] ∈ Rn, the
infinity norm of x is determined as |x| = max1≤i≤n|xi|.
Moreover, for any m × n matrix C = (cij)1≤i≤m,1≤j≤n,
we define |C| = max1≤i≤m

∑n
j=1 |cij | as infinity norm of

C. A vector µ consisting of infinitely many components µi

is denoted by µ := (µi)i∈N. The identity matrix of size m
is represented by Im. A continuously and strictly increasing
function φ : R≥0 → R≥0 belongs to the class K if it satisfies
φ(0) = 0 and to the class K∞ if φ(s) → ∞ as s → ∞.

We use the notation l∞ to refer to the Banach space
that includes all infinite uniformly bounded sequences s :=
(si) ∈ l∞, i ∈ N, where si represents the i-th element of
a sequence s ∈ l∞. Furthermore, let l∞+ be defined as the
positive cone within l∞, encompassing all vectors s ∈ l∞ for
which si ≥ 0, i ∈ N holds true. In the context of l∞, when
comparing two sequences s and s′, we establish that s ≤ s′

holds true if each element in sequence s is less than or equal
to its corresponding element in sequence s′. The standard
unit vectors in l∞, denoted as ei, depict sequences that
consist primarily of zeros with a solitary “1” positioned at
index i, while all other entries are “0”. The identity function
is represented as I, while the composition of functions is
indicated by ◦. Given ζ : l∞+ → l∞+ being an operator, for
all n ∈ N, we define ζn(·) := ζn−1 ◦ ζ(·), with ζ0 denoting
the identity operator on l∞.

B. Infinite Networks

Firstly, we introduce discrete-time control subsystems as
the initial building blocks. These subsystems will be subse-
quently interconnected to construct an infinite network.

Definition 2.1: A discrete-time control subsystem Ψi, i ∈
N, can be represented as

Ψi = (Xi,Wi, Ui, fi, Yi, hi),
where:

• Xi ⊆ Rni ,Wi⊆ Rpi , Ui ⊆ Rmi are state, internal and
external input sets of the subsystem, respectively;

• fi :Xi×Wi×Ui→Xi is the transition map that charac-
terizes the evolution of the subsystem;

• Yi ⊆ Rqi and hi :Xi → Yi are the output set and map
of the subsystem.

The discrete-time control subsystem Ψi is characterized by
a difference equation expressed as

Ψi :

{
xi(k + 1) = fi(xi(k), wi(k), ui(k)),
yi(k) = hi(xi(k)),

k ∈ N0.

(1)
The input-output configuration of each subsystem Ψi, i ∈

N, is defined as

wi = (wij)j∈Ni
∈ Wi :=

∏
j∈Ni

Wij , (2)

yi = (yij)j∈(i∪Mi) ∈ Yi :=
∏

j∈(i∪Mi)

Yij , (3)

hi(xi) = (hij(xi))j∈(i∪Mi), (4)

where:
• Ni ∈ N represents a finite set comprising those subsys-

tems Ψj , j ∈ Ni, that affect Ψi;
• Mi ∈ N represents a finite set comprising those subsys-

tems Ψj′ , j′ ∈ Mi that are affected by Ψi.
Note that i /∈ Ni ∪Mi, for any i ∈ N, wij ∈ Wij , and yij =
hij(xi) ∈ Yij . The external outputs are characterized by yii
while yij , j ∈ Mi, serve as internal outputs that facilitate
interconnections between subsystems. It is assumed that the
dimension of wij is equal to that of yji for all i ∈ N and for
all j ∈ Ni.

In the subsequent definition, we present a formal definition
of infinite networks composed of individual subsystems.

