
Scenario Reduction with Guarantees for Stochastic Optimal Control of
Linear Systems

Francesco Cordiano, Bart De Schutter

Abstract— Scenario reduction algorithms can be an effective
means to provide a tractable description of the uncertainty
in optimal control problems. However, they might significantly
compromise the performance of the controlled system. In this
paper, we propose a method to compensate for the effect of
scenario reduction on stochastic optimal control problems for
chance-constrained linear systems with additive uncertainty.
We consider a setting in which the uncertainty has a discrete
distribution, where the number of possible realizations is large.
We then propose a reduction algorithm with a problem-
dependent loss function, and we define sufficient conditions
on the stochastic optimal control problem to ensure out-of-
sample guarantees (i.e., against the original distribution of the
uncertainty) for the controlled system in terms of performance
and chance constraint satisfaction. Finally, we demonstrate the
effectiveness of the approach on a numerical example.

I. INTRODUCTION

Dealing with uncertainty is one of the major challenges in
optimal control and decision making. Indeed, several real-
world applications involve some level of uncertainty, which
can negatively affect the system performance in terms of
cost, safety, and reliability. Stochastic optimal control [1] has
received significant attention in the recent years due to the
possibility of explicitly encoding a probabilistic description
of the uncertainty in the optimal control problem.

However, one of the main challenges in stochastic optimal
control problems is to provide a description of the uncertainty
such that: a) it is accurate enough so that performance
guarantees can be given for the controlled system; and b)
the resulting optimal control problem is numerically tractable
and amenable to online optimization. In this regard, a popular
technique to represent the uncertainty in a tractable way
consists of employing a set of scenarios. Scenario-based
methods are rooted in multistage stochastic programs [2],
where a scenario tree is built over the prediction horizon
according to the possible realization of the uncertainty [3].
More generally, scenarios can be conceived as time series
with an associated probability, which allows the represen-
tation of complex stochastic phenomena, e.g., the price of
an asset in trading problems [4], [5], the solar irradiance
and the ambient temperature in building heating systems
[6], or the degree of deterioration of railways in preventive
maintenance [7]. Scenario-based methods rely on an atomic
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description of the uncertainty, which is either assumed to
be given (e.g., obtained from a forecast [8]), or estimated
via scenario generation methods [5], [6], or obtained from a
continuous distribution via discretization [9].

However, one of the main shortcomings of scenario-based
methods is that a large number of scenarios is required to ob-
tain an accurate representation of the uncertainty, especially
in the case of a continuous distribution, which is typically
approximated by means of a sample-average approximation
[10]. In general, to tackle the issue of the growing complex-
ity, several scenario reduction algorithms have been proposed
in the context of stochastic programming, where the aim is
to determine a set of scenarios with reduced cardinality that
can well approximate some characteristics of the original
scenario set. Examples of reduction algorithms can be found
in [11], [12], where the accuracy of the approximation is
measured in terms of a probability distance (e.g., the Wasser-
stein distance [13]) between the distributions describing the
initial and reduced scenario set, or in [14], [15], where
scenarios are grouped according to their similarity using
clustering-based algorithms.

Using a limited number of scenarios is justified by quan-
titative stability results for stochastic programs [16], [17],
where it is proven that the optimal value of a stochastic
program, or the set of optimal solutions, possesses some
type of continuity properties with respect to changes in the
probability distribution of the uncertainty. However, when
only a limited number of scenarios is used in a stochastic
optimal control problem, guarantees hold only for the in-
sample performance of the system, i.e. the performance
against the considered scenario set, whereas the out-of-
sample (OOS) performance, i.e. the performance against
the original distribution of the uncertainty, in terms of
incurred cost and actual constraint satisfaction, can be se-
riously compromised. For example, previous works such
as [3], [18], [19], construct a scenario tree by considering
only some possible realizations of the uncertainty, but they
do not consider chance constraints, which would require
the complete tree structure to provide guarantees for the
controlled systems. Chance constraints are considered in
[20] as a sample average approximation, but guarantees
hold only if the number of scenarios approaches infinity.
Alternatively, they are considered in [21] via randomized
algorithms, where performance guarantees are provided by
an appropriate sampling of the constraints. Such data-driven
methods are distribution-free (see e.g., [22]) but the sample
complexity can be high, which may lead to an increased
computational complexity.
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In light of these considerations, in this paper we explore
the use of scenario reduction algorithms in stochastic optimal
control problems for chance-constrained linear systems with
additive uncertainty. We consider a setting where the actual
distribution of the uncertainty is known and discrete, and
the number of possible realizations (i.e., the scenarios) is
finite but huge, which requires a reduction algorithm to allow
implementation in an online setting. Our contributions can
be summarized in the following points:

