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 Abstract— This research examines the issue of state-constrained 
stabilizing controllers for Bouc-Wen hysteresis control systems 
with all hysteresis parameters being unknown. We develop a novel 
hysteresis estimator for estimating the virtual hysteresis state. 
Employing the 𝑳𝟐-gain control approach effectively mitigates the 
impact of estimation errors on the system. With barrier functions, 
even when the hysteresis parameters are unknown, we can 
formulate state-constrained stabilizing controllers using solutions 
to linear matrix inequalities. Ultimately, we showcase the efficacy 
and practicality of this control strategy with the help of a 
numerical example.  
Index Terms— Hysteresis systems, barrier function, Lyapunov 
function, state constraints. 

I. INTRODUCTION 

Hysteresis manifests as a phenomenon observed across a 
broad spectrum of systems, encompassing electromagnetic 
actuators, smart materials, and electromechanical devices, 
among others [1]. Its presence can significantly impact control 
performance due to its inherent nonlinearity, and in some severe 
cases, it can even lead to system instability. Furthermore, 
hysteresis introduces complexity because its output is 
influenced not only by the input but also by changes in the input 
[2]. Consequently, compensating for hysteresis poses 
additional challenges. Nevertheless, through the collective 
endeavors of numerous researchers, significant progress has 
been made in hysteresis compensation over the past year. 

The classification of hysteresis models typically spans 
across two main categories: physical and mathematical models. 
The most significant physical model is the Jile-Atherthon 
model [3], with prevalent mathematical models encompassing 
the Preisach model [1], the Prandtl-Ishlinskii (PI) model [2], the 
Krasnosel’skii-Pokrovkii hysteron [4], and the Bouc-Wen 
model [5-6]. Among the numerous approaches to characterizing 
hysteresis, the Bouc-Wen model stands out for its ability to 
succinctly describe hysteresis using a first-order nonlinear 
differential expression. To date, a considerable body of 
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literature has been dedicated to identifying and controlling 
the Bouc-Wen model for managing hysteresis systems [7-
8].  

However, the significance of state constraints in control 
systems is substantial, impacting practical applications as 
well as fundamental control theories. The safety of human 
operators and the system itself is jeopardized when specific 
unsafe states are encountered, especially in safety-critical 
systems such as robotic systems, autonomous vehicles, and 
chemical plants [9]. Therefore, it is imperative for the 
designed controller to guarantee compliance with state 
constraints while effectively managing the system. Several 
classical methods have been developed to tackle this 
challenge, which encompasses set invariance control [10], 
model predictive control [11], and reference governors [12].  
In recent developments, innovative design strategies have 
surfaced, incorporating control Lyapunov functions and 
barrier functions to guarantee the non-violation of these 
constraints [13]. In [14], the application of the barrier 
Lyapunov function (BLF) technique was explored for 
single-input single-output systems with an adaptive control 
scheme and full state constraints.  To ensure safe control, 
the authors in [15] investigated a CBF approach for 
designing controllers for nonlinear systems. In [9], a novel 
approach was introduced for nonlinear control-affine 
systems, which integrated a control Lyapunov function 
(CLF) and a control barrier function (CBF) into a unified 
concept known as a control Lyapunov barrier function 
(CLBF). Subsequently, continuous controllers were devised 
using Sontag's formula to ensure both safety and stability. 
Furthermore, a novel CLBF approach was discussed in [16] 
for a class of nonlinear control-affine systems subject to 
event-triggered control schemes and state constraints.   

