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Abstract— This paper develops a compositional framework
for formal safety verification of an interconnected network com-
prised of a countably infinite number of discrete-time nonlinear
subsystems with unknown mathematical models. Our proposed
scheme involved subdividing the infinite network problem into
individual subsystems, wherein the safety concept is modelled
through a robust optimization program (ROP) via a notion
of local-barrier certificates (L-BC). To address the difficulties
associated with solving the ROP directly, primarily due to the
absence of a mathematical model, we gather finite data from
subsystem trajectories and leverage them to provide a scenario
optimization program (SOP). We proceed with solving the
resulted SOP and construct a local-barrier certificate for each
unknown subsystem with a guarantee of correctness. Finally,
in accordance with some small-gain conditions, we construct a
global-barrier certificate (G-BC) derived from individual local
certificates of subsystems, thus guaranteeing the safety of the
infinite network within infinite time horizons. The practicality
of our compositional findings becomes evident through a vehicle
platooning scenario, characterized by a countably infinite num-
ber of vehicles with a single leader and an unlimited number of
followers.

I. INTRODUCTION

Motivations and State of the Art. Due to the rapid
advancements in data science and the pervasive integration of
large-scale networks into various facets of modern life, it is
imperative to prioritize safety concerns in order to guarantee
safe interactions and minimize potential risks when utilizing
data across these networks. When dealing with complex
networks comprising numerous subsystems, it is often more
pragmatic to represent a vast yet finite network as effectively
infinite. For instance, in the road traffic control, precisely
counting the number of vehicles on the road poses a chal-
lenge due to the seemingly endless, interconnected nature
of the network. Treating these systems as finite networks
would result in unrealistic models that fail to capture the
true complexity of the real-world situation [1].

Formal verification primarily seeks to ascertain whether
a given dynamical system complies with a specified set of
desired specifications. However, the analysis of systems with
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continuous state spaces presents a significant challenge, as
closed-form solutions are often unavailable, leading to con-
siderable computational complexities. This complexity arises
from the need to handle infinite sets of states and actions,
which is especially crucial in safety-critical applications.
The prevailing research on formal verification and controller
synthesis over complex dynamical systems predominantly
employs finite abstractions, as a discretization-based tech-
nique [2], [3]. Specifically, finite abstractions provide a
means to represent continuous-space control systems in a
more abstract fashion, by associating discrete states and
inputs with aggregated continuous ones from the original
system (see e.g., [4], [5], [6], [7], [8], [9]). Nevertheless,
as the system’s dimension increases, the computational
complexities grow exponentially, referred to as curse of
dimensionality, making construction methods impractical. To
address this challenge, a potential solution has emerged in the
form of compositional techniques that construct abstractions
of large-scale networks based on those of smaller subsystems
(see e.g., [10], [11], [12], [13], [14], [15], [16]).

In recent years, there has been growing interest among
researchers in exploring a discretization-free approach for
analyzing complex systems, which entails the utilization of
(control) barrier certificates, initially introduced in [17], [18].
The adoption of barrier certificates has increasingly emerged
as a prominent technique for verifying and synthesizing
controllers across a diverse array of complex systems (see
e.g., [19], [20], [21]). Compositional techniques have also
been employed to construct barrier certificates for intercon-
nected systems, building upon barrier certificates of smaller
subsystems (see e.g., [22], [23], [24], [25], [26], [27]).

The previously discussed compositional techniques, pri-
marily intended for finite networks utilizing both abstraction
and barrier methodologies, encountered limitations when ap-
plied to networks consisting of an infinite number of subsys-
tems. While certain efforts have been made to tackle stability
analysis in the context of infinite networks (e.g., [28], [29],
[30], [31]), or construction of finite abstractions for infinite
networks (e.g., [32], [33], [34], [35]), there has not been
any work addressing the compositional construction of safety
barrier certificates within the domain of infinite networks of
subsystems without resorting to discretization. As another
primary challenge, all the aforementioned compositional
techniques require precise knowledge of the system’s model.
Particularly, obtaining closed-form mathematical models for
large-scale systems is often challenging or impractical due
to their complexity. As a result, model-based techniques may
not be applicable for analyzing these complex systems. To
address this concern, data-driven analysis has emerged by
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offering two approaches: indirect and direct methods. In
indirect data-driven methods, the literature presents solutions
to verification and synthesis challenges by approximating
models through identification techniques [36]. Nevertheless,
obtaining a precise model for complex systems continues
to pose challenges as it demands substantial resources. In
response, direct data-driven approaches have emerged, en-
abling analysis directly from system trajectories without the
need for system identification [37].