• We derive a novel problem-dependent clustering-based
scenario reduction algorithm, which is run offline, that,
in contrast to more standard algorithms based on k-
means [23], [14], or k-medians [24], minimizes a loss
function that is shown to have a direct connection
with the cost function employed in the optimal control
problem;

• In contrast to other scenario-based methods [3], [18],
[20], [21], we solve a chance-constrained scenario-
based optimal control problem by considering only the
scenarios resulting from the proposed reduction algo-
rithm, which leads to computational benefits. We then
robustify the optimal control problem by taking into
account the effect of the discarded scenarios implicitly
via constraint tightening, and by over-approximating the
cost function.

The resulting optimal control problem benefits from a
reduced computational complexity thanks to the usage of a
reduced number of scenarios, while preserving OOS guaran-
tees against the original distribution of the scenarios

The rest of the paper is organized as follows. In Section
II, we introduce the scenario-based optimal control problem,
and in Section III we discuss a problem-dependent reduction
algorithm based on clustering. In Section IV we describe how
to modify the constraint set and the cost function in order to
preserve OOS guarantees, and in Section V we demonstrate
the effectiveness of the proposed approach on a numerical
example. Section VI concludes the paper.

II. PRELIMINARIES

A. Notation

The symbol 1X denotes the indicator function, which
takes the value 1 if the logical statement X is true, and
0 otherwise. With ∥ · ∥l we denote an l-norm, with l ∈
{1, ...,∞}. The symbols ⊕ and ⊖ denote, respectively, the
Minkowski sum and difference. The symbols Pr and E de-
note, respectively, the probability and expectation operators.
Given n matrices P1, ..., Pn, diag(P1, ..., Pn) is the block-
diagonal matrix where the diagonal blocks are the matrices
P1, ..., Pn.

B. Problem statement

We consider a discrete-time linear system affected by
stochastic additive uncertainty:

xt+1 = Axt +But + ηt, (1)

where xt ∈ Rn and ut ∈ Rm are, respectively, the state
and input of the system at time step t, and ηt ∈ Rn is an

exogenous additive stochastic signal drawn from a distribu-
tion P. The goal of the controller is to employ the system
dynamics (1) to find a sequence of inputs u⋆

t , ..., u
⋆
t+N−1

such that the expected performance of the system over an
horizon N ∈ Z>0

Eηt, ..., ηt+N−1

[
N∑

k=1

(∥Qxt+k∥1 + ∥Rut+k−1∥1)

]
(2)

is minimized, while satisfying the following constraints on
the state and on the input of the system:

Pr(xt+k ∈ X , k = 1, ..., N) ≥ 1− ε, (3)
ut+k ∈ U , k = 0, ..., N − 1, (4)

where Q ∈ Rn×n, R ∈ Rm×m are matrices with non-
negative entries, ε ∈ [0, 1) is a risk-tolerance parameter,
and X ,U are polytopic convex sets, i.e.: X := {x ∈
Rn : Hxx ≤ hx}, and U := {u ∈ Rm : Huu ≤ hu},
where Hx, Hu, hx, hu are matrices and vectors of appropriate
dimensions. For simplicity, in the rest of the paper we assume
that Q and R are identity matrices of appropriate dimension,
as this does not significantly impact the proposed analysis.