Additionally, a multitude of studies have substantiated 
that the adoption of Zeroing CBF (ZCBF) can concurrently 
enhance robustness and stability while ensuring safety. A 
quadratic programming (QP)-based control synthesis 
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approach was developed to ensure compliance with state 
constraints by combining CLFs and ZCBFs, as demonstrated in 
[17]. Recently, Wu et al. [18] tackled the 𝐿"-gain control issue 
for nonlinear control-affine systems with state constraints, 
employing an innovative approach based on the control storage 
function (CSF) methodology. However, all the above-
mentioned results focus on nonlinear control systems without 
considering hysteresis behaviors. Very recently, Wu and 
Arunkumar [19] investigated the state-constrained control 
problem for Bouc-Wen hysteresis control systems with known 
hysteresis parameters. As of now, to the extent of our 
understanding, investigations into the state constraints problem 
for the Bouc-Wen model with unknown hysteresis parameters 
have yet to yield any results. 

Inspired by the aforementioned factors, the current study 
delves into the design of state-constrained state feedback 
stabilizing controllers for Bouc-Wen hysteresis control systems 
with unknown hysteresis parameters. Designing state-
constrained controllers becomes significantly challenging in 
practical systems where accurately obtaining the values of 
hysteresis parameters is difficult. In this paper, we introduce a 
novel hysteresis state estimator that enables the estimation of 
the virtual Bouc-Wen hysteresis state without prior knowledge 
of the hysteresis parameters. The estimation error is then treated 
as a disturbance, and an 𝐿!-gain control method is employed to 
reduce the impact of the estimation error on the hysteresis 
system. The proposed approach simplifies the process of 
deriving state-constrained controllers through the solution of 
LMIs by combining barrier functions. Finally, we propose 
sufficient conditions for the existence of state-constrained 
controllers in Bouc-Wen hysteresis control systems, even when 
the hysteresis parameters are unknown. To validate the efficacy 
of this control approach, we provide a numerical illustration 
from a real-world application, specifically the piezo-
positioning mechanical system. 

II. PROBLEM FORMULATION AND PRELIMINARIES 
In this paper, the hysteresis linear control systems can be 

described as follows: 

𝑥̇ = 𝐴𝑥 + 𝐵𝐻(𝑢)        (1) 
𝑧 = 𝐶𝑥 

where 𝑥 ∈ ℛ" represents the state of the system, while 𝑢 ∈ ℛ 
stands for the ideal control signal produced by the controller. 
Additionally, 𝑣 = 𝐻(𝑢) ∈ ℛ  represents the actual acting 
control force exerted due to the hysteresis behavior of the 
actuator, and 𝑧 ∈ ℛ#  signifies the controlled output. 
Furthermore, we have known real constant matrices 𝐴 ∈
ℛ"×", 𝐵 ∈ ℛ"  and 𝐶 ∈ ℛ#×".  The outline of the Bouc-Wen 
hysteresis model can be summarized as follows: 

𝑣 = 𝐻(𝑢) = 𝜇%𝑢 + 𝜇!𝜍                   (2) 

where 𝜇% > 0 and 𝜇! > 0 represent hysteresis parameters, and 
𝜍 ∈ ℛ  serves as a virtual auxiliary variable known as the 
hysteresis state. The determination of the hysteresis state relies 
on the subsequent first-order differential equation [8]: 

𝜍̇ = 𝑢̇ − 𝛽|𝑢̇||𝜍|&'%𝜍 − 𝜒𝑢̇	|𝜍|&, 𝜍(𝑡() = 0         (3) 

where 𝛽, 𝜒, and 𝑟, are parameters to characterize the shape 
and magnitude of the hysteresis phenomenon. Assume 𝛽 >
|𝜒| and 𝑟 ≥ 1.   Moreover, in this paper, we assume 𝜇! is 
unknown and 𝜇% = 𝜇̂% + ∆𝜇%  for a known 𝜇̂% > 0  and 
unknown ∆𝜇% satisfying |∆𝜇%| < 𝜇̅ with known 𝜇̅ < 𝜇̂%. In 
[8], it was established that the solution 𝜍(𝑡) of equation (3) 
remains bounded and fulfills 

|𝜍(𝑡)| ≤ E %
)*𝒳

! .    (4) 

From the above discussions, the dynamics of the system 
can be articulated in the following manner: 

