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Abstract— This paper investigates the problem of maximizing
social power for a group of agents, who participate in multiple
meetings described by independent Friedkin-Johnsen models.
A strategic game is obtained, in which the action of each
agent (or player) is her stubbornness over all the meetings,
and the payoff is her social power on average. It is proved
that, for all but some strategy profiles on the boundary of the
feasible action set, each agent’s best response is the solution
of a convex optimization problem. Furthermore, even with the
non-convexity on boundary profiles, if the underlying networks
are given by a fixed complete graph, the game has a unique
Nash equilibrium. For this case, the best response of each agent
is analytically characterized, and is achieved in finite time by
a proposed algorithm.

I. INTRODUCTION

A convenient way to represent complex opinion dynamics
processes is to assume that a group of agents interact with
each other through meetings (e.g. face-to-face) and to model
the opinion evolution during each such meeting through
some multiagent opinion forming dynamical models like
those of [6], [10], [14]. The result of these opinion form-
ing processes at different meetings can then be combined
together in different ways. One of the possible ways to do
this combination makes use of a logic matrix to express the
interdependence among the topics of the discussions going
on at the different meetings, and combines it with the agents’
interaction matrix in a tensor product fashion, see [11], [19].
Another is to consider the meetings as sequential, and to use
a two-time-scale framework (a fast time scale for the single
meeting dynamics, and a longer one for the sequence of
meetings), see [17], [15], [24], [25], [26], [3]. In these two-
time-scale models, the linking of consecutive meetings can
be established according to different criteria. For example, in
[15], the opinion evolution in each meeting is described by
a DeGroot model, and in the sequence of DeGroot models
the “self-appraisal” of the agents (i.e, the diagonal part of
the interaction matrix) is updated. This mechanism is also
applied to the Friedkin-Johnsen (FJ) model in [17], [24].
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Alternatively, a concatenation rule is proposed in [25], [26],
[3], in which the final opinions of each meeting become
the initial opinions of the next meeting, and an FJ model is
used for every meeting. A concrete application of the latter
mechanism is to model the sequence of meetings occurring
at the United Nations climate change conferences, see [3].

In many situations where opinion evolution takes place,
and in particular in the discussion meeting setting we con-
sider in this paper, it is natural to consider a game theoretical
formulation in which, rather than passively observing the
opinion evolution, the agents take actions to “win” the
discussion, i.e., to impose their opinions on the other meeting
participants. For instance, in the aforementioned UN climate
conferences, the opinion forming process is in reality a
negotiation process, in which each country tries to impose
its own point of view on the other nations.

Since the opinion evolution itself encodes the impact of
each agent on the whole group, an agent can try to choose
an action strategically so as to maximize its utility. When the
utility is based on the opinions themselves, many approaches
have already been proposed in the literature, because this
approach allows to view classic opinion dynamics models as
best-response of strategic games [13], [4], [12], [8]. Related
examples include [7], where two competing camps aim to
drive the group opinions closer to their own stances, by
allocating the resource put on each agent to change the
associated edge weight in a two-stage FJ model. A similar
problem is considered in [1], but for a single FJ model.

In [27], [2], the authors take a different approach, and
consider as payoff each agent’s “social power” accumulated
through the concatenated FJ model [26]. Social power here
refers to the influence of an agent on the final opinion
outcome, and is defined as the column average of the solution
matrix of the associated FJ model [17], [24]. The concept is
strongly related to the centrality of an agent in the opinion
dynamics process. The action of an agent in the game is the
amount of stubbornness in each of the individual FJ models
that form the concatenation. In an FJ model, in fact, the
stubbornness profile of the agents influences the distribution
of final social powers, hence an allocation of stubbornness
that maximizes the social power in the concatenation of
meetings can be sought.