To derive tractable reformulations for (2), (3), a popular
choice in the literature is to represent the uncertainty by
means of scenarios [4], [6], [10]. In general, the required
number of scenarios to obtain a reliable approximation can be
large, or even infinite in the case of a continuous distribution
[10]. In this paper, for simplicity, we directly consider the
case in which P is discrete, but the number of the possible
realization (i.e., the possible scenarios) can be very large.
Let the following assumption hold:

Assumption 1: The stochastic signal ηt,∀t ≥ 0, is drawn
from a discrete distribution P, such that Pr(ηt = η

(j)
t ,∀t ≥

0) = p(j), j = 1, ...,M , where M ∈ Z>0 represents
the number of possible realizations (or scenarios), and the
probabilities p(j) satisfy:

∑M
j=1 p

(j) = 1, p(j) ∈ (0, 1], j =

1, ...,M . Both the scenarios η(j) and the probabilities p(j)

are assumed to be known.
Under Assumption 1, and by resetting, for ease of notation,
the closed-loop index t to 0, a stochastic optimal control
problem can be formulated as [10]

min
u0,...,uN−1

M∑
j=1

p(j)
N∑

k=1

(
∥x(j)

k ∥1 + ∥uk−1∥1
)

(5a)

s.t. x(j)
0 = x0, j = 1, ...,M, (5b)

x
(j)
k+1 = Ax

(j)
k +Buk + η

(j)
k , (5c)

M∑
j=1

p(j)1
x
(j)
k ∈X , k=1,...,N

≥ 1− ε, (5d)

uk ∈ U , (5e)
k = 0, ..., N − 1.

In particular, (5a) is the expectation (2) computed over
the discrete scenario set, (5c) describes the evolution (1)
according to the j-th scenario, and (5d) is an equivalent
reformulation of (3) by means of the indicator function [10].
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Remark 1: According to Assumption 1, a scenario is con-
ceived as a (multidimensional) time series with an associated
probability, as proposed, e.g., in [6], [8]. Hence, the scenario
trajectory x

(j)
k , k = 0, ..., N, is determined exclusively by

scenario η
(j)
k , k = 0, ..., N−1. This allows to consider time-

correlated phenomena (e.g., the solar irradiance in heating
control systems [6]), and it can also model the more tra-
ditional scenario tree [3], by constructing a profile η(j) for
each possible sequence of uncertainty realizations.

Remark 2: The usage of the 1-norm, even if less common
than the squared 2-norm, is frequently used in optimal
control, e.g., for piecewise affine systems, where the cor-
responding optimization problem can be cast as a mixed-
integer linear program (MILP) [25]. Notice that also (5) can
be cast as an MILP, as the chance constraint (5d) admits an
equivalent reformulation by associating one logical variable
to each scenario, whose value equals the indicator function.
In addition, the usage of the 1-norm will turn to be useful
in the performance analysis in Section IV

In general, one of the main shortcomings in scenario-
based formulations of stochastic programs is that the com-
putational complexity of (5) grows rapidly with the number
of scenarios, especially due to the non-smooth chance con-
straint (5d). An effective means to reduce the computational
burden of (5) is provided by scenario reduction algorithms
[14], where from an initial discrete distribution P, the goal
is to find a discrete distribution P̃ whose domain has a
lower cardinality than the domain of P, in a way that P̃
provides a good description of P (e.g., in terms of the
Wasserstein distance [13]). Hence, let η̃t ∈ Rn, t ∈ Z≥0

be a stochastic signal described by the distribution P̃, such
that: Pr(η̃t = η̃

(j)
t ,∀t ≥ 0) = p̃(j),

∑M̃
j=1 p̃

(j) = 1, p̃(j) ∈
(0, 1], j = 1, ..., M̃ , where M̃ ∈ Z>0, M̃ < M , represents
the cardinality of the reduced set of scenarios. The way in
which the scenarios η̃(1), ..., η̃(M̃), and the corresponding
probabilities p̃(1), ..., p̃(M̃), are chosen clearly affects the
solution of the resulting optimal control problem; hence, in
the following, we provide an equivalent reformulation of (5),
where the dependence of the cost and the constraint set on the
distribution P̃ is made explicit. Let us introduce the following
compact notation for the predicted state and input over the
horizon:

x(j) =


x
(j)
1
...

x
(j)
N

 , u =

 u0

...
uN−1

 , η̃(j) =


η̃
(j)
0
...