𝑥̇ = 𝐴𝑥 + 𝐵(𝜇%𝑢 + 𝜇!𝜍)         
𝜍̇ = 𝑢̇ − 𝛽|𝑢̇||𝜍|&'%𝜍 − 𝜒𝑢̇	|𝜍|&.               (5) 

     The state-constrained region is defined as [19] 

 
𝒟 ≡ {𝑥 ∈ 𝑅"|𝑠,(𝑥) ≡ 𝑆,𝑥 + 𝑐, > 0, 𝑖 = 1,2, … , 𝑞}

 
(6)

 
where 𝑆,,  for  𝑖 = 1,2, … , 𝑞, represents constant row vectors 
then 𝑐, , for 𝑖 = 1,2, … , 𝑞,  denotes positive scalars. We 
presume that 𝒟 serves as a connected region and the origin 
is located within its interior. Similar to [19], define 𝒟, ≡
{𝑥 ∈ 𝑅"|𝑆,𝑥 + 𝑐, > 0} , 𝜕𝒟, ≡ {𝑥 ∈ 𝑅"|𝑆,𝑥 + 𝑐, = 0}, 𝑖 =
1,2, … , 𝑞. Then,  

𝜕𝒟 ≡ S𝑥 ∈ 𝒟TU𝑆,𝑥 + 𝑐, = 0, for	some	𝑖 ∈ {1,2, … , 𝑞}\       
= 𝒟T ∩ ^𝜕𝒟% ∪ …∪ 𝜕𝒟-`.                 

The primary aim of this paper is to design a controller that 
guarantees convergence of the state trajectory of the 
hysteresis control system (5) towards the origin, while 
satisfying the state constraint 𝑥(𝑡) ∈ 𝒟 for all 𝑡 ≥ 0 with 
𝑥(0) ∈ 𝒟. In such instances, system (5) is said to be stable 
with respect to 𝒟. 

III. MAIN RESULTS  
In the subsequent section, we develop a method for 

designing state-constrained controllers for hysteresis 
control systems when the hysteresis parameters are 
unknown. Note that 𝜇%  and 𝜇!  are unknown, and 𝜇% 
satisfies the conditions presented in Section II. Assume that 
𝛽, 𝜒, 𝑟 are also unknown but satisfy 𝑟 ≤ 𝑟̅ and 𝛽 +𝒳 ≥ 𝛿 
for known 𝑟̅ > 0 and 𝛿 > 0. Then, it can be shown that 
|𝜍(𝑡)| ≤ 𝛿̅(𝑟̅, 𝛿), where 

𝛿̅(𝑟̅, 𝛿) = c
%

√/!"
, if	𝛿 < 1

%
√	/
, if	𝛿 ≥ 1.

   (7) 

A. Hysteresis Observer 
Suppose that 𝑣 = 𝐾𝑥 is a stabilizing controller for the 

hysteresis-free system  

𝑥̇ = 𝐴𝑥 + 𝐵𝑣.          (8) 

That is, 𝐴 + 𝐵𝐾	 is Hurwitz. However, utilizing 𝑢 = 𝐾𝑥 to 
stabilize the hysteresis system (5) is impractical due to the 
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influence of the unknown hysteresis state 𝜍 on the system. Our 
objective is to counteract the impact of 𝜍, a virtual state beyond 
the reach of feedback mechanisms. In [19], an innovative 
method is developed to estimate the virtual hysteresis state in 
which the parameters are known. Here, we extend the approach 
in [19] to design a hysteresis state estimator in the case that the 
hysteresis parameters are unknown. We estimate the hysteresis 
state and subsequently incorporate it into our controller design. 
While there are several estimation techniques in the literature 
on hysteresis, they focus on the case of 𝑟 = 1 and of known 
hysteresis parameters .  Unfortunately, limited results are 
available for the case of 𝑟 > 1  or unknown hysteresis 
parameters. In this subsection, we introduce a novel approach 
for estimating 𝜇!𝜍 in scenarios where 𝑟 can be larger than 1 and 
the hysteresis parameters remain unknown. 