Original Contributions. The primary contribution of this
work is the development of a compositional data-driven
framework for ensuring the safety of an interconnected
network, comprised of a countably infinite number of sub-
systems, each with unknown mathematical models. The sole
required information is knowledge of Lipschitz constants of
subsystems, for which we offer an algorithm utilizing data
to estimate them, accompanied by an asymptotic guarantee
during the estimation process. In our proposed setting, we
begin by formulating the original safety problem of each
subsystem into a robust optimization program (ROP). How-
ever, the ROP is not tractable due to the lack of knowledge
about the subsystem’s dynamics. To overcome this limitation,
we leverage a given data set collected from subsystems
and formulate a scenario optimization program (SOP) that
aligns with the original ROP. By solving the associated
SOP, we design local-barrier certificates for each subsystem
with a guarantee of correctness. To ensure the safety of the
entire infinite network, we employ small-gain conditions and
compose a global-barrier certificate from individual local
certificates of subsystems. A visual representation of our
data-driven compositional method is presented in Fig. 1.
Proofs of all statements are omitted due to space limitations.

Related Literature on Data-Driven Techniques. Several
studies have delved into the formal analysis of unknown
dynamical systems by employing direct data-driven methods.
Notable findings encompass the development of data-driven
control laws to stabilize nonlinear polynomial-type models
[38], stability verification in unknown switched (linear) sys-
tems through data [39], [40], and data-driven techniques
for verifying and synthesizing controllers using barrier cer-
tificates for unknown dynamical systems [41], [42]. The
methods discussed in the earlier literature are all primarily
designed for monolithic systems and are not well-suited
for high-dimensional underlying systems, roughly defined as
those with more than three dimensions. To tackle this lim-
itation, some recent studies have focused on compositional
data-driven approaches, as exemplified by work [43], [44],
[45]. However, it is important to note that these approaches
are not applicable to infinite networks and are specifically
tailored for large-scale systems with a finite number of
subsystems.

II. DISCRETE-TIME NONLINEAR SYSTEMS

A. Notation and Preliminaries

We employ the symbols R,R>0, R≥0, N0, and N, to rep-
resent the sets of real numbers, positive real numbers, non-
negative real numbers, non-negative integers, and positive
integers, respectively. We use the notation Λ = [λ1; . . . ;λn]
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Fig. 1. Visual representation of the structure and contributions of the paper.

to represent a vector of n decision variables in our opti-
mization problems. A vector µ consisting of infinitely many
components µi is denoted by µ := (µi)i∈N. For any c ∈ R,
|c| represents the absolute value of c, and for any x ∈ Rn,
the infinity and Euclidean norms of x are denoted by |x| and
∥x∥2, respectively. Moreover, for any m × n matrix C =
(cij)1≤i≤m,1≤j≤n, we define |C| = max1≤i≤m

∑n
j=1 |cij |

as infinity norm of C. We use the notation l∞ to refer to the
Banach space that includes all infinite uniformly bounded
sequences s := (si) ∈ l∞, i ∈ N, where si represents the i-th
element of a sequence s ∈ l∞. Furthermore, l∞+ denotes the
positive cone within l∞, encompassing all vectors s ∈ l∞

for which si ≥ 0, i ∈ N holds true. In the context of l∞,
when comparing two sequences s and s′, we establish that
s ≤ s′ holds true if each element in sequence s is less than
or equal to its corresponding element in sequence s′. The
standard unit vectors in l∞, denoted as ei, depict sequences
that consist primarily of zeros with a solitary “1” positioned
at index i, while all other entries are “0”. Given ζ : l∞+ → l∞+
being an operator, for all n ∈ N, ζn(·) represents the result
of applying ζ repeatedly n times.

B. Infinite Networks
In this subsection, we initiate by introducing discrete-

time nonlinear subsystems. We then interconnect countably
infinite number of these subsystems to establish an infinite
network.

Definition 2.1: A discrete-time nonlinear subsystem, de-
noted as Ψi, i ∈ N, can be described as a tuple

Ψi = (Xi,Wi, fi),
where

• Xi ⊆ Rni and Wi⊆ Rpi denote the state and input sets
of the subsystem;

• fi :Xi×Wi → Xi denotes the transition map character-
izing the subsystem’s evolution, and it is assumed to be
unknown in our context.