η̃
(j)
N−1

 , (6)

j = 1, ..., M̃ ,

for which we have:

x(j) = Fx0 +Gu+ Γη̃(j), (7)

where F,G,Γ are appropriate matrices derived from the
dynamics (1), which can be found e.g. in [21]. Let also
Hx := diag(Hx, ...,Hx), Hu := diag(Hu, ...,Hu), hx =
[h⊤

x , ..., h
⊤
x ]

⊤,hu = [h⊤
u , ..., h

⊤
u ]

⊤, and define: XN := {x ∈
RnN : Hxx ≤ hx}, UN := {u ∈ RmN : Huu ≤ hu}.

Then, the scenario-based optimal control problem that
employs the reduced scenario set can be written in function
of the resulting probability distribution P̃ as

min
u
{J(x0, P̃,u) : u ∈ F(x0, P̃)}, (8)

where

J(x0,u, P̃) =
M̃∑
j=1

p̃(j)
(
∥x(j)∥1 + ∥u∥1

)
(9)

is the cost function that we minimize, and

F(x0, P̃) := {u ∈ RmN :

M̃∑
j=1

p̃(j)1x(j)∈XN
≥ 1− ε,

x(j) = Fx0 +Gu+ Γη̃(j),

η̃(j) ∼ P̃, j = 1, ..., M̃ ,

u ∈ UN}

(10)

denotes the set of feasible inputs. We also observe that the
way P̃ is constructed affects both the cost function (9) and
the constraint set (10) of (8), which coincide with (5) for
P̃ = P.

III. SCENARIO REDUCTION

The majority of the reduction algorithms select a set of
representative scenarios in a way that some suitable similarity
metric between the initial and the resulting distributions is
optimized. This can be, e.g., the Wasserstein distance [16],
[11], or a discrepancy distance [12], between the probability
distributions P and P̃. Such reduction algorithms are typi-
cally of combinatorial complexity [26]; hence, approximate
methods to perform a reduction have been proposed. A
popular family of reduction algorithms is based indeed on
grouping similar scenarios in a clustering fashion [14], i.e.,
given the initial set of scenarios S := {η(1), ...,η(M)}
and the desired cardinality M̃ for the reduced scenario
set, a clustering-based reduction algorithm groups similar
scenarios in order to minimize an appropriate cost function,
and one representative scenario is chosen for each cluster
with probability equal to the sum of the probabilities of the
scenarios belonging to the same cluster. In the following, we
propose a novel problem-dependent clustering-based reduc-
tion algorithm that also includes the more standard k-means
[23] and k-medians [24]. By denoting the reduced scenario
set as S̃ := {η̃(1), ..., η̃(M̃)}, the proposed clustering-based
scenario reduction algorithm minimizes the following objec-
tive function:

L (S̃) = Eη∼P

[
min
η̃∈S̃
∥η − η̃∥ll

]
=

M∑
h=1

p(h) min
η̃∈S̃
∥η(h) − η̃∥ll,

where we consider l ∈ {1, 2}. Let us now define a cluster
as the set of indices corresponding to the closest scenarios
to a given center η̃(j), i.e.

C(j) := {h ∈ {1, ...,M} : arg min
i∈{1,...,M̃}

∥η(h) − η̃(i)∥ll = j}.
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Hence, the objective function L can be equivalently written
as

L (S̃) =
M̃∑
j=1

∑
h∈C(j)

p(h)∥η(h) − η̃(j)∥ll, (11)

and the scenario reduction problem becomes

min
S̃

L (S̃). (12)

The rationale behind the cost function (11) is that we
intend to minimize the expected distance between the scenar-
ios belonging to a given cluster C(j) and the corresponding
center η̃(j), j = 1, ..., M̃ . The reason why in (11) we
explicitly consider the expectation over the distribution P
will be clear in the performance analysis in the next section,
where we show that there exists a connection between the
loss (11) and the impact of the scenario reduction on the
system performance. It is well known that (12) is NP-hard
[27]; hence, greedy algorithms are frequently used to provide
suboptimal solutions to (12). Inspired from [27], we propose
the following iterative algorithm:

Algorithm 1 Clustering-based scenario reduction

Require: S, p(1), ..., p(M), M̃ ;
Initialize S̃ ⊆ S arbitrarily;
while L (S̃) decreases do

for j ∈ {1, ..., M̃} do

1) C(j) ← {h ∈ {1, . . . ,M} :
η̃(j) = arg min

η̃(i)∈S̃
∥η(h) − η̃(i)∥ll};

2) η̃(j) ← arg min
η∈RNn

∑
h∈C(j)

p(h)∥η(h) − η∥ll;

end for
Assign S̃ ← {η̃(1), ..., η̃(M̃)};

end while
Assign p̃(j) =

∑
h∈C(j) p(h), j = 1, ..., M̃ ;

return S̃, p̃(1), ..., p̃(M̃).

Let us state the following lemma:
Lemma 1: Algorithm 1 converges to a (suboptimal) solu-

tion of (12) in a finite number of iterations. In particular, if
p(h) = 1

M , h = 1, ...,M , the update for η̃(j) in step 2) in
Algorithm 1 corresponds to:

a) η̃(j) =
∑

h∈C(j) p(h)η(h)/|C(j)| if l = 2 (i.e., k-means
clustering);

b) η̃(j) such that η̃
(j)
i is the median of the i-th entries

of each η(h), h ∈ C(j), i = 1, ..., nN , if l = 1 (i.e.,
k-medians clustering).
Proof: The convergence immediately follows by ob-

serving that the updates in 1) and 2) lead to a decrease
in the cost (11); hence, L is monotonically decreasing in
the iterations of Algorithm 1. Then, a) and b) follow by
observing that with p(h) = 1

M Algorithm (1) corresponds to
k-means (if l = 2) and k-medians (if l = 1) clustering [27].

Remark 3: Algorithm 1 performs, at each iteration, a
greedy selection of the clusters and of the representative
scenario for each cluster. This is similar to Lloyd’s algorithm
[28], [29], which, in contrast to the combinatorial complexity
of the original problem (12), has a polynomial complexity
O(M · M̃) (see e.g. [27]). However, it may return a subop-
timal solution.

Remark 4: In the case where the probabilities are not
all equal, part a) of Lemma 1 corresponds to the weighted
average of the scenarios belonging to a given cluster C(j),
where the weights are p(h), h ∈ C(j). Part b) corresponds
to the weighted median of the scenarios belonging to a
given cluster C(j), where the weighted median is computed
element-wise. For the definition and the computation of the
weighted median we refer to [30].

Algorithm 1 can be used in an offline phase to derive
a set of scenarios with reduced cardinality, which is then
employed as description of the uncertainty for the online
optimal control problem. However, using a reduced number
of scenarios has an impact on the performance of the system,
as shown in the next section.

IV. ENFORCING OUT-OF-SAMPLE GUARANTEES

The distribution P̃ can indeed be constructed from Algo-
rithm 1, by associating to each scenario η̃(j) the probability
p̃(j), j = 1, ..., M̃ . The resulting distribution P̃ will then
affect the optimal solution of problem (8), and, moreover,
considering a reduced number of scenarios in (8) might
compromise the OOS guarantees of the controlled system,
considering that it evolves according to the original distribu-
tion P. Hence, in this section, we focus on the effect that a
scenario reduction can have on the OOS guarantees of the
real system, in terms of actual chance constraint satisfaction
and performance.

A. Adaption of the constraint set

Since the actual system dynamics evolve according to
the distribution P, it might happen that the optimal input
obtained by solving (8) (i.e., the problem that employs the
reduced scenario set), leads to an actual constraint violation
larger than the theoretical value ε. Hence, in this section, we
propose a modification to the optimal control problem (8)
such that it will guarantee feasibility for the original problem
(5).