We can conclude from (5) that 

(𝜇̂% + ∆𝜇%)𝐵𝑢 + 𝜇!𝐵𝜍 = 𝑥̇ − 𝐴𝑥  (9) 

Multiplying both sides of the equation (9) by 𝐵1, we easily 
derive that 

(𝜇̂% + ∆𝜇%)‖𝐵‖!𝑢 + 𝜇!‖𝐵‖!𝜍 = 𝐵1𝑥̇ − 𝐵1𝐴𝑥.       (10) 

Therefore, we can estimate 𝜇!𝜍 as follows: 

  𝜍̃(𝑡) = 2#3̇(6)'2#83(6)'9:$‖2‖%<(6&)
‖2‖%

.       (11) 

Nonetheless, practical implementation is challenged by the 
sensitivity of this estimation to measurement disturbances 
arising from the utilization of a differentiator, potentially 
amplifying noise and compromising control performance. To 
address this challenge, we can enhance the estimation as 
outlined below (assuming 𝛼 > 0 and noting |𝜍(𝑡)| ≤ 𝛿̅(𝑟̅, 𝛿)): 

𝑥i̇(𝑡) = −𝛼𝑥i(𝑡) + 𝛼𝐵1𝑥(𝑡),                                

𝜍̂(𝑡) = 𝑠𝑎𝑡 k=>2
#3(6)'3?(6)@'2#83(6)'9:$‖2‖%<(6&)

‖2‖%
, 𝛿̅(𝑟̅, 𝛿)l.  (12) 

where 

𝑠𝑎𝑡(ℎ, 𝛼) = n
𝛼, if	ℎ ≥ 𝛼													
ℎ, if − 𝛼 < ℎ < 𝛼

−𝛼, if	ℎ ≤ −𝛼.													
 

Here,  𝑥i is the estimation of 𝐵1𝑥 and then 𝛼(𝐵1𝑥 − 𝑥i) = 𝑥i̇ is 
the estimation of 𝐵𝑥̇. Note that here 𝜍̂ is the estimation of 𝜇!𝜍 
but not only the hysteresis state 𝜍. 

B. Design of Stabilizing Controllers 

In the following subsection, we will focus on designing 
controllers that stabilize the hysteresis system described by 
equation (5) without considering the state constraints. We 
define the estimation error as 𝑑 = 𝜇!𝜍 − 𝜍̂. As a result, 

𝑥̇ = 𝐴𝑥 + 𝐵^(𝜇̂% + ∆𝜇%)𝑢 + 𝜍̂` + 𝐵𝑑.      (13) 

Let   

𝑢 = %
	9:$
(𝑣 − 𝜍̂)                 (14) 

We have 

𝑥̇ = 𝐴𝑥 + 𝐵 p1 + ∆9$
	9:$
q 𝑣 + 𝐵𝑑r                   (15) 

where 𝑑r = 𝑑 − ∆9$
	9:$
𝜍̂ . Then, 𝑑r ∈ 𝐿![0, 𝑡B]  for any 𝑡B > 0 

because that 𝑑  and 𝜍̂  are bounded. We need to devise a 
controller to ensure that the 𝑑r  minimally impacts the 
controlled output 𝑧 = 𝐶𝑥. That is, we want to achieve the 
following 𝐿!-gain requirement: 

∫ 𝑧1(𝑡)𝑧(𝑡)𝑑𝑡6'
( < 𝛾! ∫ 𝑑r1(𝑡)𝑑r(𝑡)𝑑𝑡6'

( + 𝐿w(‖𝑥(0)‖),        
for all 𝑡B > 0,      (16) 

for a specified value of 𝛾 > 0 and a certain class 𝒦 function 
𝐿w. 