In reality, for a complex negotiation process, the sequential
meeting structure used in [27], [2] is just one of the possible
ways to break the discussion into manageable steps. Another
common structure is to have meetings that are disjoint (e.g.
held in parallel), with each meeting discussing a specific
issue, and with opinion outcomes on the different issues that
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are eventually assembled together in some way. An example
is again given by the climate talks: every year several satellite
meetings on different aspects of climate actions are arranged,
whose resolutions constitute the basis for discussion at the
annual plenary meeting (the so-called COP conference, see
[3]). Taking this scenario into consideration, in this paper,
we study the setting that a group of agents interacts in
multiple disjoint meetings, with each meeting represented by
an independent FJ model. The agents aim to maximize their
average social power over the set of meetings by allocating
a given budget of stubbornness in the FJ models. A strategic
game is generated, with the utility of each player as her
average social power over the FJ discussions.

The strategic game studied in this paper is characterized by
several properties, which could be proved rigorously. First,
for a single meeting (i.e., a single FJ model), the best strategy
of each agent is to increase its stubbornness as much as
possible (Theorem 1). Secondly, for multiple meetings, the
cost function of each agent is convex over the feasible action
set except for some boundary points (Proposition 1), which
guarantees the existence of an Nash equilibrium (NE) in
the social power game under the condition that all agents
have positive stubbornness at each meeting (Theorem 2).
If the underlying networks for the different FJ models all
correspond to the same fixed graph, a NE can always be that
all the agents allocate their budgets of stubbornness evenly
over all the meetings (Theorem 3). Furthermore, if the fixed
graph is fully connected and with uniform weights, even if
the cost functions are non-convex at some boundary points,
the aforementioned NE is unique for the game (Theorems 4
and 5). At last, for the fixed complete graph case, the best-
response of each agent is characterized (Theorem 6), with the
actions of all the other agents fixed. An algorithm is proposed
to achieve the best-response in finite time (Algorithm 1).

While the idea of considering social power as utility
follows from that of [27], the different setting investigated in
this paper results into a different optimal policy for the social
power game. In fact, keeping the FJ meetings independent
(rather than concatenated) implies that the main feature of
the solution of [27], namely the presence of an early mover
advantage, no longer exists in the present social power game.

The paper is organized as follows: Section II gives some
preliminary knowledge; the problem of interest is stated in
Section III, while the main results are reported in Section IV.
All the proofs are omitted for lack of space and will appear
in an extended journal version of this paper.
Notations: All vectors are real column vectors and are
denoted by bold lowercase letters x,y, . . . The i-th entry of a
vector x is denoted by [x]i or, if no confusion arises, xi. The
symbol diag(x) represents the square matrix with diagonal
entries equal to the entries of x and the others equal to 0.
Matrices are denoted by the capital letters such as A,B, . . . ,
of entries Aij or [A]ij . The identity matrix is denoted by
In, with dimension sometimes omitted, depending on the
context. The n-order vector and matrix with all entries being
0 or 1 are denoted 0n or 1n, respectively with the dimensions
omitted if there is no confusion. Let ei be the vector in

which the ith entry is 1 and all the others are 0. We use
[n] to represent the set {1, . . . , n}. Given a set C, we use
|C| to denote its cardinality. For a finite set of vectors
ci, i ∈ V , use (ci)i∈V to denote (c⊤1 , . . . , c

⊤
|V|)

⊤; for finitely
many vector sets Ci, i ∈ V , their product is denoted by
Πi∈VCi or (Ci)i∈V (with the subscript sometimes omitted),
i.e., (Ci) = {(ci) : ci ∈ Ci}. Given two square matrices
A,B ∈ Rn×n, A ⪰ B means that A − B is positive semi-
definite; A ≥ B means that Aij ≥ Bij for all i, j ∈ [n];
A is called substochastic if A ≥ 0 and 1 ≥ A1, and if the
equality holds, A is called stochastic. Given a real number
x, let ⌊x⌋ be the nearest integer that is no larger than x.

II. PRELIMINARIES

A. Strategic games

The following definitions are from [18].