The discrete-time subsystem Ψi is defined by a difference
equation represented as:

Ψi : xi(k + 1) = fi(xi(k), wi(k)), k ∈ N0. (1)

The internal input structure of Ψi, i ∈ N, is defined by

wi = (wij)j∈Ni
∈ Wi :=

∏
j∈Ni

Wij , (2)
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where wij ∈ Wij , and Ni is a finite subset of N comprising
the index of Ψj , j ∈ Ni, that affect Ψi, i /∈ Ni,∀i ∈ N.
The primary role of wi is for the sake of interconnection
to build an interconnected network, as opposed to control
inputs, which are not considered in this work.

In the following definition, we present a formal description
of infinite networks, which are composed of individual
subsystems.

Definition 2.2: Consider discrete-time subsystems Ψi =
(Xi,Wi, fi), i ∈ N, with their internal input structure defined
in (2). The infinite network can be expressed as the tuple
Ψ = (X, f), where
X = {x = (xi)i∈N : xi ∈ Xi, ∥x∥ := supi∈N{|xi|} < ∞},
f(x) = (fi(xi, wi))i∈N.
The infinite network, denoted as Ψ = N (Ψi)i∈N, operates
according to

Ψ: x(k + 1) = f(x(k)), k ∈ N0, (3)

wherein the interconnection of subsystems is illustrated
through the following constraints:

∀i ∈ N,∀j ∈ Ni : wij = xj , Xj ⊆ Wij . (4)

We refer to the sequence xx0
: N → X that satisfies (3) for

any initial state x0 ∈ X as the state trajectory of Ψ starting
from an initial state x0.

In the following section, we introduce the concepts of
local-barrier certificates (L-BC) for subsystems with internal
signals and global-barrier certificates (G-BC) for intercon-
nected networks without internal signals.

III. LOCAL AND GLOBAL BARRIER CERTIFICATES

Definition 3.1: Given a subsystem Ψi = (Xi,Wi, fi)
defined in Definition 2.1, with X0i , Xui

⊆ Xi denoting,
respectively, initial and unsafe sets of Ψi, a function Bi :
Xi → R≥0 is called a local-barrier certificate (L-BC) for Ψi

if there exist δi, σi, ϕi ∈ R>0, ξi ∈ (0, 1), and ρwi
∈ R≥0,

such that

Bi(xi) ≥ δi|xi|2, ∀xi ∈ Xi, (5a)
Bi(xi) ≤ σi, ∀xi ∈ X0i , (5b)
Bi(xi) ≥ ϕi, ∀xi ∈ Xui , (5c)

and ∀xi ∈ Xi, ∀wi ∈ Wi, one has

Bi(xi(k + 1)) ≤ max
{
ξiBi(xi(k)), ρwi

|wi(k)|2
}
. (5d)

We now introduce a complementary definition of global-
barrier certificates for interconnected networks without inter-
nal inputs, which is subsequently employed to enforce safety
specifications across an infinite network.

Definition 3.2: Consider an infinite network Ψ = (X, f)
in Definition 2.2, with X0, Xu ⊆ X denoting the initial and
unsafe sets of Ψ, respectively. A function B : X → R≥0 is
called a global-barrier certificate (G-BC) for Ψ if there exist
σ, ϕ ∈ R>0, ξ ∈ (0, 1) and ϕ > σ, such that

B(x) ≤ σ, ∀x ∈ X0, (6a)
B(x) ≥ ϕ, ∀x ∈ Xu, (6b)
B(x(k + 1)) ≤ ξB(x(k)), ∀x ∈ X. (6c)

Remark 3.3: It is important to highlight that the additional
condition (5a) in L-BC plays a pivotal role in facilitating
compositional techniques in Section V. In addition, while
condition ϕ > σ in G-BC is vital in ensuring a safety certifi-
cate for an infinite network, as demonstrated in Theorem 3.4,
the L-BC of subsystems does not impose such a requirement.
In fact, L-BC are solely utilized for constructing G-BC for
infinite networks without ensuring subsystem safety.

The subsequent theorem, borrowed from [17], provides a
guarantee that the state trajectories of interconnected net-
works will never enter an unsafe region.