Definition 2.2: Given subsystems Ψi =
(Xi,Wi, Ui, fi, Yi, hi), defined in Definition 2.1 with
an input-output structure characterized by equations (2)-(4),
the infinite network can be formally expressed as a tuple
Ψ = N (Ψi)i∈N = (X,U, f, Y, h), where

• X={x=(xi)i∈N :xi∈Xi, ∥x∥ :=supi∈N{|xi|}<∞},
• U={u=(ui)i∈N :ui∈Ui, ∥u∥ :=supi∈N{|ui|} < ∞},
• f(x, u) = (fi(xi, wi, ui))i∈N,
• Y =

∏
i∈N Yii, h(x) = (hii(xi))i∈N.

The evolution of the infinite network Ψ = N (Ψi)i∈N is
defined as

Ψ:

{
x(k + 1) = f(x(k), u(k)),
y(k) = h(x(k)),

k ∈ N0, (5)

wherein the interconnection among subsystems is illustrated
through the following constraint:

∀i ∈ N,∀j ∈ Ni: wij = yji, Yji ⊆ Wij . (6)

The sequence xx0u : N → X , which satisfy (5) for any
initial state x0 ∈ X , and input sequence u(·) , is referred
to as the solution process of Ψ, when subjected to an
external input u, and an initial state x0. To establish the
well-posedness of the infinite network in (5), it is imperative
that f(x, u) ∈ X , for all pair (x, u) ∈ X × U .
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In the upcoming section, to ensure that the infinite network
avoids entering a specific unsafe region within an infinite
time horizon, we present the notion of control sub-barrier
certificates (CSBC) and control barrier certificates (CBC) for,
respectively, discrete-time control systems (comprising both
internal and external signals) and interconnected networks
(lacking internal signals).

III. CONTROL (SUB-)BARRIER CERTIFICATES

Definition 3.1: Consider a discrete-time control subsys-
tem Ψi = (Xi,Wi, Ui, fi, Yi, hi), and sets X0i , Xai

⊆ Xi,
where the initial set X0i comprises states from which the
subsystem Ψi can initiate its operation, while the unsafe set
Xai

encompasses states that must be avoided due to safety
concerns. Assuming the existence of functions δi, ξi ∈ K∞,
where ξi < I, ρwi ∈ K∞ ∪ {0} as well as constants
σi, ϕi ∈ R>0, a function Bi : Xi → R≥0 is referred to
as a control sub-barrier certificate (CSBC) for Ψi if the
subsequent conditions are fulfilled:

Bi(xi) ≥ δi(|h(xi)|2), ∀xi ∈ Xi, (7a)
Bi(xi) ≤ σi, ∀xi ∈ X0i , (7b)
Bi(xi) ≥ ϕi, ∀xi ∈ Xai , (7c)

and ∀xi ∈ Xi, ∃ui ∈ Ui, such that ∀wi ∈ Wi, one has

Bi(xi(k + 1)) ≤ max
{
ξi(Bi(xi(k))), ρwi

(|wi(k)|2)
}
.

(7d)
We now provide the following definition to describe con-

trol barrier certificates for interconnected networks.
Definition 3.2: Consider an infinite network Ψ =

(X,U, f, Y, h) as in Definition 2.2. Assuming the existence
of a function ξ ∈ K∞, with ξ < I, and constants σ, ϕ ∈ R>0,
with ϕ > σ, a function B : X → R≥0 is referred to as a
control barrier certificate (CBC) for Ψ, if the subsequent
conditions hold:

B(x) ≤ σ, ∀x ∈ X0, (8a)
B(x) ≥ ϕ, ∀x ∈ Xa, (8b)

and ∀x ∈ X , ∃u ∈ U , such that

B(x(k + 1)) ≤ξ(B(x(k))), (8c)

where sets X0, Xa ⊆ X denote the initial and unsafe sets of
the interconnected network, respectively.

