
First order online optimisation using forward gradients in
over-parameterised systems

Behnam Mafakheri1, Jonathan H. Manton1 and Iman Shames2

Abstract— The success of deep learning over the past decade
mainly relies on gradient-based optimisation and backpropaga-
tion. This paper focuses on analysing the performance of first-
order gradient-based optimisation algorithms with time-varying
non-convex cost function under Polyak-Łojasiewicz condition.
Specifically, we focus on using the forward mode of automatic
differentiation to compute directional derivatives of the cost
function in fast-changing problems where calculating gradients
using the backpropagation algorithm is either impossible or
inefficient. Upper bounds for tracking and asymptotic errors
are derived for various cases, showing the linear convergence to
a solution or a neighbourhood of an optimal solution, where the
convergence rate decreases with the increase in the dimension
of the problem. We present numerical results demonstrating
the method’s correctness and performance.

Index Terms— Online optimisation, Directional derivatives,
Over-parameterised systems, PL condition

I. INTRODUCTION

Gradient-based optimisation is the core of most machine
learning algorithms [11]. Backpropagation, the reverse mode
of Automatic Differentiation algorithms, has been the main
algorithm for computing gradients. In some cases, using
backpropagation is either impossible or inefficient (see [22]
on the motivations for using directional derivatives and
gradient-free method). In [3] it is argued that in training neu-
ral networks, one can calculate gradients based on directional
derivatives, which is faster than backpropagation. Note that
for a real-valued function, a directional derivative is only a
scalar while gradient is a vector. Directional derivatives can
be calculated using a single forward evaluation of a function
without the necessity of storing the results of all intermediate
computations, these make calculating directional derivatives
more desirable in resource-limited applications. An unbiased
estimate of gradient, named forward gradient, can speed up
training up to twice as fast in some examples [2].

Given a function f : Rn → R, the forward gradient at
point x is defined as g(x,u) = ⟨∇f(x),u⟩u, where u is
a random vector with zero mean and unit variance. Note
that ⟨∇f(x),u⟩ is the directional derivative of f at point
x in the direction u. The forward gradient, g(x,u), is an
unbiased estimator for ∇f(x) as long as the components
of direction u are independent and sampled from a distri-
bution with zero mean and unit variance; [E(g(x,u))]i =

*This work was supported by the Australian Research Council under the
Discovery Projects funding scheme (DP210102454).

1B. Mafakheri and J. H. Manton are with Department of Electrical
and Electronic Engineering, University of Melbourne, VIC 3010, Australia
{mafakherib, jmanton}@unimelb.edu.au

2I. Shames is with the The CIICADA Lab, School of Engineer-
ing, The Australian National University, Canberra, ACT 2601, Australia
iman.shames@anu.edu.au

E(ui

∑n
j=1(∇f(x))juj) = (∇f(x))i, where ai is the i-th

element of vector a.
Deep neural networks can be considered as a particular

case of the over-parameterised system of nonlinear equa-
tions in which there are potentially a staggering number of
trainable parameters [9]. In [19] authors argue that focusing
on the convexity of the problem does not lead to a suit-
able framework for analysing such over-parameterised loss
functions and instead show that the Polyak-Łojasiewicz (PL)
condition [25] is satisfied on the most of parameter space.
This, in turn, explains the fast convergence of the Gradient
Descent (GD) algorithm to a global minimum.

Another area that has observed a flurry of activity is
anchored at studying time-varying objective functions. These
problems arise in many applications, including but not lim-
ited to robotics, smart grids, communication systems and
signal processing. An example is when a machine learning
problem’s data arrive sequentially in a stream. These can be
considered as a sequence of optimisation problems. A solver
may solve each problem completely before approaching
the next problem, which is not feasible in cases where
each instance of the problem is of large scale or involves
communication over a network. Therefore, a more efficient
way may be to solve each problem partially (e.g. performing
only a few gradient descent steps) before receiving the next
problem. Unlike batch learning, which requires the entire
training data set to be made available before the learning
task, online learning represents a class of algorithms that
learn to optimise predictive models over a stream of data
instances sequentially. Ideally, the solution generated by the
method at each time step, xk, follows x∗

k. In other words, the
tracking error ∥xk−x∗

k∥ or the instantaneous sub-optimality
gap (a.k.a instantaneous regret), ∥Lk(xk)−Lk(x

∗
k)∥, either

shrink or remain bounded as k grows. Therefore, we use
these performance measures for the algorithms in this paper.
We refer to Section II for the discussion on how this is related
to different kinds of performance measures in the context of
online learning.