Theorem 3.4: Consider an infinite network Ψ = (X, f),
as defined in Definition 2.2, and assuming that B is a G-BC
for Ψ, as specified in Definition 3.2. Then for all x0 ∈ X0

and k ∈ N, the state trajectory xx0
remains outside of the

unsafe region Xu, i.e., xx0
/∈ Xu, within an infinite time

horizon.
The computational complexity of finding G-BC for in-

terconnected networks is notably high, primarily due to
the system’s dimensionality. This challenge was a primary
motivation for introducing the concept of L-BC for individual
subsystems. Subsequently, in Section V, we propose a com-
positional approach for constructing a G-BC for an infinite
network based on L-BC of individual subsystems.

To formally ensure the safety of the infinite network in
(3) via Theorem 3.4, one needs precise knowledge of the
mapping fi for each subsystem to verify condition (5d),
which is not accessible in our current context. To overcome
this challenge, we present our data-driven approach in the
next section, wherein we construct L-BC based on finite data
sets obtained from trajectories of subsystems.

IV. DATA-DRIVEN CONSTRUCTION OF L-BC
In our data-driven setting, we consider the structure of

L-BC as Bi(qi, xi) =
∑zi

j=1(q
j
i p̄

j
i (xi)), where p̄ji denote

user-defined (possibly nonlinear) basis functions, and qi =
[q1i ; ...; q

zi
i ] ∈ Rzi represent unknown coefficients. To satisfy

conditions (5a)-(5d), we approach the problem by trans-
forming it into the subsequent robust optimization program
(ROP):

min
[Λi;ηi]

ηi

s.t. −Bi(qi, xi) + δi(xi
⊤xi) ≤ ηi, ∀xi ∈ Xi, (7a)

Bi(qi, xi)− σi ≤ ηi, ∀xi ∈ X0i , (7b)
−Bi(qi, xi) + ϕi ≤ ηi, ∀xi ∈ Xui , (7c)
Bi(qi, f(xi, wi))− ξ̄iBi(qi, xi)

− ρ̄wi(
wi

⊤wi

pi
) ≤ ηi, ∀xi ∈ Xi,∀wi ∈ Wi,

(7d)

Λi = [δi; ξ̄i;σi;ϕi; ρ̄wi
; q1i ; . . . ; q

zi
i ],

δi, ξ̄i, σi, ϕi∈R>0, ρ̄wi
∈R≥0, q

zi
i ∈R, ξ̄i∈(0, 1),

where pi in (7d) refers to the dimension of Wi. If η∗iR ≤ 0,
with η∗iR being the optimal value of ROP, solving the ROP
indicates that conditions (5a)-(5d) are fulfilled.

Remark 4.1: Within the constraints specified in (5a) and
(5d), we encounter infinity norms associated with variables

547



xi and wi, respectively. To render them computationally
suitable for use in the ROP, we convert these infinity norms
into Euclidean norms by incorporating their corresponding
weight factors. Likewise, we have reformulated the max-
form condition (5d) into a summation form represented
by (7d). This reformulation is achieved by recovering the
variables ξi and ρwi

based on ξ̄i and ρ̄wi
, as follows, for

any 0 < πi < 1:

ξi = 1− (1− πi)(1− ξ̄i), ρwi
=

ρ̄wi

(1− ξ̄i)πi
.

The ROP stated in (7) poses a main challenge due to its
dependence on the precise mapping fi(xi, wi), which is not
available within the context of our problem. To address this
difficulty, we propose our data-driven solution by introducing
a scenario optimization program for the ROP in (7). To do
so, we leverage a dataset of samples denoted as (x̂s

i , ŵ
s
i )

Si
s=1

within Xi ×Wi, with Si ∈ N, as follows:

((x̂s
i , ŵ

s
i ), f(x̂

s
i , ŵ

s
i )), ∀s ∈ {1, ..., Si}. (8)

We now define a ball of radius αi around each sample
(x̂s

i , ŵ
s
i ) as Xs

i ×Ws
i , such that Xi ×Wi ⊆ ∪Si

s=1(X
s
i ×Ws

i )
and

∥(xi, wi)− (x̂s
i , ŵ

s
i )∥2 ≤ αi, ∀(xi, wi) ∈ Xi ×Wi.