As outlined in Definition 3.2, control barrier certificates
are designed within the state space of the system while
imposing conditions on both the function itself, specifically
conditions (8a)-(8b), and its one-step transition, as repre-
sented by condition (8c). An essential aspect of this concept
is its initial level set σ, which could be designed using SOS
programming as a decision variable, effectively segregating
an unsafe region Xa from all system trajectories originating
from a specified set of initial states X0. The computational
complexity of finding CBC for interconnected networks is
notably high, primarily due to the system’s dimensionality.
This challenge primary motivated us to introduce the concept
of CSBC for individual subsystems with an internal input

variable wi, as defined in Definition 3.1. Subsequently,
in Section IV, we propose a compositional approach for
constructing a CBC for an infinite network based on the
CSBC of individual subsystems. It is worth noting that the
additional condition (7a) in CSBC plays a crucial role in the
subsequent section, facilitating compositionality.

Remark 3.3: In Definition 3.2, the requirement that ϕ > σ
is crucial to guarantee the safety certificate for an infinite
network, as established in Theorem 3.4. Nevertheless, Def-
inition 3.1 does not impose such a condition as CSBC are
solely utilized for constructing CBC for infinite networks
without ensuring subsystem safety.

Now, via the notions of CBC in Definition 3.2, we ensure
that the infinite network described in (5) will not enter unsafe
regions through the following theorem [22].

Theorem 3.4: Given an infinite network Ψ =
(X,U, f, Y, h) defined in Definition 2.2, assume that
B is a CBC for Ψ as defined in Definition 3.2. Then, for
all x0 ∈ X0 and k ∈ N, one has xx0u /∈ Xa under the input
trajectory u(·) associated with the CBC B within an infinite
time horizon.

IV. COMPOSITIONAL CONSTRUCTION OF CBC

In this section, inspired by [32], [36], our objective is to
compositionally construct a CBC for the infinite network Ψ
by leveraging CSBC of individual subsystems Ψi, i ∈ N. To
achieve this, we first define the following function based on
ξi and ρwi

, associated with Bi, ∀i, j ∈ N:

ξij :=


ξi, if i = j,

(I − ξi)
−1 ◦ ρwi ◦ δ−1

j , if j ∈ Ni,

0, if i ̸= j, j /∈ Ni.
(9)

Accordingly, we introduce an operator ζ : l∞+ → l∞+ based
on ξij in (9) as

ζ(s) = (sup
j∈N

{ξij(sj)})i∈N, s ∈ l∞+ . (10)

We also raise the assumption that there exist functions
ξ̃, ρ̃w, δ̃ ∈ K∞ that satisfy ξi ≤ ξ̃, ρwi ≤ ρ̃w, δi ≥ δ̃, for all
i ∈ N. This assumption ensures the well-defined nature of the
operator ζ as defined in (10). Subsequently, we present the
following proposition to establish the small-gain condition
([32, Proposition 7.17]).

Proposition 4.1: Under the well-posedness of ζ in (10),
the following conditions are equivalent:

• The spectral radius of ζ, denoted by r(ζ), fulfills

r(ζ) = lim
n→+∞

( sup
j1,...,jn+1∈N

ξj1j2 ◦ · · · ◦ ξjnjn+1)
1/n < 1.

(11)
• There exists a vector µ := (µi)i∈N ∈ l∞+ and a constant
λ ∈ (0, 1) such that

ζ(µ) ≤ λµ. (12)
The inequality in (11) is referred to as the small-gain
condition, and its satisfaction guarantees the existence of
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(potentially nonlinear) K∞ functions µi according to (12)
that fulfill the following condition:

ζ(µ(θ)) ≤ λµ(θ), ∀θ ∈ R≥0.

For any i ∈ N and θ ∈ R≥0, according to (10) we have

(sup
j∈N

{ξij ◦ µj(θ)})i∈N ≤ λµ(θ),

from which, since λ ∈ (0, 1), one can conclude that

sup
j∈N

{ξij ◦ µj(θ)} ≤ λµi(θ) < µi(θ).