In this paper, we focus on the analysis of the performance
of the forward gradient-based method in time-varying set-
tings characterised by the following cost function at time k:

min
x∈Rm

{Lk(x) := gk(x) + hk(x)}. (1)

The function gk is smooth and potentially nonconvex and
hk(x) is possibly a nonsmooth convex function that imposes
some structure on the solution. Such problems arise in online
machine learning [27]. The contributions of this paper are
listed below:

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2112

• We prove the linear convergence in expectation of
forward-gradient method to the minimiser for smooth
nonconvex PL objective functions (Theorem 8).

• We prove that the expected tracking error of the
forward-gradient method in a time-varying nonconvex
setting, under smoothness and PL assumptions, con-
verges to a neighbourhood of zero at a linear rate
(Theorem 16).

• We demonstrate that using directional derivatives are
effective even in high dimension for a pre-trained neural
network that observes new data samples at a high rate
while operating (see Remark 17).

The rest of the paper is organised as follows: in Section II,
we discuss related works, and in Section III, we review no-
tations, definitions, basic assumptions and some background
knowledge. In Section IV-A, we prove the linear convergence
of the forward gradient algorithm for the PL objective
functions. In Section IV-B, we analyse the performance of
the method based on forward gradients under PL condition.
Section V demonstrates numerical examples and Section VI
concludes the paper.

II. RELATED WORKS

PL condition in over-parameterised systems: The nonlin-
ear least square problem has been extensively studied in
under-parameterised systems [23]. In [19, 4] a sufficient
condition for satisfying the PL condition in a wide neural
network with the least square loss function and linear con-
vergence of Stochastic Gradient Descent (SGD) has been
studied and the relation with neural tangent kernel has been
discussed [13].

Static cost functions: In [15] convergence of Randomised
Coordinate Descent, SGD, and SVRG algorithms under PL
condition and Proximal coordinate descent algorithm under
Proximal-PL has been studied. Inexact gradient descent al-
gorithms have been analysed under various assumptions (See
[16] and references therein). In [30] O(1/k) convergence of
SGD under weaker conditions (Weak Growth Condition) has
been proved.

Time-varying cost function: A closely related line of
research to this paper is online convex optimisation (OCO)
which was originally introduced in seminal work by [33].
See [12] for a comprehensive review of OCO methods.
Algorithmic performance is evaluated in terms of the sta-
tionary regret, defined as the integrated difference between
the observed cost and the cost at the best fixed decision
variable. Dynamic regret is a generalisation which compares
the observed cost with the instantaneous optimal cost. OCO
results are typically presented in terms of regret bounds,
the goal being to achieve sub-linear regret (see [21] and
references therein). In [32, 8, 26, 31] the regret bounds are
derived for online first-order optimisation algorithms under
(strong) convexity and smoothness with noisy gradients.
Regret analysis of online stochastic fixed and time-varying
optimisation have been done in [12, 7, 28]. The works in [24]
and [17] have analysed the online (proximal) gradient meth-
ods with sub-Weibull gradient error under strong convexity

and PL conditions, respectively. In [10], assuming bounded
total temporal change of the sequence of loss functions, a
sublinear regret bound for a class of nonconvex functions
has been established. By assuming access to an offline
optimisation oracle, sublinear regret bounds for classical
Follow the Perturbed Leader (FTPL) have been shown in
[1] and [29]. The previous works all prove bounds on static
regret. In contrast, we focus on tracking error bound and
instantaneous regret from which the dynamic regret can be
analysed as a by-product.