Now instead of addressing the ROP as presented in (7),
we focus on solving the following scenario optimization
program (SOP), ∀s ∈ {1, ..., Si}:

min
[Λi;ηi]

ηi

s.t. −Bi(qi, x̂
s
i )+δi(x̂

s
i
⊤x̂s

i )≤ηi, ∀x̂s
i ∈Xi, (9a)

Bi(qi, x̂
s
i )−σi≤ηi, ∀x̂s

i ∈X0i , (9b)
−Bi(qi, x̂

s
i )+ϕi≤ηi, ∀x̂s

i ∈Xui
, (9c)

Bi(qi, f(x̂
s
i , ŵ

s
i ))− ξ̄i(Bi(qi, x̂

s
i ))

− ρ̄wi(
ŵs

i
⊤ŵs

i

pi
) ≤ ηi, ∀(x̂s

i , ŵ
s
i )∈Xi×Wi,

(9d)

Λi = [δi; ξ̄i;σi;ϕi; ρ̄wi
; q1i ; . . . ; q

zi
i ],

δi, ξ̄i, σi, ϕi∈R>0, ρ̄wi
∈R≥0, q

zi
i ∈R, ξ̄i∈(0, 1).

We represent the optimal value of SOP as η∗iS .
Remark 4.2: Due to a mild bilinearity between unknown

variables ξ̄i ∈ (0, 1) and qi in condition (9d), we constrain
ξ̄i to the discrete set ξ̄i ∈ {ξ̄1i , . . . , ξ̄li} with a cardinality of
l. This allows us to tackle the bilinearity by solving the SOP
for a specific ξ̄i while designing qi.

A. Data-Driven L-BC Construction with Guarantee
Here, our primary objective is to solve the proposed

SOP in (9) and construct L-BC for unknown discrete-
time subsystems Ψi with a guarantee of correctness. To
attain this objective, we commence by raising the following
assumption.

Assumption 4.3: Suppose Bi(qi, xi) and δi(xi
⊤xi) −

Bi(qi, xi) are Lipschitz continuous with respect to xi with,
respectively, Lipschitz constants L 1

i and L 2
i , for any i ∈ N.

Moreover, Bi(qi, f(xi, wi)) − ξ̄iBi(qi, xi) − ρ̄wi
(wi

⊤wi

pi
) is

Lipschitz continuous with respect to (xi, wi) with Lipschitz
constant L 3

i , for any i ∈ N.
Under Assumption 4.3, and inspired by [41], the following
theorem outlines our data-driven approach for constructing
L-BC for unknown discrete-time subsystems Ψi with a
guarantee of correctness.

Theorem 4.4: Consider subsystems Ψi = (Xi,Wi, fi)
defined in Definition 2.1. Assume Assumption 4.3 is sat-
isfied. Let SOP (9) be solved with Si sampled data, as
in (8), and an optimal value η∗iS and a solution Λ∗

i =
[δ∗i ; ξ̄

∗
i ;σ

∗
i ;ϕ

∗
i ; ρ̄

∗
wi
; q1∗i ; . . . ; qzi∗i ]. If

η∗iS + Liαi ≤ 0 (10)

with Li = max{L 1
i ,L

2
i ,L

3
i }, then Bi resulting from

solving the SOP in (9) is an L-BC for Ψi with a guarantee
of correctness.

Remark 4.5: Note that the ball’s radius αi is crucial in sat-
isfying the data-driven condition (10), providing correctness
guarantee over the construction of L-BC based on data. To
potentially reduce the required number of samples, one may
initially gather data using a larger value of αi to solve the
SOP in (9). If condition (10) is not met with the chosen
(potentially large) αi, it becomes necessary to opt for a
smaller αi and re-solve the SOP. When working with real
data, it is feasible to consider a sufficiently large αi (worst-
case scenario) and ensure satisfaction of condition (10).

To verify condition (10) in Theorem 4.4, the computation
of Li is required. To achieve this, we utilize the fundamental
results of [46] and present Algorithm 1 for estimating the
corresponding Lipschitz constants using a finite set of data
for each subsystem. While the algorithm is dedicated to
estimating L 3

i , by following the similar steps, one can
estimate L 1

i ,L
2
i using a finite set of data, where g(x̂r

i ) =
B∗

i (qi, x̂
r
i ) and g(x̂r

i ) = δ∗i (x̂
r
i
⊤x̂r

i ) − B∗
i (qi, x̂

r
i ) in Step

3, respectively. Under Algorithm 1, the convergence of the
estimated values L 1

i -L 3
i to their actual values is guaranteed

in the limit, as supported by the following lemma [46].
Lemma 4.6: The estimated values L 1

i -L 3
i in Algorithm 1

converge to their actual values if and only if β approaches
zero while κ̄ and κ̃ tend to infinity.