By applying µ−1
i to both sides, we obtain:

µ−1
i (sup

j∈N
{ξij ◦µj(θ)}) = sup

j∈N
{µ−1

i ◦ ξij ◦µj(θ)} < θ. (13)

Since (13) holds for all i ∈ N, it can be finally stated as

sup
i,j∈N

{µ−1
i ◦ ξij ◦ µj} < I. (14)

In the upcoming theorem, we demonstrate that under
small-gain condition (11), equivalently condition (14), it is
possible to construct a CBC for the infinite network Ψ using
CSBC of individual subsystems Ψi, i ∈ N.

Theorem 4.2: Consider an infinite network Ψ =
N (Ψi)i∈N, which arises from an infinite number of subsys-
tems Ψi. Let each individual subsystem Ψi possess a CSBC
Bi, as defined in Definition 3.1. If condition (11) is met and
the following inequality holds

sup
i

{
µ−1
i (ϕi)

}
> sup

i

{
µ−1
i (σi)

}
, (15)

then B(x) defined as

B(x) := sup
i

{
µ−1
i (Bi(xi))

}
, (16)

is a CBC for the infinite network Ψ = N (Ψi)i∈N with
σ = supi

{
µ−1
i (σi)

}
, ϕ = supi

{
µ−1
i (ϕi)

}
, and ξ(s) =

sup
ij

{
µ−1
i ◦ ξij ◦ µj(s)

}
.

Remark 4.3: It is worth noting that by assuming ξij ≤ I
for any i, j ∈ N, inequality (14) can be satisfied by setting
µi = I for all i ∈ N. Consequently, CBC in (16) simplifies
to B(x) := supi

{
Bi(xi)

}
, and as a result, the small-gain

condition (14) is automatically fulfilled.

V. COMPUTATION OF CSBC AND SAFETY CONTROLLER

In this section, we reformulate conditions (7a)-(7d) as
a sum of squares (SOS) optimization problem [37]. This
enables us to construct CSBC of individual subsystems and
their associated safety controller in a systematic fashion. To
do so, we assume that each subsystem has continuous state
and input sets X,U,W, with polynomial transition maps fi.
Under this assumption, we now reformulate conditions (7a)-
(7d) as an SOS optimization program.

Lemma 5.1: Consider subsystems Ψi in Definition 2.1.
Let sets X0i , Xai , Xi, Ui, and Wi be semi-algebraic,
defined by vectors of polynomial inequalities g0i(xi) ≥ 0,
gai

(xi) ≥ 0, gi(xi) ≥ 0, gui
(ui) ≥ 0, and gwi

(wi) ≥

Fig. 1. A platoon consisting of an infinitely countable number of vehicles.

0. Let there exist an SOS polynomial Bi(xi), constants
σi, ϕi ∈ R>0, functions ρ̄wi

∈ K∞ ∪ {0}, δi, ξ̄i ∈ K∞,
with ξ̄i < I, polynomials γuzi

(xi) corresponding to the
zth input in ui = (u1i , u2i , ..., umi

) ∈ Ui ⊆ Rmi , and
vectors of SOS polynomials γ0i(xi), γai

(xi), γi(xi), γ̂i(xi),
γui(ui), γwi(wi) with appropriate dimensions such that the
subsequent expressions are in the form of SOS polynomials:

Bi(xi)− γ⊤
i (xi)gi(xi)− δi(hi(xi)

⊤hi(xi)) (17a)

−Bi(xi)− γ⊤
0i(xi)g0i(xi) + σi (17b)

Bi(xi)− γ⊤
ai
(xi)gai

(xi)− ϕi (17c)

−Bi(fi(xi, ui, wi))+ξ̄i(Bi(xi))+ρ̄wi(
wi

⊤wi

pi
)

−
mi∑
z=1

(uzi−γuzi
(xi))−γ̂⊤

i (xi)gi(xi)−γ⊤
ui
(ui)gui

(ui)

− γ⊤
wi
(wi)gwi

(wi), (17d)

with pi being the dimension of the internal input set Wi.
Consequently, Bi(x) is a CSBC fulfilling conditions (7a)-
(7d) with

