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Abstract— As new soft robotic applications emerge, control
requirements increase. Therefore, precise control methods for
soft robots are needed. The main challenge in controlling
soft robots is that soft robots are often underactuated and
redundantly actuated at the same time. In addition, modeling
is usually difficult due to large elastic deformations, unknown
material parameters, and manufacturing inaccuracies.

In soft robotics, so-called kinematic controllers, which neglect
the dynamics of the system, are mainly used. In particular, data-
driven controllers are very popular. However, more advanced
applications of soft robots require increasingly faster and
more accurate movements. Here, kinematic controllers are not
sufficient anymore. A direct extension of existing data-driven
kinematic controllers to dynamic control is usually not practical
due to the huge amount of training data required.

This paper presents a new open-loop dynamic trajectory
tracking control of a redundantly actuated soft robot. A
combination of a kinematic data-driven controller based on
neural networks and a dynamic model-based control approach
based on model inversion with the servo-constraints approach
is used. This combined approach preserves the advantages of
learning-based kinematic controllers for the dynamic control of
soft robots while keeping the amount of training data required
low. Experimental results show the strength of this approach.

I. INTRODUCTION

Soft material robots are an emerging and rapidly expand-
ing field of research with potential applications in various
fields. Unlike traditional robots made of stiff materials such
as steel, soft material robots are typically made of soft mate-
rials such as silicone with a stiffness range of 104 . . . 109 Pa.
This results in large deformations that require new modeling
methods and control concepts.

In the following, a short overview of the existing control
approaches for soft robots is given. A more detailed overview
can be found in [1], [2], [3]. In the soft robotic commu-
nity, a distinction is made between kinematic and dynamic
control. Controllers are considered kinematic when inertia
and damping properties are neglected. Another distinction
is between model-based and model-free control. Note that
in soft robotics controllers using data-based models are
considered model-free [2]. Furthermore, control methods
can be divided into open-loop and closed-loop control [3].
Because soft robots can usually deform continuously, they
often have a very large number of degrees of freedom and
are therefore underactuated. They are also often redundantly
actuated. This makes them much more difficult to control
than most rigid robots.
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Kinematic controllers are the most commonly used con-
trollers in soft robotics. Since dynamics are neglected, they
are limited to slow motions to avoid oscillations. Most
model-based kinematic controllers rely on direct inversion
of the kinematics [4] or, if this is not possible, differential
inverse kinematics [5], [6], [7] are often used. For highly
nonlinear systems, soft robots with large manufacturing
inaccuracies, and soft robots that are difficult to model,
model-free kinematic controllers are widely used. Here, the
mapping of actuation variables to control variables is usually
learned by a neural network, see e.g. [8], [9].

When faster and more agile motion is required, kinematic
control is often not sufficient. Dynamic controllers must be
used. A dynamic control approach for soft robots is model
predictive control in combination with both physics-based
models [10], [11] and data-driven models [12], [13], [14].
Also, alternatives such as PD controllers [15], [16], sliding
mode controllers [17], gain-scheduling controllers [1], [18],
other model-based controllers [19] and even reinforcement
learning approaches [20], [21], [22] find applications in
this context. It should be noted that dynamic controllers
are typically more computationally expensive than kinematic
controllers and require more data and/or parameters during
tuning. Therefore, in applications dynamic controllers are
still very limited.

This paper focuses on the open-loop trajectory control of a
simple tendon-actuated beam-shaped soft robot. Open-loop
approaches are particularly interesting in soft robotics be-
cause they do not require sensors, which are usually difficult
to integrate into soft robots. A combination of a kinematic
data-driven control approach and a dynamic model-based
control approach is used for the trajectory control. Therefore,
the required control forces are divided into a kinematic and
a dynamic part. The kinematic control forces are calculated
using learned inverse kinematics represented by a neural
network (NN). To calculate the required dynamic control
forces, the servo-constraints approach for dynamic model
inversion is used. The effectiveness of this simple control
approach for the control of fast motions of soft robots is
evaluated by experiments.

The paper is organized as follows: First, the test system
and the modeling of the test system are presented. Then the
control setup is shown and finally experimental results on
the controller performance are presented.