Definition 1 (Strategic game) Given

• a finite set of players V ,
• an action set Ai ∈ RM for each i ∈ V , and
• a utility function ui : A 7→ R for each i ∈ V , with
A := Πj∈VAj ,

then the tuple ⟨V,A, (ui)⟩ is called a strategic game.

Any a = (ai) ∈ A is called an action profile, for
which each ai is an action. Given i ∈ V , we use a−i =
(aj)j∈V\{i} to denote the collection of actions of all agents
but i. With a slight abuse of notation, the utility function
ui(a) is sometimes denoted by ui(ai,a−i) to emphasize its
dependency on ai.

Let u(a) = (u1(a), . . . , u|V|(a))
⊤ be the vector of all

utilities w.r.t. the profile a. If the utility functions ui are
all differentiable, the pseudo-gradient mapping of the game
⟨V,A, (ui)⟩ is defined as ∇au(·) : RM |V| 7→ RM |V|, with

∇au(ā) = (∇ai
ui(āi, ā−i))i∈V , ∀ā ∈ A.

In a strategic game, one important concept is that of NE,
which is a special action profile for which no player has any
motivation to change its strategy.

Definition 2 (Nash equilibrium) Given a strategic game
⟨V,A, (ui)⟩, a profile a∗ = (a∗i ) is an NE if a∗i =
argmaxai∈Ai

ui(ai,a
∗
−i).

The following definitions come from [23].
Given a mapping T : Rn → Rn defined on a convex set

Ω, it is called monotone if ⟨Tx−Ty,x−y⟩ ≥ 0,∀x,y ∈ Ω,
and (σ-)strongly monotone if for some σ > 0, it holds

⟨Tx− Ty,x− y⟩ ≥ σ∥x− y∥2, ∀x,y ∈ Ω.

Given a continuously differentiable function f : Rn → R
defined on a convex set Ω, it is called convex if its gradient
operator ∇f is monotone on Ω, and σ-strongly convex is
∇f is σ-strongly monotone on Ω.
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B. FJ model

The FJ model is a DeGroot-like model for opinion dynam-
ics in which some agents behave stubbornly, in the sense that
they defend their positions while discussing with the other
agents [10]. If n agents participate to a discussion, the FJ
model has the following structure:

y(t+ 1) = (I −Θ)Wy(t) + Θy(0), t = 0, 1, . . . (1)

where y is the n-dimensional opinion vector, W is a row-
stochastic matrix, and Θ = diag(θ1, . . . , θn), with θi ∈
[0, 1] representing the stubbornness of agent i. Stubbornness
here means attachment of an agent to its own opinion,
represented by the initial condition y(0) at the beginning
of the discussion (θi = 0 means agent i is not stubborn,
θi = 1 means a totally stubborn agent).

Let GW be the graph associated to W in the FJ model.

Lemma 1 [26] Assume θi ∈ [0, 1] for all i = 1, . . . , n, and
θi > 0 for at least one i. If GW is strongly connected, then
(a) (I −Θ)W is Schur stable, i.e. ρ((I −Θ)W ) < 1,
(b) The matrix V = (I − (I −Θ)W )−1Θ is stochastic,
(c) y(∞) = limt→+∞ y(t) = V y(0).

The matrix V has the following special structure [26].

Lemma 2 Suppose that all the conditions of Lemma 1 are
satisfied. If only the first u < n agents are stubborn (i.e.,
θi > 0 for i = 1, . . . , u, and θi = 0 for i = u + 1, . . . , n),
then V =

[
R 0

]
, where R is an n × u matrix of all

nonzero entries.