III. NOTATION AND PRELIMINARIES

Throughout this paper, we show the set of real numbers
as R. For vectors a, b ∈ Rn the Euclidean inner product
and its corresponding norms are denoted by ⟨a, b⟩ and ∥a∥
respectively. We denote the open ball centred at x with
radius r by B(x, r). With πX (x) we indicate the projection
of vector x into set X . The Euclidean distance to a set
X ∈ Rn is defined by dist(x,X) := infu∈X ∥u − x∥ for
every x ∈ Rn. We denote the mapping of projection over
set X with πX . With X ∗ we denote the set of minimisers
of a function. For a matrix A ∈ Rm×n, ∥A∥ is the spectral
norms of the matrix. We use DF (·) and D2F (·) to show the
derivative and Hessian of function F , respectively. We use
Õ(·) notation by ignoring the logarithmic factors in big-O
notation, i.e. Õ(f(n)) = O(f(n) log f(n)).

In what follows, we introduce some definitions, assump-
tions and lemmas that will be utilised in the paper.

Definition 1: The function L : Rn → R is β − smooth if
it is differentiable and

∥∇L(y)−∇L(x)∥ ≤ β∥y − x∥, ∀x,y ∈ Rn.
Definition 2: The function L : Rn → R satisfies the

Polyak-Łojasiewicz (PL) condition on a set X with constant
µ if

∥∇L(x)∥2 ≥ 2µ(L(x)− L∗), ∀x ∈ X , (2)

where L⋆ is the global minimum of L(x).
Lemma 3: (Descent Lemma [5, Proposition A.24]) Let the

function L : Rn → R be a βL-smooth function. Then for
every x, y ∈ Rn and for every z ∈ [x,y] := {(1−α)x+αy :
α ∈ [0, 1]} the following holds

L(y) ≤ L(x) + ⟨∇L(z),y − x⟩+ βL

2
∥y − x∥2.

Lemma 4: ([15]) Let L : Rn → R be a β-smooth and
µ− PL function. Then
µ

2
∥x− πX∗(x)∥2 ≤ L(x)− L∗ ≤ β

2
∥x− πX∗(x)∥2, ∀x.

Definition 5: (Proximal-PL condition [15]) Let L(x) =
g(x)+h(x) where g is β−smooth and h is a convex function.
The function f satisfies µ−Proximal PL-condition if the
following holds

Dh(x, β) ≥ 2µ(L(x)− L∗), ∀x, (3)

where

Dh(x, α) := −2αmin
y

{⟨∇g(x),y − x⟩

+
α

2
∥y − x∥2 + h(y)− h(x)}. (4)

2113

A. Over-parameterised systems and PL condition

For a system of n nonlinear equations

f(x;ai) = bi, i = 1, 2, . . . , n,

where {ai, bi}ni=1 is the set of model parameters and one
aims at finding x ∈ Rm that solves the system of equations.
Aggregating all equations in a single map amounts to

F(x) = y, where x ∈ Rm,F(·) : Rm → Rn. (5)

The system in (5) is solved through minimising a certain
loss function L(x) := 1

2∥F(x)− b∥2 = 1
2

∑n
i=1(f(x;ai)−

bi)
2. This problem has been studied extensively in under-

parameterised settings (where m < n). We refer to the exact
solution of (5) as interpolation.

Definition 6: Let DF(x) be the differential of the map
F at x, which can be represented as a n × m matrix. The
tangent Kernel of F is defined as a n×n positive semidefinite
matrix K(x) := DF(x)DFT (x).

Definition 7: We say that a non-negative function L sat-
isfies µ− PL∗ condition on a set X ∈ Rm for µ > 0, if

∥∇L(x)∥2 ≥ 2µL(x), ∀x ∈ X . (6)
Remark 8: (a) if a non-negative function satisfies µ −
PL∗, then it will satisfy µ− PL condition too (2).

(b) Every stationary point of a PL function is a global
minimum.