Remark 4.7: Given the necessity of determining unknown
coefficients qi to estimate the Lipschitz constants L 1

i -L 3
i in

Algorithm 1, it is crucial to initially solve the proposed SOP
outlined in (9). To avoid the need for subsequent verifica-
tion of condition (10), one may initially assume a certain
range for unknown coefficients qi and estimate the Lipschitz
constants L 1

i -L 3
i before solving the SOP. Consequently, it

is essential to enforce these established ranges during the
solution of the SOP.

In the forthcoming section, we introduce a compositional
approach based on small-gain reasoning to construct a G-
BC for an infinite network, building upon L-BC of individual
subsystems, constructed from data in Theorem 4.4.

V. COMPOSITIONAL CONSTRUCTION OF G-BC

In this section, we propose a compositional framework
that enables the construction of G-BC for an infinite network
Ψ by leveraging L-BC of individual subsystems Ψi, i ∈ N.
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Algorithm 1 Estimation of Lipschitz constant L 3
i using data

Inputs: L-BC B∗
i , ξ̄∗i , ρ̄

∗
wi

1: Choose κ̄, κ̃ ∈ N and β ∈ R>0

2: Select κ̄ sampled pairs ((x̂r
i , ŵ

r
i ), (x̂

′r
i , ŵ

′r
i )) from

Xi ×Wi such that ∥(x̂r
i , ŵ

r
i )− (x̂′r

i , ŵ
′r
i )∥2 ≤ β

3: Compute the slope ∆r
i as

∆r
i =

∥g(x̂r
i ,ŵ

r
i )−g(x̂′r

i ,ŵ′r
i )∥

2

∥(x̂r
i ,ŵ

r
i )−(x̂′r

i ,ŵ′r
i )∥

2

, ∀r ∈ {1, ..., κ̄} with

g(x̂r
i , ŵ

r
i ) = B∗

i (qi, f(x̂
r
i , ŵ

r
i )) − ξ̄∗i (Bi(qi, x̂

r
i )) −

ρ̄∗wi
(
ŵr

i
⊤ŵr

i

pi
), (g(x̂′r

i , ŵ
′r
i ) is computed similarly)

4: Compute the maximum slope as ϱi = max{∆1
i , . . . ,∆

κ̄
i }

5: Repeat Steps 2-4 κ̃ times and acquire ϱi1, ..., ϱ
κ̃
i

6: Through the utilization of the Reverse Weibull distribution
[46] on ϱi1, . . . , ϱ

i
κ̃, which yields location, scale, and shape

parameters, select the location parameter as an estimation
of L 3

i

Output: Lipschitz constant L 3
i

Considering subsystems Ψi as in Definition 2.1, assume the
existence of L-BC Bi as defined in Definition 3.1 with
constants δi, σi, ϕi ∈ R>0, ξi ∈ (0, 1), and ρwi

∈ R≥0. We
now define, ∀i, j ∈ N,

ξij :=


ξi, if i = j,
ρwi

δj
, if j ∈ Ni,

0 if i ̸= j, j /∈ Ni.

Correspondingly, we define ζ : l∞+ → l∞+ as

ζ(s) = (sup
j∈N

{ξijsj})i∈N, s ∈ l∞+ . (11)

We also assume that there exist constants ξ̃, δ̃ ∈ R>0, and
ρ̃w ∈ R≥0, such that ξi ≤ ξ̃, ρwi ≤ ρ̃w, δi ≥ δ̃, for all i ∈ N.
This assumption ensures the well-posedness of ζ in (11).

To establish the primary compositionality findings of the
paper, we present the following small-gain assumption, in-
spired from [29].

Assumption 5.1: Consider operator ζ as defined in (11).
Assume that supj∈N{ξijsj} > 0,∀sj > 0,∀i, j ∈ N, ζ is
continuous on l∞+ , limn→+∞ ζn(s) = 0, and there exist
positive constants c1 and c2 such that for all i, j ∈ N,
the operator ζi,j(s) := ζ(s) + c1sjei, s ∈ l∞+ fulfills the
following condition:

ζi,j(s) ≱ (1− c2)s, s ∈ l∞+ \ {0}. (12)
The small gain condition (12) implies the existence of

a vector µ := (µi)i∈N ∈ l∞+ with µi ∈ R>0, i ∈ N, and
ϵ ∈ (0, 1), such that [29, Lemma 4.5]

ζ(µ) ≤ (1− ϵ)µ.