III. PROBLEM FORMULATION

Consider M independent discussions (or meetings), with
the same group of participants, described by an agent set
V = [n]. For each of the discussions, say the mth discussion,
the agents interact with their neighbors over a fixed graph
Gm = (V, Em,Wm), with Wm = [wij,m]i,j∈V ∈ Rn×n

≥0 the
associated stochastic weight matrix, i.e., (j, i) ∈ Em if and
only if wij,m > 0. It’s possible that Gm varies for m ∈
[M ]. The opinions of all agents are collected in a vector
xm(t) = [x1,m(t), x2,m(t), . . . , xn,m(t)]⊤, with t as the time
slot in the mth discussion. Based on the interactions, each
agent changes his/her own opinion, and the overall opinion
evolution is described by a FJ model, that is,

xm(t+ 1) = (I −Θm)Wmxm(t) + Θmxm(0),

where Θm = diag(θ1,m, θ2,m, . . . , θn,m) represents the
stubbornness of each agent to their initial opinions xm(0),
with θi,m ∈ [0, 1] for all i ∈ V and m ∈ [M ]. The following
assumption is made throughout the paper, and is also widely
used in literature [6], [20], [21].

Assumption 1 For all m ∈ [M ], the graph Gm is strongly
connected, with each node having a self loop, i.e., w :=
min i∈V

m∈[M ]
wii,m > 0.

Under Assumption 1, the opinion vector of each discussion
m converges. The solution is written as

xm(∞) := lim
t→∞

xm(t) = Pmxm(0).

If there exists some θi,m > 0, Lemma 1 gives

Pm = (I − (I −Θm)Wm)−1Θm, (2)

Otherwise, the corresponding FJ model degrades to the
DeGroot model, which gives Pm = 1c⊤m, with cm as the
normalized left eigenvector corresponding to the eigenvalue 1
of the weight matrix Wm. For both cases, Pm is a stochastic
matrix that represents the influence of agents’ initial opinions
on the group’s final opinions, and encodes the social power
of each agent [15], [24]. In particular, in this paper we follow
the definition of social power in [24]. Given an agent i ∈ V ,
its social power in the mth discussion is defined as

spi,m(θθθi, θθθ−i) =
1

n
1⊤Pmei. (3)

We also assume that the agents can decide how much
stubbornness to assign to each of the FJ models, in order
to obtain the highest total social power over all the M
discussions. To avoid trivial solutions, we assume that the
total stubbornness of each agent i is upper bounded by a
constant Ki ∈ (0,M), i.e.,

∑M
m=1 θi,m ≤ Ki. More in detail,

the following strategic game is investigated:
• Players: all the agents are involved in all the M

discussions, i.e., V = [n] for all m ∈ [M ];
• Actions: for each agent i ∈ V , the feasible set of its

actions is
Ai = {θθθi = (θi,1, θi,2, . . . , θi,M )⊤ s.t.

M∑
m=1

θi,m ≤ Ki and θi,m ∈ [0, 1],∀m ∈ [M ]}.

• Utility functions: the utility of each agent i ∈ V is the
corresponding total social power, i.e.,

ui(θθθi, θθθ−i) =

M∑
m=1

spi,m(θθθi, θθθ−i).

The strategic game ⟨V,A, (ui)⟩ is called a social power
game.

Problems of interest: For the social power game, we are
interested in the existence and the location of the NE.
Another related problem is to understand the best response
of each agent i, that is, given the actions of the other agents,
how should agent i maximizes his/her total social power,
by carefully allocating the limited resource of stubbornness?
Written in a mathematical form, the following optimization
problem needs to be solved

Minimize
θθθi

−
M∑

m=1

spi,m(θθθi, θθθ−i)

s.t.
M∑

m=1

θi,m ≤ Ki,

0 ≤ θi,m ≤ 1, ∀m ∈ [M ].

(4)
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Here θθθ−i is fixed, and spi,m is a function of θθθi, or more
specifically, θi,m.

IV. MAIN RESULTS

In this section, at first we deal with the social power
optimization problem (4). Then the results are applied to
investigate the properties of NE for the social power game
⟨V,A, (ui)⟩.

A. Single meeting case

Before going to more general cases, consider the simplest
case of M = 1. The straightforward intuition is that more
stubbornness will result in a higher social power. The intu-
ition is stated in the following Theorem 1 whose proof (as
for all other results below) is omitted for lack of space.