First, let E(j) be a set such that Γ
(
η(h) − η̃(j)

)
∈

E(j),∀h ∈ C(j). That is, for each cluster C(j), j = 1, ..., M̃ ,
the set E(j) over-approximates the distance between each
scenario η(h), h ∈ C(j), and η̃(j), i.e., the representative
scenario of the cluster. Such set can be easily computed
from the knowledge of the initial scenario set and the reduced
scenario set (e.g., from element-wise upper and lower bounds
on η

(h)
k − η̃

(j)
k , k = 0, ..., N − 1).

The set E(j) can be employed for a tightening of the
original state constraint set, in order to enforce the sought
feasibility guarantees. This is formalized in the following
theorem:

3498



Theorem 1: Let XN⊖E(j) be non empty, ∀j ∈ {1, ..., M̃},
and let us consider the following tightened constraint set:

F̃(x0, P̃) := {u ∈ RmN :

M̃∑
j=1

p̃(j)1x(j)∈XN⊖E(j) ≥ 1− ε,

x(j) = Fx0 +Gu+ Γη̃(j),

η̃(j) ∼ P̃, j = 1, ..., M̃ ,

u ∈ UN}.
(13)

Then it holds that F̃(x0, P̃) ⊆ F(x0,P), ∀x0 ∈ X .
Proof: Let η̃(j), j ∈ {1, ..., M̃}, be one of the scenarios

belonging to the reduced set, and let η(h) be a scenario
belonging to the same cluster, i.e., h ∈ C(j). Let x̃(j) be
the scenario trajectory corresponding to scenario η̃(j), and
x(h) the scenario trajectory corresponding to scenario η(h).
We now show that if x̃(j) ∈ XN ⊖ E(j) then x(h) ∈ XN .
Indeed, for any input u ∈ F̃(x0, P̃), we have:

x(h) = Fx0 +Gu+ Γη(h)

= Fx0 +Gu+ Γη̃(j) + Γ
(
η(h) − η̃(j)

)
∈ XN ⊖ E(j) ⊕ E(j)

∈ XN ,

(14)

where we exploit the known property: A⊖B⊕B ⊆ A. Let
us now prove that the relations in (14) are satisfied with the
required probability 1 − ε. The fact that x(j)

t ∈ XN ⊖ E(j)
implies x(h) ∈ XN , translates in 1

x(j)∈(XN⊖E(j)
t )

= 1 ⇒
1x(h)∈X = 1,∀h ∈ C(j), or equivalently: 1x(h)∈X ≥
1
x(j)∈(XN⊖E(j)

t )
,∀h ∈ C(j). The state constraint for the

scenario trajectory x
(j)
t is satisfied with probability p̃(j) =∑

h∈C(j) p(h); hence, if u ∈ F̃(x0, P̃), it must hold that

1− ε ≤
M̃∑
j=1

p̃(j)1
x(j)∈(X⊖E(j)

t )

≤
M̃∑
j=1

∑
h∈C(j)

p(h)1x(h)∈X

≤
M∑
j=1

p(j)1x(j)∈X ,

and this proves that u is feasible for the original set of
scenarios, i.e.: u ∈ F(x0,P).

The meaning of Theorem 1 is that the optimal input se-
quence obtained by solving the scenario-based optimal con-
trol problem (8) with the tightened constraint set described
by (13) is indeed feasible in terms of chance constraint
satisfaction for the actual system, which evolves according
to P.

B. Adaption of the cost function

Even if Theorem 1 ensures F̃(x0, P̃) ⊆ F(x0,P), it might
still happen that the solution of (8) leads to an over-optimistic
expected performance of the controlled system, due to the

usage of a limited number of scenarios in the cost function.
Hence, by defining

J⋆(x0,P) := min
u
{J(x0,P,u) : u ∈ F(x0,P)}, (15)

J̃⋆(x0, P̃) := min
u
{J(x0, P̃,u) : u ∈ F̃(x0, P̃)}, (16)

we now aim at finding a correction term c(x0,u,P, P̃) ≥ 0
such that

J̃⋆(x0, P̃) + c(x0,u,P, P̃) ≥ J⋆(x0,P), ∀x0 ∈ X .