Lemma 1: There exists a control law 𝑣 = 𝐹𝑥 for system 
(15) such that the closed-loop system is asymptotically 
stable under 𝑑r = 0  and satisfies the 𝐿! -gain requirement 
(16), provided that a positive definite matrix 𝑋, a matrix 𝑀 
with appropriate dimensions, and a positive scalar 𝜅 satisfy 
the following LMI: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑋𝐴

# 	+ 𝐴𝑋 + 𝐵𝑀 +𝑀#𝐵# 𝑋𝐶# 𝐵 𝜅 $%
$&!
𝐵 𝑀#

∗ −𝐼 0 0 0
∗ ∗ −𝛾"𝐼 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ −𝜅 0
∗ ∗ ∗ ∗ −𝜅⎦

⎥
⎥
⎥
⎥
⎥
⎤

< 0;   

     (17) 

and, 𝑣 = 𝐹𝑥 = 𝑀𝑋'%𝑥 is such that 𝐴 + 𝐵𝐹 is Hurwitz and 
requirement (16) holds. 

Proof: Suppose that (17) holds. We have 

𝑋𝐴1 	+ 𝐴𝑋 + 𝐵𝑀 +𝑀1𝐵1 + 𝑋𝐶1𝐶𝑋  
+ %
C%
𝐵𝐵1 + 𝜌 9D%

9:$%
𝐵𝐵1 + %

E
𝑀1𝑀 < 0.         

Define 𝑃 = 𝑋'% and 𝜀 = %
F
. It can be demonstrated that (17) 

indicates 

𝐴1𝑃 + 𝑃𝐴 + 𝑃𝑀1𝐵1𝑃 + 𝑃𝐵𝑀𝑃 + 𝐶1𝐶   
+p %

C%
+ 	%

G
9D%

9:$%
q𝑃𝐵𝐵1𝑃 + 𝜀𝑃𝑀1𝑀𝑃 < 0.         (18) 

Let 𝑉H(𝑥) = 𝑥1𝑃𝑥. With 𝑣 = 𝐹𝑥 = 𝑀𝑃𝑥, we have 

𝑉̇I(𝑥) + 𝑧1𝑧 − 𝛾!𝑑r!           
= 2𝑥1𝑃𝑥̇ + 𝑧1𝑧 − 𝛾!𝑑r!         
= 2𝑥1𝑃 p𝐴𝑥 + 𝐵 p1 + ∆9$

	9:$
q 𝑣 + 𝐵𝑑rq + 𝑧1𝑧 − 𝛾!𝑑r!  

= 2𝑥1𝑃𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + 2𝑥1𝑃𝐵 p1 + ∆9$
	9:$
q 𝑣	  

+ %
C%
𝑥1𝑃𝐵𝐵1𝑃𝑥 − 𝛾!^𝑑r − 𝑑r∗`

!
        

			≤ 2𝑥1𝑃𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + %
C%
𝑥1𝑃𝐵𝐵1𝑃𝑥      

+2𝑥1𝑃𝐵𝑀𝑃𝑥 + 2 ∆9$
	9:$
𝑥1𝑃𝐵𝑀𝑃𝑥        

   ≤ 𝑥1(𝐴1𝑃 + 𝑃𝐴 + 𝑃𝐵𝑀𝑃 + 𝑃𝑀1𝐵1𝑃      
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+𝐶1𝐶 + p %
C%
+ %

G
9D%

	9:$%
q 𝑃𝐵𝐵1𝑃 + 𝜀𝑃𝑀1𝑀𝑃q𝑥      

  < 0, ∀𝑥 ∈ 𝒟\{0},       

where 

𝑑r∗ =
%
C%
𝐵1𝑃𝑥. 

Consequently, we deduce the validity of (16). Therefore, in 
accordance with (18), we acquire the following.  

(𝐴 + 𝐵𝐹)1𝑃 + 𝑃(𝐴 + 𝐵𝐹) + 𝐶1𝐶    
+p %

C%
+ %

G
9D%

	9:$%
q𝑃𝐵𝐵1𝑃 + 𝜀𝑃𝑀1𝑀𝑃 < 0.    