The following results are of great importance in the later
discussions.

Theorem 9: ([25]) If L(x) is lower bounded with β-
Lipschitz continuous gradients and satisfies µ − PL con-
dition in the region X = B(x0, ρ) where ρ >
1
µ

√
2β(L(x0)− L∗), then there exists a global minimum

point x∗ ∈ X and the gradient descent algorithm with a
small enough step-size (1β) converges to x∗ in a linear rate.

Theorem 10: ([19]) If F(x) is such that λmin(K(x)) ≥
µ > 0 for all x ∈ X , then the square loss function L(x) =
1
2∥F(x)− y∥2 satisfies µ− PL∗ condition on X .
Note that K(x) = DF(x)DFT (x) implies that
rank(K(x)) = rank(DF(x)). In an over-parameterised
system, m > n, starting from a random initial point, there is
a high probability that DF(x) is full rank. However, from
Theorem 9, one needs µ−PL∗ condition in a large enough
ball with radius O(1µ) for linear convergence of the GD al-
gorithm. For establishing such conditions, one intuitively can
expect that in the cases of C2 function, if Hessian (curvature)
is small enough in the neighbourhood of a point, then the
Tangent Kernel should be almost constant and therefore, the
conditions for linear convergence of the GD algorithm will
be satisfied. In the case of highly over-parameterised Neural
Networks (wide NNs) with linear output layer, the Hessian
matrix will have arbitrarily small spectral norm (a transition
to linearity). This is formulated as follows:

Theorem 11: ([20]) For an L layer neural network with
a linear output layer and minimum width m of the hidden
layers, for any R > 0 and any x ∈ BR(x0). the Hessian
spectral norm satisfies ∥D2F(x)∥ = Õ

(
R3L
√
m

)
with a high

probability.

All in all, wide neural networks, as a particular case of over-
parameterised systems, satisfy the µ−PL∗ condition, which
explains the fast convergence of (S)GD to a global mini-
mum in square-loss problems. In the following sections, we
theoretically analyse the performance of using the forward
gradient in the same setting (over-parameterised systems).

IV. OPTIMISATION USING FORWARD GRADIENT

In this section, we analyse the performance of various
gradient-based algorithms using forward gradient.

A. Forward gradient for fixed cost functions

With the focus on the basic unconstrained optimisation
problem minx∈Rm L(x). Consider the following iterations
where the solver is not fast enough to do gradient calculation,
but it can do a forward gradient update at time k,

xk+1 = xk − αkvk(xk, Uk), (7)

where αk is step-size, v(x,u) = ⟨∇L(x),u⟩u, and Uk ∼
N (0, Im) are i.i.d random directions for all k, which implies
that v(x,u) is an unbiased estimator of ∇L(x). It is
extensively studied in [22] where the following properties
have been proved:

Ev(x, Uk) = ∇L(x), (8a)

E(∥v(x, Uk)∥2) ≤ (m+ 4)∥∇L(x)∥2. (8b)

In the following, we analyse the convergence of this algo-
rithm under PL condition.

Theorem 12: Assume that function L is β−smooth, has a
non-empty solution set X ∗, and satisfies µ−PL condition.
Consider the algorithm (7) with a step-size of 1

β(m+4) .
If random vector Uk is chosen from a standard normal
distribution, i.e. Uk ∼ N (0, Im), then the algorithm has an
expected linear convergence rate

E{L(xk)− L∗} ≤
(
1− µ

(m+ 4)β

)k

(L(x0)− L∗).

Proof: Using the descent lemma we have

L(xk+1) ≤ L(xk) + ⟨∇L(xk),xk+1 − xk⟩

+
β

2
∥xk+1 − xk∥2

= L(xk)− αk⟨∇L(xk),vk(xk, Uk)⟩+
β

2
α2
k∥vk(xk, Uk)∥2

By taking conditional expectation given xk with respect to
Uk, and using (8) we obtain

E{L(xk+1) | xk} − L(xk) ≤ −αk∥∇L(xk)∥2

+
1

2
βα2

k(m+ 4)∥∇L(xk)∥2 = −γk∥∇L(xk)∥2.