Theorem 2: Let c̄ ∈ R>0 be a constant such that

c̄ ≥
M̃∑
j=1

∑
h∈C(j)

p(h)∥Γ(η(h) − η̃(j))∥1.

Then it holds that

J̃⋆(x0, P̃) + c̄ ≥ J⋆(x0,P), ∀x0 ∈ X . (17)
Proof: Let u⋆ and ũ⋆ be the minimizers associated,

respectively, to (15) and (16). Then it follows that

J⋆(x0,P)− J̃⋆(x0, P̃) = J(x0,u
⋆,P)− J(x0, ũ

⋆, P̃) (18)

≤ J(x0, ũ
⋆,P)− J(x0, ũ

⋆, P̃) (19)

≤ |J(x0, ũ
⋆,P)− J(x0, ũ

⋆, P̃)|,
(20)

where in (19) we exploit that the input ũ⋆ is feasible for
problem (5) thanks to Theorem 1. Then, exploiting the
definition of the cost function (9), we have

|J(x0, ũ
⋆,P)− J(x0, ũ

⋆, P̃)| (21)

=

∣∣∣∣∣∣
M∑
j=1

p(j)∥x(j)∥1 −
M̃∑
j=1

p̃(j)∥x̃(j)∥1

∣∣∣∣∣∣ (22)

=

∣∣∣∣∣∣
M̃∑
j=1

∑
h∈C(j)

p(h)
(
∥x(h)∥1 − ∥x̃(j)∥1

)∣∣∣∣∣∣ (23)

≤
M̃∑
j=1

∑
h∈C(j)

p(h)∥x(h) − x̃(j)∥1 (24)

≤
M̃∑
j=1

∑
h∈C(j)

p(h)
∥∥∥Γ(

η(h) − η̃(j)
)∥∥∥

1
, (25)

where in (22) we leverage that the applied input is the same,
in (23) we exploit the definition of p̃(j), j = 1, ..., M̃ , given
by Algorithm 1, in (24) we use the triangle inequality, and in
(25) we use the dynamics (7). Then (17) follows by selecting
a constant c̄ greater or equal than the quantity in (25).

Notice in particular that the quantity c̄ does not depend
on the current state x0 of the system. The essential meaning
of Theorem 2 is that it provides an upper bound on the
original cost function J⋆(x0,P), for which we prove that this
upper bound can be obtained simply by adding a constant
to the optimal value of the reduced problem. Similarly as
in the constraint tightening (13), the constant c̄, can easily
be computed from the knowledge of the matrix Γ, and
by measuring the distance between each scenario and the
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representative scenario of the same cluster to which the given
scenario belongs.

Remark 5: From the above proof, it follows that

J⋆(x0,P)− J̃⋆(x0, P̃) (26)

≤ ∥Γ∥1
M̃∑
j=1

∑
h∈C(j)

p(h)
∥∥∥η(h) − η̃(j)

∥∥∥
1

(27)

≤ ∥Γ∥1L (S̃). (28)

Hence, the choice of the objective function in the reduction
problem (12) relates to the distance between the optimal
values (26) of the optimal control problem (8). In other
words, the clustering algorithm in (12) has a problem-
dependent nature, i.e., by minimizing the cost function (11)
we also reduce the difference in (26).

By putting Theorems 1 and 2 together, the following
optimization problem:

min
u
{J(x0, P̃,u) + c̄ : u ∈ F̃(x0, P̃)} (29)

over-approximates the original one (5). The main advantage
in solving (29) is that a reduced scenario set is used,
which provides a consistent computational advantage. Nev-
ertheless, the effect of the discarded scenarios is implicitly
described in (29) by the constraint tightening and by the over-
approximation of the cost function. Thanks to the constraint
tightening, any input that is feasible for (29) is also feasible
for the original problem (5), and the optimal cost of (29)
provides an upper bound for the cost of (5).