That is, 𝐴 + 𝐵𝐹  is Hurwitz because that (𝐶, 𝐴) is detectable. 
This completes the proof.                                              � 

Upon acquiring the feedback gain 𝐹 = 𝑀𝑋'% , the actual 
controller to hysteresis system (15) becomes 

         𝑢 = %
	9:$
(𝑣 − 𝜍̂) = %

9:$
𝐹𝑥 − %

9:$
𝜍̂       (19) 

where 𝜍̂ is obtained by (12). 

C. Design of State-Constrained Controllers 

In this subsection, we investigate the development of state-
constrained controllers tailored for managing the hysteresis 
system (5), in which the parameters governing hysteresis remain 
unknown. 

Define 

𝑉(𝑥) = 𝑥1𝑃𝑥 p1 + ∑ G(
I(3*K(

-
,L% q,   (20) 

where 𝑃 = 𝑋'% . The term ∑ G(
I(3*K(

-
,L%  is added to ensure that 

𝑉(𝑥) → ∞  as 𝑥 → 𝜕𝒟 . Ensuring that the time derivative of 
𝑉(𝑥)is negative will prevent the state trajectory from crossing 
the boundary and entering the unsafe area. Let ∆𝑉(𝑥) = MN(3)

M3
. 

We have 

∆𝑉(𝑥) = 2 p1 + ∑ G(
I(3*K(

-
,L% q 𝑥1𝑃 − 𝑥1𝑃𝑥∑ G(

(I(3*K()%
𝑆,

-
,L% .     

Theorem 1: Consider the system (1). Suppose that LMI (17) 
is feasible. A feedback law 𝑣 = 𝑝(𝑥)  exists such that the 
closed-loop hysteresis system is stable with respect to 𝒟 when 
𝑑r = 0 and meets the 𝐿!-gain requirement (16), if there is an 𝜀 >
0 such that 

∆𝑉(𝑥)𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + k %
OC%

+ %
OG
p9D

%

	9:$%
− 1ql (∆𝑉(𝑥)𝐵)! < 0   

∀𝑥 ∈ 𝒟\{0}.                    (21) 

Proof: Under (21), we have 

𝑉̇(𝑥) + 𝑧1𝑧 − 𝛾!𝑑r!      
= ∆𝑉(𝑥)𝑥̇ + 𝑧1𝑧 − 𝛾!𝑑r!              
= ∆𝑉(𝑥) p𝐴𝑥 + 𝐵 p1 + ∆9$

	9:$
q 𝑣 + 𝐵𝑑rq + 𝑧1𝑧 − 𝛾!𝑑r!           

= ∆𝑉(𝑥)𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + ∆𝑉(𝑥)𝐵 p1 + ∆9$
	9:$
q𝑣          

+ %
OC%

(∆𝑉(𝑥)𝐵)! − 𝛾!^𝑑r − 𝑑r∗`
!
      

≤ ∆𝑉(𝑥)𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + %
OC%

(∆𝑉(𝑥)𝐵)!           

+∆𝑉(𝑥)𝐵 p1 + ∆9$
	9:$
q 𝑣        

≤ ∆𝑉(𝑥)𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + %
OC%

(∆𝑉(𝑥)𝐵)!           

+∆𝑉(𝑥)𝐵𝑣 + %
OG

9D%

	9:$%
(∆𝑉(𝑥)𝐵)! + 𝜀𝑣1𝑣    

= ∆𝑉(𝑥)𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 +p %
OC%

+ %
OG

9D%

	9:$%
q (∆𝑉(𝑥)𝐵)!          

− %
OG
(∆𝑉(𝑥)𝐵)! + 𝜀(𝑣 − 𝑣∗)1(𝑣 − 𝑣∗)   

≤ ∆𝑉(𝑥)𝐴𝑥 + 𝑥1𝐶1𝐶𝑥 + k %
OC%

+ %
OG
p9D

%

	9:$%
− 1ql (∆𝑉(𝑥)𝐵)!  