II. MODEL OF TEST SYSTEM

In this paper, the tip position trajectory tracking of a
simple beam-shaped soft robot is considered in simulation
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Fig. 1: Soft robot used for experiments.

and experiment. The experimental setup and the model used
are described below. The model is used for the design of
the controllers. The soft robot used is shown in Fig. 1. It
is redundantly actuated by three tendons, allowing the robot
tip to move on a hemisphere. The soft robot has a length
of 202mm and a radius of 30mm. The soft robot is made
of silicone of type ”HT45”. It is actuated by three servos
through tendons evenly distributed around the circumference
of the soft robot. This allows to directly control the tendon
length sq for all three tendons. Here q = 1 . . . 3 is the index
of the tendon. A cube with AprilTag [23] fiducial markers is
attached to the top of the soft robot to allow camera tracking
of the tip position. The soft robot has two independent system
outputs z, in this work the x and y coordinates of the soft
robot’s tip are chosen.

A. Piecewise constant curvature Parametrization

The deformation of the soft robot is described with a
piecewise constant curvature (PCC) model in the formulation
of [24]. The soft robot is discretized into N = 1 segments of
constant curvature with length Li = 202mm. Here i is the
index of the segment. Note, that for N = 1 the PCC model
is identical to the constant curvature model. PCC models are
very popular in soft robotics because they can describe large
deformations of beam-shaped robots with few parameters.
Deformations other than bending, such as elongation, are
of minor importance for most soft robots and are neglected
here. The parameterization of a PCC segment is visualized in
Fig. 2. The curvature is described by the rotations µi and νi
around the x- and y−axis. Furthermore, the coordinate u
describes the position of a cross section along the centerline.
Here, u = 0 describes the start of the segment and u = 1
describes the tip of the segment.

The deformation of each segment can be described as a
rotation around the axis

w =
[
µi νi 0

]T
(1)
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Fig. 2: PCC parametrization.
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Fig. 3: Discretization of
the soft robot for inertia
forces.

which is located at position ρi. The total bending angle φi

of a segment and the vector ρi can be obtained by

φi = ||w|| =
√
µ2
i + ν2i , (2)

ρi =
Li

φ2
i

[
µi νi 0

]T
. (3)

With this parametrization the position vector ru,i and
rotation matrix Ru,i of a cross section on the centerline of
segment i at position u are

ru,i =
[
ρi,xσu,i ρi,yσu,i ||ρi|| sinφu,i

]T
, (4)

Ru,i =

 σu,iν̃
2
i + 1 −σu,iµ̃iν̃i ν̃i sin(φu,i)

−σu,iµ̃iν̃i σu,iµ̃
2
i + 1 −µ̃i sin(φu,i)

−ν̃i sin(φu,i) µ̃i sin(φs,i) cos(φu,i)

 .

(5)

Here φu,i = uφi, σu,i = cos(φu,i)−1, ν̃i = νi

φi
and µ̃i =

µi

φi
.

B. Internal Forces

For an accurate description of the internal forces, the soft
robot segment is divided into Nsubseg = 3 subsegments of
equal length, see Fig. 3. In the following, the subsegments
are denoted by the index j. The mass and inertia properties
of each subsegment are concentrated in the center of gravity
of each subsegment, which is located at uj . The cube on top
of the soft robot is added to the top segment. The stiffness
and damping properties are distributed among the elastic
links between them. For simplicity, a linear material behavior
is assumed. As shown in [25], this is a sufficiently good
approximation for typical deformations of soft robots.

The internal torques ℓj,bnd resulting from the bending
stiffness of the individual subsegments can be calculated as

ℓj,bnd = ℓj,bndRuj ,1

[
− sin(θi) cos(θi) 0

]T
(6)

with

ℓj,bnd = EIxx,loc

√
µ2
i + ν2i
Li

, (7)

θi = atan2(νi, µi). (8)

The internal damping torques ℓj,dmp acting on the in-
dividual subsegments can be calculated from the angular
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velocity ωj and the damping coefficient d and result in

ℓj,dmp =

{
d(ωj) j = 1

d(ωj − ωj−1) otherwise.
(9)

The the angular velocity ωj follows from the PCC-
parametrization. The damping coefficient d has to be de-
termined experimentally. Finally, gravity acting in negative
z-direction is added.

C. Actuation

The soft robot is redundantly actuated by three servos
via three tendons. With the servos the length of the three
tendons is controlled. The length change of the tendons
towards the neutral position is described by sq , where q =
1 . . . 3 is the tendon index. Since the soft robot is very
stiff in the longitudinal direction, it can be assumed that
no deformations are possible in the longitudinal direction.
It follows that the three tendon lengths cannot be chosen
independently. Also, sq must be chosen so that the tendons
do not become loose or break. It is also important to note
that tendons cannot transmit tensile forces.