ξi=I−(I−πi)◦(I−ξ̄i), ρwi
=(I−ξ̄i)

−1◦π−1
i ◦ρ̄wi

, (18)

with πi being an arbitrarily selected K∞ function, where I−
πi ∈ K∞. Furthermore, ui = [γu1i

(xi); . . . ; γumi
(xi)], i ∈

N, acts as the associated controller for the subsystem Ψi.
Remark 5.2: In conditions (7a) and (7d), we encounter

infinity norms associated with hi(xi) and wi, respectively.
To render them amenable to polynomial solutions, we trans-
formed these norms into Euclidean norms by incorporating
their respective weighting factors. This conversion allows
us to express (17a) and (17d) as polynomial expressions.
Similarly, we reformulated the max-form condition (7d) as
a summation form (17d) by recovering ξi and ρwi

according
to (18). Through these appropriate conversions, Lemma 5.1
ensures that fulfilling conditions (17a)-(17d) implies the
original conditions (7a)-(7d).

Remark 5.3: Note that, akin to Lyapunov functions,
Lemma 5.1 provides a set of sufficient conditions for the
existence of CSBC, as per Definition 3.1. In cases where an
SOS polynomial CSBC is not found at a fixed degree, one
may consider increasing the degree of the CSBC in order
to potentially design it, albeit at the expense of increased
computational complexity.

VI. CASE STUDY

In this section, we illustrate the effectiveness of our
approach over a vehicle platoon consisting of an infinitely
countable number of vehicles, as depicted in Fig. 1.
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The evolution of the states within the interconnected
network can be elucidated as follows [1]:

Ψ:

{
x(k + 1) = Ax(k) + u(k),
y(k) = x(k),

where A constitutes a block matrix featuring diagonal ele-
ments denoted by Â and off-diagonal blocks designated as
Ai(i−1) = Aw, with i ∈ N, and i ≥ 2, as

Â =

[
1 −1
0 1

]
, Aw =

[
0 τ
0 0

]
,

with τ = 0.005 representing the interconnection strength,
and all non-diagonal blocks are specified as zero matrices.
Furthermore, x(k) = (xi(k))i∈N and u(k) = (ui(k))i∈N. We
now represent the description of each individual vehicle as:

Ψi :

{
xi(k + 1) = Âxi(k) + ui(k) +Awwi(k),
yi(k) = xi(k).

It can be readily ascertained that Ψ = N (Ψi)i∈N, where
wi(k) = [0;wi(i−1)(k)], with wi(i−1)(k) = [0; 1]⊤xi−1(k),
and w1,0(k) = 0. The state representation of the i-th vehicle
is characterized by xi = [di; vi], where di represents the
difference in position between vehicle i and its proceeding
vehicle i − 1, where the vehicle labeled as the 0-th vehicle
serves as the leader. In addition, vi denotes the velocity
of the vehicle i in the reference frame of the leader. The
control input ui lives within [−0.35, 0.35]. The main control
objective in vehicle platoon is to adjust each vehicle’s speed
to uphold a safe distance from its preceding vehicle [1].
To do so, we aim at constructing CSBC of subsystems Ψi

and subsequently designing local controllers. As a result, the
controller for the interconnected network Ψ takes the form
of a vector, with each of its elements serving as a controller
for the individual subsystems Ψi.

Our initial step involves verifying the well-defined nature
of our infinite network Ψ = N (Ψi)i∈N by ensuring that
∥f(x, u)∥ < ∞, according to Definition 2.2. By defining
C = max{|Â|, 1, |Aw|}, we have:

∥f(x, u)∥=sup
i∈N

{|fi(xi, wi, ui)|}=sup
i∈N

{|Âxi+ui+Awwi|}

≤ |Â| sup
i∈N

{|xi|}+ sup
i∈N

{|ui|}+ |Aw| sup
i∈N

{|wi|}

≤ C(sup
i∈N

{|xi|}+ sup
i∈N

{|ui|}+ sup
i∈N

{|xi|})

= C(∥x∥+ ∥u∥+ ∥x∥) < ∞.