< 0, ∀𝑥 ∈ 𝒟\{0},              

where the worst-case disturbance is 

𝑑r∗ =
%
!C%

∆𝑉(𝑥)𝐵   (22) 

and the optimal controller is  

𝑣 = 𝑣∗ = 𝑝(𝑥) = − %
!G
∆𝑉(𝑥)𝐵.    (23) 

Then, according to the feedback law 𝑣 = 𝑝(𝑥), we obtain 

𝑉̇(𝑥) < −𝑧1𝑧 + 𝛾!𝑑r!, ∀𝑥 ∈ 𝒟\{0}.      (24) 

Based on (24), it is evident that (16) holds. Similar to the 
proof in [19], since 𝑑r  is bounded, equation (24) indicates 
that, throughout the state trajectory of 𝑥̇ = 𝐴𝑥 + 𝐵 p1 +
∆9$
	9:$
q 𝑝(𝑥) + 𝐵𝑑r with the initial condition 𝑥(0) ∈ 𝒟\{0}, the 

function 𝑉(𝑥)  remains bounded. Consequently, the state 
trajectory 𝑥(𝑡) is restricted from crossing the boundary of 
𝒟 , due to 𝑉(𝑥) → ∞  as 𝑥 → 𝜕𝒟 . When 𝑑r = 0  and 𝑥 ∈
𝒟\{0}, 𝑉̇(𝑥) < −𝑧1𝑧, indicating that the system 𝑥̇ = 𝐴𝑥 +
𝐵 p1 + ∆9$

	9:$
q 𝑝(𝑥)  is stable with respect to the 𝒟 . This 

concludes the proof.                                         � 

 It is important to emphasize that the actual control signal 
to the hysteresis system (4) is  

      𝑢 = %
	9:$
(𝑣 − 𝜍̂) = %

9:$
𝑝(𝑥) − %

9:$
𝜍̂.         (25) 

where 𝜍̂ is obtained by (12) and 𝑝(𝑥) is defined in (23). 

IV. NUMERICAL EXAMPLE 

To provide additional validation of the method’s 
effectiveness in practical scenarios, we simulate the 
approach within a piezo-positioning mechanical system 
affected by hysteresis nonlinearity, as described in (1) and 
(2) and considered in [8]. The accompanying model is 
described as follows: 

  𝑴𝓎̈(𝑡) + 𝑫𝓎̇(𝑡) + 𝑭𝓎(𝑡) = 𝐻(𝑢)	, 𝑣 = 𝐻(𝑢),      (26) 

where 𝓎(𝑡) , 𝓎̇(𝑡)  and 𝓎̈(𝑡)  correspond to the system's 
position, velocity, and acceleration, respectively, while 𝑢 
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represents the voltage signal applied to the piezo-positioning 
mechanism [19]. Additionally, 𝑴, 𝑫 and 𝑭 denote the mass, 
damping coefficient, and stiffness coefficient, respectively. As 
in [19], we define 𝑥%(𝑡) = 𝓎(𝑡) and 𝑥!(𝑡) = 𝓎̇(𝑡) , then by 
selecting the state variables 𝑥(𝑡) = [𝑥%(𝑡) 𝑥!(𝑡)]1 ,  we get 
the following state space model [8], 

�𝑥̇%
(𝑡)

𝑥̇!(𝑡)
� = �

0 1
− 𝑭
𝑴

− 𝑫
𝑴
� �𝑥%

(𝑡)
𝑥!(𝑡)

� + �
0
%
𝑴
� 𝐻(𝑢).	        (27) 