The tendon length change sq can be decomposed into

sq = sgeo,q + sstiff,q + sdmp,q + sinertia,q︸ ︷︷ ︸
sel=Fq/c

+serr,q. (10)

Here sgeo,q describes the change in length of the tendon
due to the change in geometry of the soft robot during
deformation. The term sel = Fq/c summarizes the change in
length due to the elasticity of the tendon and the elasticity of
the soft robot in longitudinal direction, where c is a virtual
spring constant that has to be determined experimentally.
Further, sel can be divided into a part resulting from the
tendon forces due to the stiffness of the soft robot sstiff,q , a
part caused by damping forces sdmp,q , and a part caused by
inertia forces sinertia,q . Additionally, when applying this to
the physical model there remains an error serr,q which mainly
results from fabrication inaccuracies and parameters not
known exactly. If the soft robot moves very slowly, sdmp,q

and sinertia,q disappear. For simplicity, in the simulation
model the tendon force Fq is used instead of the length
change of the tendon sq . However, with (10) there is a direct
relationship between sq and Fq . The actuation is described in
more detail in [26] and will therefore not be further described
here.

D. Equations of Motion

For the derivation of the equations of motion
with 2 degrees of freedom the generalized
coordinates y =

[
µT νT

]T ∈ R2N are chosen. The
equations of motion can now be obtained by following the
Newton-Euler formalism and can be written as

M(y, t)ÿ + k(y, ẏ, t) = q(y, ẏ, t) +B(y, t)u(t). (11)

Here, M(y, t) ∈ R2×2 is the mass matrix, k(y) ∈ R2

summarizes the Coriolis, centrifugal and gyroscopic forces
and q(y) ∈ R2 represents the internal forces and torques.

zdes
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kinematics

soft robot

×

c−1

inverse
dynamics

u

sNN

s
+

+

sinv

z

Fig. 4: Structure of the controller.

The tendon forces used for actuation are summarized in
the vector u(t) =

[
F1(t) F2(t) F3(t)

]T ∈ R3, the input
distribution matrix B(y, t) ∈ R2×3 provides a mapping
between the tendon forces u and the generalized coordinates.

III. CONTROL SETUP

In this paper, an open-loop control approach with learned
inverse kinematics and model-based inverse dynamics is
chosen. The structure of the controller is shown in Fig. 4. In
the following, first both parts of the controller are described
separately, followed by an explanation of the combination of
both parts.

A. Kinematic Controller

An inverse kinematics approach based on neural networks
is chosen as the kinematic controller. A small neural network
with two hidden layers is trained to calculate the required
tendon length change s =

[
s1 s2 s3

]
of the desired tip

position zdes of the soft robot. The two hidden layers have a
tanh activation function with 10 neurons each. The output
layer has a linear activation function. Note, that the soft robot
is redundantly actuated as described in Sec. II-C. Only two
of the tendon lengths can be chosen independently. This is
especially important for the collection of training data.

1) Training: To generate the training data, in a first step
218 tip-position points ztip,model evenly distributed over
the workspace are sampled. In a second step, the forward
kinematics of the model presented in Sec. II are used to
calculate consistent values for the tendon length smodel

required to reach these points by the model. These values are
already a good guess and can be used directly to train the
neural network. However, because these values are purely
model-dependent, they do not account for manufacturing
inaccuracies and other unmodeled behavior of the soft robot.
Therefore, it makes sense to use measured values of the
physical robot for training. For this purpose, the calculated
tendon lengths smodel are used in a next step to approach
each of the tip position points ztip,model one after the
other. For each of the points the actual position of the
tip-position ztip,meas is measured with the camera tracking
system. Finally, the calculated tendon length values smodel

and the measured tip position values ztip,meas are used as a
training set for the neural network.