Where γk = αk(1 − β
2 (m + 4)αk). We now fix αk = α =

1
β(m+4) which implies γk = γ = 1

2β(m+4) . Assuming that L
satisfies µ− PL condition at xk:

E{L(xk+1) | xk} ≤ L(xk)− 2µγ(L(xk)− L∗).

2114

By using the tower rule of expectations and induction we
have

E{L(xk+1)− L∗} ≤ (1− 2µγ)k(L(x0)− L∗
0). (9)

Invoking γ = 1
2β(m+4) completes the proof.

B. Time varying Optimisation

In what follows, we prove a convergence property of
online line-search methods for the objective functions that
satisfy the following assumptions.

Assumption 13: (Polyak-Łojasiewicz Condition) There
exists a positive scalar µ such that Lk(x) satisfies (6) for
all k and for all x ∈ Rm.
We also need to quantify the speed with which the ob-
jective function varies in each step. As proved in [6], for
having meaningful bounds in nonconvex online optimisation
problems, one needs to restrict the changes of the loss
functions. To capture this, we assume the following standard
assumptions in the literature [10, 14].

Assumption 14: (Drift in Time): There exist non-negative
scalars η0 and η∗ such that Lk+1(x) − Lk(x) ≤ η0 for all
x ∈ Rm and L∗

k+1 − L∗
k ≤ η∗ for all k.

Remark 15: In an over-parameterised setting with a non-
linear least square loss function, one can argue that L∗

k ≈ 0,
for all k. Therefore, η∗ is negligible in this setting.

1) Forward gradient convergence in time-varying setting:
In this part, we analyse the performance of the forward-
gradient algorithm with a fixed step size for the time-varying
nonconvex cost functions under PL and smoothness assump-
tions. We prove that the tracking error linearly converges
to a neighbourhood of zero where the rate of convergence
depends on the dimension of the problem and the asymptotic
error is independent of the fact that we are not using exact
gradients.

Theorem 16: Assume that Lk is β−smooth for each k,
and Assumptions 13 and 14 hold. If we use the directional
derivative algorithm with a constant step-size αk = α <

2
β(m+4) and random direction Uk is chosen from a standard
normal distribution, then

E{∥xk+1 − πX∗
k+1

(xk+1)∥2} ≤
η

µ2γ
+

2

µ
(1− 2µγ)k(L0(x0)− L∗

0), (10)

where η = η0 + η∗ and η0 and η∗ are as in Assumption 14,
γ ∈ (0, γ̃) where γ̃ = min{α(1− β

2 (m+4)α), 1
2µ}, and X ∗

k

is the set of minimisers of Lk(x).
Proof: Using descent lemma and (7), we have

Lk(xk+1)− Lk(xk)

≤ ⟨∇Lk(xk),xk+1 − xk⟩+
β

2
∥xk+1 − xk∥2

= −αk⟨∇Lk(xk),vk(xk, Uk)⟩+
β

2
α2
k∥vk(xk, Uk∥2.

By taking conditional expectation given xk with respect to
Uk, and using (8) we obtain

E{Lk(xk+1) | xk} ≤ Lk(xk)− αk∥∇Lk(xk)∥2

+
1

2
βα2

k(m+ 4)∥∇Lk(xk)∥2

= Lk(xk)− γk∥∇Lk(xk)∥2. (11)

where γk = αk(1 − β
2 (m + 4)αk). We now fix ϵ1 < αk =

α < 2
β(m+4) − ϵ2 and γk = γ > 0 for some ϵ1 > 0 and

ϵ2 > 0. Assuming that Lk satisfies µ−PL condition at xk,
for all k, we have that

E{Lk(xk+1 | xk} ≤ Lk(xk)− 2µγ(Lk(xk)− L∗
k). (12)