Here the actual parameters are chosen as 𝑴 = 1	𝑘𝑔 , 𝑫 =
0.15	𝑁𝑠/𝑚 and 𝑭 = 1	𝑁/𝑚 [8]. Moreover, for the simulation 
purpose, the unknown hysteresis parameters are provided as 
𝛽 = 1, 𝜒 = 0.5, 𝑟 = 2, 𝜇̅ = 0.3  and 𝜇̂% = 0.55  and the 
remaining system parameter as 𝐶 = [1	0] . To showcase the 
efficacy of the achieved outcomes, we will develop state-
constrained controllers for the hysteresis system (27) with 
unknown hysteresis parameters. The state constraint is (the 
same as set in [19]): 

              									𝑥(𝑡) ∈ 𝒟 ≡ 𝒟% ∩ 𝒟! ∩ 𝒟S,                       (28)  

where 𝒟 ≡ {𝑥 ∈ 𝑅S|𝑆,𝑥 + 𝑐, > 0, 𝑖 = 1,2,3}  with 𝑆% =
[1 3], 𝑆! = [1 −1], 𝑆S = [−3 −1] , 𝑐% = 2, 𝑐! = 2, 𝑐S =
10 . In order to achieve the desired results, the following 
parameters have been chosen: 𝛼 = 1000, 𝜀, = 0.001, 𝛾 = 1 
and 𝜅 = %

G
= 1.6.	Solving LMI (17) results in the following 

solution:  

𝑃 = �2.7954 0.7450
0.7450 2.7789�. 

In light of this,  

𝐹 = [−1.1857	 − 4.4832]. 

 
Fig. 1. State behavior of the state-constrained hysteresis 

system (27)-(25) under different initial conditions 

It can be verified that the condition in Theorem 1 holds. Fig. 
1 depicts the state trajectories of the hysteresis system (27) 
under the control of (25), starting with several initial states in 
𝒟 that are close to 𝜕𝒟. Clearly, every state trajectory converges 
towards the origin while satisfying the state constraint (28). For 
the initial state 𝑥(0) = [1.95 3.8]1 , Fig. 2 depicts the state 
and input response of the closed-loop hysteresis system and the 
estimation error of the hysteresis state respectively.  

 
(a) State response 

 
(b) Control response 

 
(c) Estimation error 

Fig. 2. Responses of the closed-loop hysteresis system 

For comparisons, with different values of 𝜅, the state 
trajectories of the hysteresis system (27) with controller (25), 
controller (19), and without control are depicted in Fig. 3. 
The blue solid curves in Fig. 3 illustrate the state trajectories 
of the system (27) controlled by (25) that reach the origin 
and satisfy the state constraint (28). In this situation, the 
trajectories might approach 𝜕𝒟  closely but never breach 
into the unsafe region. The red dashed curves in Fig. 3 
illustrate the state trajectories of the system (27) controlled 
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by (19) that reach the origin but do not satisfy the state 
constraint (28). However, the green dashed curve in Fig. 3 
makes it evident that the open-loop system's state trajectories 
cross through unsafe zones and violate the condition in (28). 
From Fig. 3, it is obvious that all trajectories are kept in the safe 
region when the state-constrained controller (25) is used and 
that no violations of the state-constrained law (28); however, in 
both the open- and the closed-loop system without considering 
the state constraints, trajectories breach into the unsafe region, 
which demonstrates the applicability of the proposed state-
constrained controller design. 

   
Fig. 3. State trajectories of the hysteresis system under closed- 

and open-loop control 

V. CONCLUSIONS 
Newly proposed state-constrained stabilizing control 

strategies have been introduced for a specific category of Bouc-
Wen hysteresis control systems with unknown hysteresis 
parameters. New hysteresis estimators have been developed to 
estimate the unknown hysteresis state. State-constrained 
stabilizing controllers can be derived through the solution of 
LMIs and the incorporation of barrier functions.  Ultimately, 
the efficacy of the suggested controller has been showcased via 
a numerical illustration. In the future, the suggested method can 
be expanded to accommodate time-varying hysteresis 
parameters. Should the parameters shift gradually, the proposed 
method can be applied with certain adjustments. However, in 
cases of rapid parameter changes, accurately estimating the 
hysteresis state will pose a significant challenge. 
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