As a result, one can infer that Ψ = N (Ψ)i∈N is indeed well-
defined.

The areas of interest for each vehicle encompass Xi ∈
[0, 1] × [−0.3, 0.7], X0i ∈ [0.25, 0.75] × [−0.05, 0.45], and
Xai

∈ [0, 1] × [−0.3,−0.15] ∪ [0, 1] × [0.55, 0.7]. In the
absence of a safety controller, Fig. 2 (left) illustrates that
a representative vehicle repeatedly enters the unsafe region
Xai

when starting from the initial set X0i , indicating a lack
of safety. In order to construct a CSBC and its corresponding
safety controller for each individual vehicle as detailed in
Section V, we utilize the software tool SOSTOOLS [38] in
conjunction with the SDP solver SeDuMi [39]. In accordance
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Fig. 2. Left: Closed-loop states trajectories of a representative vehicle
under a random controller. The regions of interest encompass the state
space Xi ∈ [0, 1] × [−0.3, 0.7], the initial region X0i ∈ [0.25, 0.75] ×
[−0.05, 0.45], and unsafe regions Xai ∈ [0, 1]× [−0.3,−0.15]∪ [0, 1]×
[0.55, 0.7]. Right: Closed-loop states trajectories of a representative vehicle
are depicted for 30 different initial values under the safety controller in (19).
Green and red dashed lines are initial and unsafe level sets, respectively.
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Fig. 3. Synthesized controllers ui = [u1i ;u2i ], as designed in (19), for
a representative vehicle with 30 different initial conditions within 100 time
steps.

with Lemma 5.1, we design CSBC with an order of 4 as
follows:

Bi(xi) = 7.16d4i −3.88d3i vi−8.92d3i +4.28d2i v
2
i +2.31d2i vi

+ 4.30d2i +5.40div
3
i −6.72div

2
i +0.62divi−1.02di

+ 85.30v4i −71.91v3i +23.44v2i −3.31vi+0.25,

and its associated safety controller as:

ui =

[
−0.4di + 0.2vi + 0.3
0.4di − 0.9vi + 0.05

]
, (19)

for all i ∈ N. Additionally, the corresponding constants
and functions within Definition 3.1 are designed as δi(s) =
10−5s, s ∈ R≥0, σi = 0.7, ϕi = 0.85, ξi = 0.975, ρwi

(s) =
8× 10−7s, s ∈ R≥0.

Next, we assess the small-gain condition (14) for the
compositional results. It can be easily confirmed that ξij < 1
for any i, j ∈ N. Therefore, according to Remark 4.3, by
selecting µi(s) = s for all i ∈ N, condition (14) is always
satisfied, regardless of the number of vehicles involved.
Consequently, B(x) := supi{(Bi(xi))} is a CBC for the
infinite network Ψ, fulfilling conditions of Definition 3.2 with
σ = 0.7, ϕ = 0.85, and ξ = 0.975. By leveraging Theorem
3.4, we guarantee that the solution process of the vehicle
platoon originating from X0 will maintain within the safe do-
main within an infinite time horizon. Visual representations
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of closed-loop state and input trajectories for a representative
vehicle, starting from 30 different initial conditions, can be
observed in Figs. 2 (right) and 3, respectively.

VII. CONCLUSION

In this paper, we introduced a formal compositional
framework for constructing safety barrier certificates for an
interconnected network comprised of a countably infinite
number of subsystems. Our proposed approach aimed to
synthesize control strategies that ensured safety properties
across infinite networks using local certificates of their
individual subsystems. Utilizing the concept of control sub-
barrier certificates (CSBC) for individual subsystems, we
enabled the infinite network to avoid entering unsafe regions
under specific small-gain type conditions. Our approach
transformed the required criteria into an SOS optimization
problem, which facilitated the systematic search for CSBC
and their corresponding safety controllers.
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