By adding and subtracting terms, we have

E{Lk+1(xk+1)− L∗
k+1|xk}

= E{Lk+1(xk+1)− Lk(xk+1)|xk}
+ E{Lk(xk+1)− Lk(xk)|xk}
+ (Lk(xk)− L∗

k) + (L∗
k − L∗

k+1)

(b)

≤ η + (1− 2γµ)(Lk(xk)− L∗
k),

where in (b), we have used the bounds on drift and (12). By
using the tower rule of expectations and induction, we have

E{Lk(xk+1)− L∗
k+1} ≤ η

k∑
i=0

(1− 2γµ)k−i

+ (1− 2µγ)k(L0(x0)− L∗
0)

≤ η

2µγ
+ (1− 2µγ)k(L0(x0)− L∗

0).

Invoking (4) and γ ∈ (0, γ̃) completes the proof.
Remark 17: In the case of a pre-trained neural network

where the term L0(x0) − L∗
0 is small (or zero), the slower

convergence rate in higher dimensions is not a problem while
the asymptotic error bound, the first term in 10, is of interest.

Remark 18: Under the hypotheses of Theorem 16 the
following holds:

lim sup
k→∞

E{Lk(xk+1)− L∗
k+1} ≤ η

2µγ
. (13)

This, in turn, results in lim supk→∞ ∥xk − πX∗
k
(xk)∥2 ≤

η0+η∗

µ2γ .
Remark 19: One can choose αk = α = 1

β(m+4) to
maximise the convergence rate, but this results in maximising
the asymptotic optimality gap as well.

V. ILLUSTRATIVE NUMERICAL RESULTS

The theoretical error bounds of previous sections are
illustrated here employing two simple numerical examples;
online least square problem and real-time neural network
training.

A. Online Least Square Problem

We consider a sequence of time-varying linear least square
problems of the form Lk(x) = 1

2∥Akx − bk∥2, where
Ak ∈ Rn×m and bk ∈ Rn. The cost function Lk satisfies the
PL condition for every choice of Ak and bk. We consider the
over-parameterised case m = 60 and n = 10. The vector bk
is generated as bk+1 = bk+δbk, where δbk follows a normal
distribution N (0, 10−2In). The matrix Ak is generated using

2115

its singular value decomposition, Ak = UΣkV
T where

U ∈ Rn×r and V ∈ Rm×r are orthogonal matrices and
Σk+1 = Σk − 10−6Ir that Σ0 = diag {0.1, 0.2, . . . , 1} and
r = 10. This setting assures that supx{Lk+1(x) − Lk(x)}
is bounded. We have run 50 different experiments with the
same starting point and have calculated the average loss.
Results are plotted in Figure 1, showing the performance
of the actual algorithm and the derived theoretical bounds,
validating the convergence results.

Fig. 1: Performance of online gradient descent algorithm
using directional derivatives and the theoretical bound

B. Real Time Neural Network Training

Assume that, while deploying the pre-trained neural net-
work, new data samples arrive at a high rate and one needs to
update the training variable of the network, x. In the online
setting, the neural net receives an input ai at each round i,
and with x suffers loss 1

2∥f(x;ai)− bi∥2 where f(x;a) is
deep neural network’s output for input a and parameter x.
Note that this framework generalises the supervised learning
paradigm. The corresponding cost functions are

Lk(x) =
1

2

k+n−1∑
i=k

∥f(x;ai)− bi∥2.

We assume that the algorithm uses the latest n samples
(because they represent the data distribution better) and due
to its fast computation, the forward gradient is to be used in
the optimisation steps.

Consider a scenario where while deploying a pre-trained
neural network, the model observes new data samples with a
different distribution than the training data. To demonstrate
this, we consider a simple two-layer neural network trained
on MNIST data set [18]. The neural net has two hidden
dense layers with 32 and 16 nodes, respectively. We trained
the model on the first 30000 samples with a 92.6% test
accuracy. By changing the distribution of the other 40000
samples (see 2, we observe that the performance decreases to
53% accuracy. We assume the model observes 30,000 noisy
samples one by one and updates its weights after observing
every new sample. We set to use another 10,000 noisy

samples as a test data set and measure the instantaneous
performance of the evolving model on the unseen samples
for both the online gradient method and the proposed forward
gradient method.