As a result, according to (11) and since ϵ ∈ (0, 1), one has,
∀i ∈ N:

sup
j∈N

{ξijµj} ≤ (1− ϵ)µi < µi.

By applying 1
µi

to both sides, we have

1

µi
(sup
j∈N

{ξijµj}) = sup
j∈N

{ξijµj

µi
} < 1. (13)

Fig. 2. A platoon comprising an infinitely countable number of vehicles.

Since inequality (13) holds for all i ∈ N, it can be
generalized as

sup
i,j∈N

{ξijµj

µi
} < 1. (14)

In the upcoming theorem, under Assumption 5.1, we
construct a G-BC for the infinite network Ψ using L-BC
of Ψi, i ∈ N, constructed from data.

Theorem 5.2: Consider an infinite network Ψ =
N (Ψi)i∈N, which arises from infinitely many subsystems Ψi.
Assume that each individual subsystem Ψi possesses an L-
BC Bi, constructed from data according to Theorem 4.4 with
a guarantee of correctness. If Assumption 5.1 is satisfied, and

sup
i

{ϕi

µi

}
> sup

i

{σi

µi

}
, (15)

then the function B(x) defined as

B(x) := sup
i

{ 1

µi
Bi(xi)

}
, (16)

is a G-BC for the infinite network Ψ = N (Ψi)i∈N, with
σ := supi

{
σi

µi

}
, ϕ := supi

{
ϕi

µi

}
, and ξ = supi,j

{
ξijµj

µi

}
.

Remark 5.3: Assuming that ξij ≤ 1 for any i, j ∈ N,
inequality (14) can be satisfied by setting µi = 1 for all
i ∈ N. Consequently, inequality (16) is simplified as B(x) :=
supi

{
Bi(xi)

}
, and as a result, the small-gain condition (12),

equivalently inequality (14), is automatically fulfilled.

VI. CASE STUDY

In this section, we showcase the efficacy of our proposed
results by applying them into a vehicle platoon consisting
of an infinitely countable number of vehicles, as depicted in
Fig. 2. The dynamics of the interconnected network can be
described as [47]

Ψ: x(k + 1) = Ax(k) + u(k),

where u(k) is a previously designed and deployed controller
and A is a block matrix featuring diagonal elements repre-
sented by Â, and off-diagonal blocks denoted as Ai(i−1) =
Aw, i ≥ 2, as:

Â =

[
1 −1
0 1

]
, Aw =

[
0 τ
0 0

]
,

with the interconnection strength characterized by τ =
0.005. Additionally, all non-diagonal blocks are specified as
zero matrices of appropriate dimensions. Moreover, x(k) =
(xi(k))i∈N and u(k) = (ui(k))i∈N. We now proceed with
presenting a description of each individual vehicle Ψi as

Ψi : (k + 1) = Âxi(k) + ui(k) +Awwi(k).
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It can be readily ascertained that Ψ = N (Ψi)i∈N, where
wi(k) = [0;wi(i−1)(k)], with wi(i−1)(k) = [0; 1]⊤xi−1(k),
and setting w1,0(k) = 0. Each vehicle’s state is expressed as
xi = [di; vi], i ∈ N, where di represents the relative distance
between vehicle i and its preceding vehicle i − 1, with the
0-th vehicle representing the leader, while vi signifies the
velocity of vehicle i in relation to the leader’s reference
frame. The main objective in vehicle platoon is to adjust each
vehicle’s speed to uphold a safe distance from its preceding
vehicle [47]. We assume a controller is previously designed
and deployed to each vehicle as

ui =

[
−0.4di + 0.2vi + 0.3
0.4di − 0.9vi + 0.05

]
. (17)

We assume that the model of each vehicle is unknown. Let us
ensure that the well-posedness of Ψ = N (Ψi)i∈N holds true
by validating the condition of ∥f(x)∥ < ∞, as in Definition
2.2. By deploying the controller in (17), and defining C =
max{|Ā|, |Aw|}, where Ā is the new matrix of the system
after deploying the controller, we have:

∥f(x)∥ = sup
i∈N

{|fi(xi, wi)|} = sup
i∈N

{|Āxi +Awwi|}

≤ |Ā| sup
i∈N

{|xi|}+ |Aw| sup
i∈N

{|wi|}

≤ C(sup
i∈N

{|xi|}+sup
i∈N

{|xi|})=C(∥x∥+∥x∥)<∞.