Fig. 5 shows the projection into the xy-plane of the tip
position points ztip,model calculated with the model and
the measured tip position points ztip,meas. It can be clearly
seen that the overall behavior of the physical robot and the
model agrees well. However, there are differences between
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Fig. 5: Projection into the xy-plane of the NN training data.

the physical robot and the model that need to be taken
into account to allow accurate trajectory tracking. Note
that all parameters of the model are nominal values taken
from a CAD model of the soft robot. With some parameter
tuning, the performance of the model can usually be greatly
improved. However, in soft robotics there are usually some
effects that are very difficult to include in the model. Since
the model is only used to obtain consistent values for the
tendon length, parameter tuning is not required here. The
entire training process takes less than 10min.

B. Dynamic Controller

As a dynamic controller the dynamic model inversion
based on the servo-constrains approach is chosen. For this
purpose, the dynamic model presented in Sec. II has to be
adapted. In a first step, (11) is extended by an additional
algebraic equation

s(y, t) = z(y, t)− zdes(t) = 0 (12)

which enforces the system output z, which is the x- and y-
coordinate of the tip-position trajectory, to be identical with
the desired system output zdes. Equation (11-12) represent
the inverse model. The unknowns of this system are the
desired position coordinates y, the desired velocity coordi-
nates ẏ and the required system input u. Since this leads
to a system of DAEs of index 3, which is difficult to solve,
the constraint equation is differentiated once to enforce the
constraints on the velocity level only

ṡ(y,v, t) = ż − żdes = 0. (13)

This can also be written as

ṡ(y,v, t) =
∂z(y, t)

∂y︸ ︷︷ ︸
CT

v − żdes = 0. (14)

Here CT is the translational Jacobi-matrix of the end point
position. In a second step, the number of system inputs must
be adapted to the number of constraints.

As described in Sec. II, the robot has three control inputs,
only two of which are independent. One possible choice is

to apply a pulling force to two of the tendons and set the
applied force for the third tendon to zero. Since tendons can
only transmit pulling forces, the tendon force set to zero must
be adapted to the required direction of the tendon force. This
can be done by defining a new reduced system input ured =[
ured,1 ured,2

]T
with

u = Φured =
[
ΦT

1 ΦT
2

]T
ured, (15)

Φ1 =


[
1 0 0

]
ured,1 ≤ 0[

0 −1 −1
]

otherwise
, (16)

Φ2 =


[
0 1 0

]
ured,2 ≤ 0[

0 0 −1
]

otherwise
. (17)

The reduced system input ured can be interpreted as a scaled
projection of the three tendon forces in x− and y-direction
of the global coordinate frame.

Finally, using index reduction, the inverse model can be
written as a first-order DAE in the form

v = ẏ (18)
M(y, t)v̇ = k(y,v, t)− q(y,v, t) +B(y, t)Φured(t)

(19)
CTv = żdes. (20)

In the following, this system is solved using the ode23t
solver from MATLAB, which is based on the trapezoidal
rule. Other solvers can also be used. In [27] an overview of
the performance of different solvers for feedforward control
using the the servo-constraints approach is given. In a post-
processing step, the geometric length change sgeo,q of the
tendons is calculated from the position coordinates y, and
the tendon forces u are calculated from the reduced tendon
forces ured using (15). This then allows to calculate the
tendon length change

sinv,q = sgeo,q + Fq/c. (21)

C. Combination of the Controllers

For the combination of the two controllers it is important
to consider (10) again. The change in tendon length calcu-
lated by the neural network can be written as

sNN,q = sgeo,q + sstiff,q + serr,q. (22)

It includes the change in tendon length due to the geom-
etry and stiffness of the soft robot, as well as a learned
approximation of unmodeled effects. Dynamic effects from
damping and inertia are neglected. The tendon length change
calculated by inverse dynamics can be written as

sinv,q = sgeo,q + sstiff,q + sdmp,q + sinertia,q︸ ︷︷ ︸
sel=Fq/c

. (23)

This includes all modeled effects on the tendon length change
but does not include unmodeled effects. In a post-processing
step, a reduced version can also be calculated to

sinv,q,red = sdmp,q + sinertia,q = Fq,red/c. (24)
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This is done by inserting the generalized coordinates y
computed by the inverse model into (19), setting the stiffness
of the soft robot to zero, and solving this linear system of
equations for ured.. Now the outputs of the two controllers
can simply be summed to get the change in tendon length
of the combined controller.