Fig. 2: Noisy samples and the original data

Figure 3 demonstrated the performance of the evolving
model on the unseen data for two different methods, gradient-
based algorithm and forward gradient method with different
learning rates. One can observe that the performance of the
forward gradient method is following that of the gradient
method asymptotically, validating the theoretical results.

0 5000 10000 15000 20000 25000 30000
number of steps (= number of observed samples)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
od

el
 a

cc
ur

ac
y

Accuracy of the model for unseen data

α = 0.010, Online gradient
α = 0.010, Forward gradient
α = 0.001, Online gradient
α = 0.001, Forward gradient

Fig. 3: Performance of the online forward gradient method
compared to online online gradient method

VI. CONCLUSION

In this paper, we analysed the performance of gradient-
based first-order algorithms focusing on faster algorithms
for calculating gradients, namely forward gradients which
are particularly useful in computation and memory-limited
applications. We have exploited the fact that non-linear least
square problems in over-parameterised settings will satisfy
the PL condition. Based on this observation, we proved
that the (proximal-)gradient-based algorithm based on the
forward mode of automatic differentiation (forward gradient)
with nonconvex objective functions converges to optimal
value function at a linear rate. We have also analysed the
convergence of these algorithms in a time-varying setting
and proved the linear convergence to the neighbourhood
of a global minimiser. This paper gives new insights into
using the forward mode of automatic differentiation in prob-
lems with limited resources and fast-changing cost functions
where calculating full gradients using the backpropagation
algorithm is either impossible or inefficient.

2116

REFERENCES

[1] Naman Agarwal, Alon Gonen, and Elad Hazan. “Learning in non-
convex games with an optimization oracle”. In: Conference on
Learning Theory. PMLR. 2019, pp. 18–29.

[2] Atilim Gunes Baydin et al. “Automatic differentiation in machine
learning: a survey”. In: Journal of Marchine Learning Research 18
(2018), pp. 1–43.

[3] Atılım Güneş Baydin et al. “Gradients without Backpropagation”.
In: arXiv preprint arXiv:2202.08587 (2022).

[4] Mikhail Belkin. “Fit without fear: remarkable mathematical phenom-
ena of deep learning through the prism of interpolation”. In: Acta
Numerica 30 (2021), pp. 203–248.

[5] Dimitri P Bertsekas. “Nonlinear programming”. In: Journal of the
Operational Research Society 48.3 (1997), pp. 334–334.

[6] Omar Besbes, Yonatan Gur, and Assaf Zeevi. “Non-stationary
stochastic optimization”. In: Operations research 63.5 (2015),
pp. 1227–1244.

[7] Xuanyu Cao, Junshan Zhang, and H Vincent Poor. “Online stochastic
optimization with time-varying distributions”. In: IEEE Transactions
on Automatic Control 66.4 (2020), pp. 1840–1847.

[8] Olivier Devolder, François Glineur, and Yurii Nesterov. “First-order
methods of smooth convex optimization with inexact oracle”. In:
Mathematical Programming 146.1 (2014), pp. 37–75.

[9] William Fedus, Barret Zoph, and Noam Shazeer. Switch transform-
ers: Scaling to trillion parameter models with simple and efficient
sparsity. 2021.

[10] Xiand Gao, Xiaobo Li, and Shuzhong Zhang. “Online learning
with non-convex losses and non-stationary regret”. In: International
Conference on Artificial Intelligence and Statistics. PMLR. 2018,
pp. 235–243.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learn-
ing. MIT press, 2016.

[12] Elad Hazan et al. “Introduction to online convex optimization”. In:
Foundations and Trends® in Optimization 2.3-4 (2016), pp. 157–325.

[13] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent
kernel: Convergence and generalization in neural networks”. In:
Advances in neural information processing systems 31 (2018).