For simplicity of notation, we omit m in the subscripts,
and use θi instead of θθθi to indicate that the action of agent
i is a scalar.

Theorem 1 Consider the social power optimization problem
(4) with M = 1. Let Assumption 1 hold. If there exists j ̸= i
such that θj > 0, the solution to the problem (4) is θi = Ki;
otherwise any θi ∈ (0,Ki] is the solution of (4).

Remark 1 From Theorem 1, it is easy to see that the
social power game ⟨V,A, (ui)⟩ has a unique NE, i.e., θθθ∗ =
(K1,K2, . . . ,Kn), regardless of the underlying network
topology.

B. Multiple meetings: general graphs

For M > 1, it is hard to give an analytical solution to
the problem (4). However, it can be shown to be a convex
optimization problem, as stated in the following proposition.

Proposition 1 Consider the social power optimization prob-
lem (4) with M > 1. Let Assumption 1 hold. If for all
m ∈ [M ], there exists j ̸= i such that θj,m > 0, then the
cost function −

∑M
m=1 spi,m(θθθi, θθθ−i) is strongly convex in

the argument θθθi ∈ [0, 1]M .

TFrom Proposition 1, the social power game becomes
an n-player convex game [22] if the following assumption
holds.

Assumption 2 There exists δ ∈ (0, 1) such that for all m ∈
[M ], it holds θi,m ≥ δ.

Assumption 2 implies that for each meeting, all agents
stubbornly support their own opinions.

Under Assumption 2, the social power game needs to be
considered on the constrained action set Aδ = (Aδ

i ), with

Aδ
i = [δ, 1]M ∩ Ai.

According to Theorem 1 in [22], the existence of the NE can
be obtained, as the following theorem shows.

Theorem 2 Consider the social power game ⟨V,Aδ, (ui)⟩.
Under Assumption 1, an NE exists for the game.

In general, it is not clear if an NE exists for the social
power game ⟨V,A, (ui)⟩, even if the action set A can be
approached by Aδ as δ → 0. This is because the game
is no longer a convex game, as implied by the following
proposition.

Proposition 2 Consider a profile θθθ0 ∈ A such that θ0i,m0
=

0,∀i ∈ V for a given m0 ∈ [M ]. For any i ∈ V , the cost
function −ui(·, θθθ0−i) is not convex at θθθ0i .

Even though convexity is missing, if the underlying graph
is fixed, i.e., W1 = · · · = WM , an NE for the game
⟨V,A, (ui)⟩ can be that each agent allocates her stubbornness
evenly over all the meetings.

Theorem 3 Consider the social power game ⟨V,A, (ui)⟩
with a fixed graph G for all m ∈ [M ]. Let Assumption 1
hold. An NE is θθθ∗ = (θθθ∗i ), with θθθ∗i = Ki

M 1 for all i ∈ V .

Remark 2 From Theorem 3, it is easy to see that if δ <
mini∈V

Ki

M , θθθ∗ is also an NE of the social power game
⟨V,Aδ, (ui)⟩ over a fixed graph.

Given a strategic game, we are also interested in whether
the NE is unique or not, if it exists. For the social power
game ⟨V,A, (ui)⟩ with general and heterogeneous underly-
ing topologies, the answer should be no, as indicated by the
following example.

Example 1 Consider a 2-player game ⟨V,A, (ui)⟩ with V =
{1, 2}. Let K1 = 3.4,K2 = 0.45 and M = 5. The weight
matrices are

W1 = W2 = W3 =

(
0.5 0.5
0.5 0.5

)
,

W4 = W5 =

(
0.95 0.05
0.95 0.05

)
.

It can be verified that the two profiles θθθ∗ and θ̄θθ
∗

are both
NEs, where

θθθ∗1 = (1, 1, 1, 0.2, 0.2)⊤, θθθ∗2 = (0.15, 0.15, 0.15, 0, 0)⊤;

θ̄θθ
∗
1 = (1, 1, 1, 0.19, 0.21)⊤, θ̄θθ

∗
2 = (0.15, 0.15, 0.15, 0, 0)⊤.