IV. EXPERIMENTAL EVALUATION

In the following, the agile trajectory tracking performance
of the proposed combined controller is investigated and
compared with the performance of the NN-based kinematic
controller, which is one of the standard approaches in soft
robotics. In a first step, a triangular trajectory with rounded
corners is considered. The soft robot starts with zero velocity
at the rightmost point of the triangle. In a first lap the velocity
is slowly increased until the desired velocity is reached, then
three laps with constant velocity and period time T are made
and in a final lap the velocity is reduced to zero again. As a
control error, for each time step the error E is defined as

E(t) = ||zdes(t)− zexp(t)|| (25)

where zexp is the measured tip position obtained from the
experiment.

In Fig. 6, the trajectory tracking result for the NN-
based controller and for the proposed combination of both
controllers is shown for a period time of T = 1 s representing
a fast motion. For reference, the trajectory tracking result
for the NN-based controller and a period time of T = 5 s
representing a slow motion is also shown. It can be clearly
seen that with the NN-based controller good results can only
be achieved for the period time of T = 5 s. A mean error of
Emean = 5.1mm and a maximum error of Emax = 9.6mm
could be achieved. This can be explained by the fact that
this is the simplest control problem since the trajectory
tracking is slow enough that inertia and damping forces
can be neglected. With the combination of both controllers
comparable results could be obtained for this slow motion.
However, the contribution of the inversion-based controller
is so small compared to the contribution of the NN-based
controller that it has no impact. Therefore, the results for
the combined controller and T = 5 s are not shown. For the
fast motion with a period time of T = 1 s, it can be clearly
seen that the NN-based controller is not able to follow the
trajectory. The resulting trajectory is much too large, rotated
against the desired trajectory, and contains some unwanted
extra loops. In contrast, the combination of both controllers
shows a good trajectory tracking result also for the fast
motion. A mean error of Emean = 8.6mm and a maximum
error of Emax = 18.4mm could be achieved. These are
very good results for a fast-moving soft robot. In Fig. 7
the contribution of the NN-based and the inversion-based
controller to the control output of the combined controller is
shown for the first tendon as an example. The results for the
other two tendons are qualitatively comparable. For a more
detailed examination of the influence of the dynamics on the
actuation the mean tendon force for the trajectory tracking of
a circle with a radius of r = 90mm is examined for different
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Fig. 6: Trajectory tracking results of a triangular trajectory
with the NN-based and the combined controller for different
period times T .
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Fig. 7: Contribution of the two controllers to the tendon
length change s1 of the first tendon for the triangular
trajectory with T = 1 s (fast motion).

velocities. The forces are calculated from the inverse model
from (18-20) for different angular velocities ω = 2π/T . The
results are shown in Fig. 8. It can be seen that for slow
motions with angular velocities smaller than ω = 0.6 1/s,
there is almost no dependence of the mean tendon force on
the period time. Here the inertial forces can be neglected,
and the tendon forces are dominated by forces due to the
stiffness of the soft robot. For faster motions the tendon force
decreases and reaches its minimum at ω = 2.9 1/s and starts
to increase quadratically with increasing angular velocity.
This behavior can be explained by the increasing influence
of the inertial forces, especially the centripetal forces, which
also increase quadratically with increasing angular velocity
for decreasing period times.

This analysis is supported by the phase relationship be-
tween the tendon force Fq and the tendon length change sq
as a function of the angular velocity ω. For slow motions the
tendon force Fq and tendon length change sq have no phase
shift, a large tendon length change sq also requires a large
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tendon force Fq . However, for very fast motions a phase
shift of ≈ 180◦ between Fq and sq can be observed. This
can be explained by the fact that for slow motions the forces
resulting from the stiffness of the soft robot dominate, while
for fast motions the inertial forces dominate. In the case of
a circular trajectory, both forces point in opposite directions,
leading to the phase shift of the tendon forces.

V. CONCLUSION

In this contribution the open-loop trajectory tracking
control of a soft robot with a combination of a neural
network based and an inversion based dynamic controller
was presented. The NN is used to represent the inverse
kinematics for quasi-static trajectory tracking. Forces re-
sulting from damping and inertia are not included here,
which limits the applicability of this controller alone to slow
movements. Therefore, the NN-based controller is combined
with a controller based on the servo-constraints approach
for inverting the full dynamic model of the soft robot. For
the modeling the piecewise constant curvature approach was
used. This allows to consider the forces resulting from inertia
and damping. It is shown in simulation and experiments that
this extends the applicability of the combined controller to
much faster and more agile trajectory tracking. Initial results
show that the method can be applied to other systems, such
as underactuated systems.
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