V. NUMERICAL EXAMPLE

Let us consider a discrete time dynamical system (1) with

A =

[
1 1
0 0.5

]
, B =

[
0
1

]
(30)

and constraints: Pr(xk ≥ −1, k = 1, ..., N − 1) ≥ 0.2,
∥uk∥∞ ≤ 2, with initial state x0 = [4 3]⊤. We consider
a prediction horizon of N = 10, and an initial scenario set
of cardinality M = 200. Each scenario is a time series,
parametrized by a set of parameters that are sampled from
a user-defined distribution P, in order to generate different
profiles η(j), j = 1, ...,M . For details, the code of this
numerical example is available as a Github repository [31].

For simplicity, we assume that all the scenarios are equally
likely, i.e.: p(j) = 1

M , j = 1, ...,M . Hence, Lemma 1
suggests that the k-medians algorithm is particularly suited,
since the chosen norm is the 1-norm. In the following, we
provide a comparison between the solution of (8) (i.e., the
problem solved considering the reduced scenario set, denoted
by P1) and (29) (i.e., the problem that, in addition, considers
the sufficient conditions for OOS guarantees, denoted by
P2) with (5) (i.e., the original problem that considers the
original set with M = 200 scenarios, denoted by EXACT).
For solving P1 and P2, we run both k-medians (denoted
by kMED) and k-means (denoted by kMNS) with M̃ ∈
{5, 25, 50, 75, 100, 125, 150, 175} scenarios. We cast the re-
sulting optimal control problem as an MILP, by associating

a binary variable to each scenario, and by reformulating
the chance constraint (5d) accordingly [10]. For all the
simulations, we use Gurobi 10.0.2 as a solver on a CPU
Intel i7-1185G7 @ 3.00GHz.

In Figure 1, we compare the OOS performance of the
system for both P1 and P2. In contrast to P1, it is possible to
notice that P2 offers OOS guarantees for the real system. In
particular, thanks to the constraint tightening, Figure 1 shows
that the actual constraint violation is always lower than the
theoretical value ε. In addition, in Figure 1 we note that the
optimal cost of P2 provides a more reliable estimate of the
cost associated to the initial set of scenarios. In synthesis, P2
provides OOS guarantees thanks to the tightening and the
over-approximation of the cost proposed in Section IV, at
the cost of a mild conservatism that is gradually reduced by
increasing M̃ . We observe that both P1 and P2 converge to
the same value of actual constraint violation and optimal cost
as the number of scenarios is increased. Despite k-medians
should be the preferred choice due to the usage of the 1-
norm, we note that both k-medians and k-means lead to
substantially equivalent results. Finally, in the last plot of
Figure 1 we observe that the solver time required to solve P1
and P2 grows exponentially with the number of scenarios due
to the mixed-integer reformulation of the chance constraint
(5d) (note the logarithmic scale on the y axis in Figure 1).
The solver time is comparable for P1 and P2, and P2 offers
OOS guarantees even with a small number of scenarios and
at a low computational cost with respect to P1.

VI. CONCLUSIONS

In this paper, we have shown that scenario reduction
algorithms lead to a significant computational advantage in
stochastic optimal control problems, while, however, com-
promising the OOS performance of the system. To tackle
this issue we have proposed a scenario-reduction algorithm
tailored for optimal control problems, and sufficient condi-
tions to implicitly keep into account the discarded scenarios
in the optimal control problem at a low computational
cost. The numerical example demonstrates that the proposed
method leads to a consistent computational advantage, since
few scenarios can be used without compromising the OOS
guarantees, at the cost of a moderate conservatism.

Ongoing work consists of extending the method to the
case where the original distribution P is not known, but
described by a finite number of samples, and to provide OOS
guarantees with a certain confidence level. Other possible
future work consists of extending these results to nonlinear
systems and more general sources of uncertainty (e.g., as
in the dual adaptive control framework [32]), as well as
providing performance bounds for quadratic cost functions.
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Fig. 1. Performance analysis for the real system. In particular, we
notice that P2 over-approximates the original problem (5) both in terms of
constraint satisfaction and performance, and the associated computational
cost is comparable to P1.
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