In fact, all the profiles in the convex hull of θθθ∗ and θ̄θθ
∗

are
NEs.

Remark 3 For the NEs shown in Example 1, the agent 2
always chooses to be non-stubborn for the last two meetings.
Intuitively, this is because the agent 1 has high influence in
the social networks of the meetings 4− 5, which makes the
agent 2 avoid competing for social power with her in the two
meetings. Instead, the agent 2 prefer to being more stubborn
in the meetings 1− 3. This tendency of the agent 2, in turn,
gives the agent 1 more “freedom” to act in the meetings
4− 5, and results in multiple NEs.

The theoretical analysis of NE for the social power game
⟨V,A, (ui)⟩ in general cases is challenging, as we are not
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able to use the standard results for convex games [22], [23],
[9]. However, as will be shown in the next subsection, if the
interaction network for each meeting (i.e., for each FJ model)
is a fixed complete graph, the existence and uniqueness of
NE can be fully addressed.

C. Multiple meetings: complete graph

Let the underlying graphs for all the meetings be a fixed
complete graph, i.e., Wm = 1

n11
⊤,∀m ∈ [M ]. For this case,

the existence of NE of the social power game ⟨V,A, (ui)⟩
has been given in the last subsection. In the following, at
first, we will consider the constrained social power game
⟨V,Aδ, (ui)⟩ and show the uniqueness of NE.

Consider the pseudo-gradient ∇θθθu(θθθ) of the constrained
social power game ⟨V,Aδ, (ui)⟩. It is easy to see that

∇θθθi
ui(θθθ) = (

∂spi,1(θθθ)

∂θi,1
, . . . ,

∂spi,M (θθθ)

∂θi,M
)⊤, ∀i ∈ V.

The following lemma can be obtained.

Lemma 3 For the constrained social power game
⟨V,Aδ, (ui)⟩ with Wm = 1

n11
⊤,∀m ∈ [M ], the opposite

pseudo-gradient mapping -∇θθθu is σ-strongly monotone on
Aδ for some σ > 0.

With the strong monotonicity of the pseudo-gradient map-
ping, we are able to apply the standard results for convex
games [22], [23], [9] and immediately obtain the following
theorem.

Theorem 4 Consider the constrained social power game
⟨V,Aδ, (ui)⟩ with Wm = 1

n11
⊤,∀m ∈ [M ]. If δ <

mini∈V
Ki

M , a unique NE θθθ∗ = (θθθ∗i ) exists, with θθθ∗i =
Ki

M 1,∀i ∈ V .

Theorem 4 means that, if all agents need to stubbornly
support their own opinions at each meeting and the interac-
tion graphs are fully connected, the agents will add equal
weights to all the meetings on the unique NE of the game.

Now we turn to the original social power game
⟨V,A, (ui)⟩. Theorem 3 gives that the game adopts an NE
(Ki

M 1) if the underlying networks are a fixed complete graph.
Following the sensitivity analysis of variational inequalities
similar to that of [5], the NE can also be shown to be unique.

Theorem 5 Consider the social power game ⟨V,A, (ui)⟩
with Wm = 1

n11
⊤,∀m ∈ [M ]. A unique NE θθθ∗ = (θθθ∗i )

exists, with θθθ∗i = Ki

M 1,∀i ∈ V .

So far, the existence and uniqueness of NE has been
addressed. To achieve the NE, a best-response dynamics is
often used [22], [16]. For the social power game ⟨V,A, (ui)⟩
with Wm = 1

n11
⊤,∀m ∈ [M ], given the actions of the other

agents, the best response to each agent i is the solution of
the optimization problem Eq. (4), or more explicitly, of the

following problem

Minimize
θθθi

M∑
m=1

si,m
θi,m + si,m

s.t.
M∑

m=1

θi,m = Ki,

0 ≤ θi,m ≤ 1, ∀m ∈ [M ].