Consequently, one can assert that Ψ = N (Ψi)i∈N is well-
defined. It is worth noting that even though matrices Ā and
Aw are unknown, which is the case here, the resulting well-
posedness conclusion remains valid.

The regions of interest for each vehicle are defined as
follows: Xi ∈ [0, 1] × [−0.3, 0.7], X0i ∈ [0.25, 0.75] ×
[−0.05, 0.45], and Xui

∈ [0, 1] × [−0.3,−0.15] ∪ [0, 1] ×
[0.55, 0.7]. Our primary objective is to construct an L-
BC, using collected data from each vehicle with unknown
dynamics, by solving the SOP (9) for each Ψi. Subsequently,
under the proposed small-gain condition, we aim to construct
a G-BC based on individual L-BC while ensuring that the
trajectory of the infinite network remains safe in infinite
time horizons. To do so, by considering αi = 0.005 and
ξ̄∗i = 0.95, we solve the SOP in (9) and compute coefficients
of L-BC, along with other decision variables in the SOP, as
follows:

Bi(qi, xi) = −0.0843d4i − 0.14d3i vi + 0.14d3i + 0.1228d2i v
2
i

+ 0.14d2i vi − 0.0541d2i + 0.14div
3
i − 0.14div

2
i

− 0.1254divi − 0.0123di − 0.14v4i + 0.14v3i

+ 0.14v2i − 0.1073vi + 0.0506

δ∗i =0.05, σ∗
i =0.05, ϕ∗

i =0.06, ρ̄∗wi
=2×10−8, η∗iS=−0.005.

Consequently, according to Remark 4.1, values of ξi and ρwi

outlined in (5d) are computed as ξ∗i = 0.975 and ρ∗wi
= 8×

10−7, by selecting πi = 0.5. We then apply Algorithm 1 and
compute L 1

i = 0.1648, L 2
i = 0.1682 and L 3

i = 0.1598.
Given that η∗iS + Liαi = −0.0049 ≤ 0, as stipulated by
Theorem 4.4, we can assert that the data-driven L-BC is valid
for unknown vehicle Ψi with the guarantee of correctness.
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Fig. 3. Closed-loop states trajectories of a representative vehicle, with
previously designed and deployed controller, are depicted for 30 initial
conditions in range [0.25, 0.75] × [−0.05, 0.45]. Green and red dashed
lines are initial and unsafe level sets, respectively.

We now proceed with showing the small-gain condition
as an essential requirement for the compositional results.
Given that δ∗i > ρ∗wi

, it becomes evident that ξij ≤ 1, for
any i, j ∈ N. According to Remark 5.3, with the choice
of µi = 1 for each i ∈ N, it can be concluded that
condition (12), and consequently (14), are satisfied without
imposing any constraints on the number of vehicles. As
a result, B(x) := supi

{
(Bi(xi))

}
arises as a G-BC for

the infinite network Ψ with σ = 0.058, ϕ = 0.064, and
ξ = 0.975. By applying Theorem 3.4, we can guarantee
that all trajectories of the interconnected network originating
from X0 will remain within the safe domain throughout
an infinite time horizon. Closed-loop state trajectories of
a representative vehicle under the previously designed and
deployed controller are depicted in Fig. 3.

VII. CONCLUSION

In this paper, we offered a framework for formally verify-
ing the safety of an interconnected network that consisted of
a countably infinite array of discrete-time subsystems, each
with unknown mathematical models. Our approach involved
breaking down the overall problem into subsystem levels,
where we modeled the safety concept for each subsystem
using a robust optimization program (ROP) based on the
notion of local-barrier certificates. We then collected finite
data from subsystem trajectories and created a scenario op-
timization program (SOP). We solved the resulting SOP and
constructed a local-barrier certificate for each unknown sub-
system, while providing a guarantee of correctness. Finally,
under some small-gain conditions, we constructed a global-
barrier certificate from local certificates of subsystems to
ensure the safety of the infinite network.
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