[14] Ali Jadbabaie et al. “Online optimization: Competing with dynamic
comparators”. In: Artificial Intelligence and Statistics. PMLR. 2015,
pp. 398–406.

[15] Hamed Karimi, Julie Nutini, and Mark Schmidt. “Linear conver-
gence of gradient and proximal-gradient methods under the polyak-
łojasiewicz condition”. In: Joint European conference on machine
learning and knowledge discovery in databases. Springer. 2016,
pp. 795–811.

[16] Ahmed Khaled and Peter Richtárik. “Better theory for SGD in the
nonconvex world”. In: arXiv preprint arXiv:2002.03329 (2020).

[17] Seunghyun Kim, Liam Madden, and Emiliano Dall’Anese. “Con-
vergence of the Inexact Online Gradient and Proximal-Gradient
Under the Polyak-{\L} ojasiewicz Condition”. In: arXiv preprint
arXiv:2108.03285 (2021).

[18] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST hand-
written digit database”. In: ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

[19] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. “Loss landscapes and
optimization in over-parameterized non-linear systems and neural
networks”. In: Applied and Computational Harmonic Analysis 59
(2022), pp. 85–116.

[20] Chaoyue Liu, Libin Zhu, and Misha Belkin. “On the linearity of large
non-linear models: when and why the tangent kernel is constant”.
In: Advances in Neural Information Processing Systems 33 (2020),
pp. 15954–15964.

[21] Liam Madden, Stephen Becker, and Emiliano Dall’Anese. “Bounds
for the tracking error of first-order online optimization methods”.
In: Journal of Optimization Theory and Applications 189.2 (2021),
pp. 437–457.

[22] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free min-
imization of convex functions”. In: Foundations of Computational
Mathematics 17.2 (2017), pp. 527–566.

[23] Jorge Nocedal and Stephen J Wright. Numerical optimization.
Springer, 1999.

[24] Ana M Ospina, Nicola Bastianello, and Emiliano Dall’Anese.
“Feedback-Based Optimization With Sub-Weibull Gradient Errors
and Intermittent Updates”. In: IEEE Control Systems Letters 6
(2022), pp. 2521–2526.

[25] Boris T Polyak. “Gradient methods for the minimisation of func-
tionals”. In: USSR Computational Mathematics and Mathematical
Physics 3.4 (1963), pp. 864–878.

[26] Mark Schmidt, Nicolas Roux, and Francis Bach. “Convergence rates
of inexact proximal-gradient methods for convex optimization”. In:
Advances in neural information processing systems 24 (2011).

[27] Shai Shalev-Shwartz et al. “Online learning and online convex
optimization”. In: Foundations and Trends® in Machine Learning
4.2 (2012), pp. 107–194.

[28] Iman Shames and Farhad Farokhi. “Online stochastic convex
optimization: Wasserstein distance variation”. In: arXiv preprint
arXiv:2006.01397 (2020).

[29] Arun Sai Suggala and Praneeth Netrapalli. “Online non-convex
learning: Following the perturbed leader is optimal”. In: Algorithmic
Learning Theory. PMLR. 2020, pp. 845–861.

[30] Sharan Vaswani, Francis Bach, and Mark Schmidt. “Fast and faster
convergence of sgd for over-parameterized models and an accelerated
perceptron”. In: The 22nd international conference on artificial
intelligence and statistics. PMLR. 2019, pp. 1195–1204.

[31] Silvia Villa et al. “Accelerated and inexact forward-backward algo-
rithms”. In: SIAM Journal on Optimization 23.3 (2013), pp. 1607–
1633.

[32] Tianbao Yang et al. “Tracking slowly moving clairvoyant: Optimal
dynamic regret of online learning with true and noisy gradient”.
In: International Conference on Machine Learning. PMLR. 2016,
pp. 449–457.

[33] Martin Zinkevich. “Online convex programming and generalized in-
finitesimal gradient ascent”. In: Proceedings of the 20th international
conference on machine learning (icml-03). 2003, pp. 928–936.

2117