(5)

where si,m =
∑

j ̸=i θj,m, and the constraint
∑M

m=1 θi,m =
Ki is due to Theorem 1. To solve (5), we write down the
Lagrangian function and exploit the KKT conditions. The
following theorem is then obtained.

Theorem 6 Consider the social power optimization problem
(5) with si,m > 0 for all m ∈ [M ]. There exists a unique
partition of the set [M ], [M ] =M0 ∪M∗ ∪M1, such that

1) if m ∈M0, it holds c ≤ √si,m;
2) if m ∈M∗, it holds √si,m < c <

√
si,m + 1√

si,m
;

3) if m ∈M1, it holds √si,m + 1√
si,m
≤ c;

where c is defined as

c =

∑
m∈M∗

si,m +Ki −M1∑
m∈M∗

√
si,m

, (6)

with M1 = |M1|. Moreover, the optimization problem (5)
admits a unique solution θθθ∗ ∈ [0, 1]M , with

θ∗m =


0, if m ∈M0,

c
√
si,m − si,m, if m ∈M∗,

1, if m ∈M1.
(7)

Remark 4 Theorem 6 indicates that for a discussion event
m, when si,m is small enough, it will be optimal for agent
i to take θi,m ∈ (0, 1) instead of θi,m = 1. This might
be counter-intuitive. An interpretation is, when the total
stubbornness of the other agents is small in a discussion,
it is easy for agent i to obtain a high social power by
being mildly stubborn. Therefore, instead of investing a lot
of stubbornness resources at that discussion, it is better for
agent i to put more stubbornness into other discussions to
get more marginal social power increase.

Theorem 6 does not specify a clear form of M0,M1

and M∗. However, it can be used to design an algorithm
that achieves the accurate solution of the problem (5) in
finite time. To do this, first sort the agents in V along an
increasing order of √si,m + 1√

si,m
, say, i1, i2, . . . , iM , and

sort the agents in V along a decreasing order of √si,m, say,
i1, i2, . . . , iM . The algorithm is then written as Algorithm 1.

Remark 5 Due to the existence of θθθ∗, the outer loop (i.e.,
lines 4 − 14) of Algorithm 1 must stop in finite time. In
fact, for each m∗, the inner loop (i.e., lines 5 − 11) will
be executed for at most M −m∗ + 1 steps. Therefore, the
maximum number of executing times for the outer loop is

itmax =

⌊Ki⌋∑
m∗=0

(M −m∗ +1) = (M +1− ⌊Ki⌋
2

)(⌊Ki⌋+1).
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Algorithm 1 Best response algorithm for complete graph
Input: {si,m}, (im), (im),K
Output: θθθ∗ = (θ∗1 , θ

∗
2 , . . . , θ

∗
M )⊤

1: Initialization: M1 ← ∅,M0 ← ∅,M∗ ← V
2: m∗ ← 0,m∗ ← 0
3: Compute c as in Eq. (6)
4: while 1)-3) in Theorem 6 are not satisfied do
5: while m∗ +m∗ < M do
6: m∗ ← m∗ + 1
7: M0 ←M0 ∪ {im

∗}
8: if 1)-3) are satisfied then
9: Break

10: end if
11: end while
12: M1 ←M1 ∪ {im∗}, m∗ ← m∗ + 1
13: m∗ ← 0, M0 ← ∅
14: end while
15: M∗ ← V\(M0 ∪M1)
16: θθθ∗ is taken as in (7)

V. CONCLUSION

The paper investigates the problem of social power max-
imization for a group of agents in multiple meetings, each
represented by a FJ model. A social power game is proposed,
for which it is proved that the cost function of each agent is
convex over the feasible action set except for some boundary
points. The existence and uniqueness of NE is proved for the
case that the underlying networks are all a fixed complete
graph. Concerning future work, a natural follow-up ques-
tion is the following: For heterogeneous general underlying
network topologies, is there any condition to guarantee that
the game adopts a unique NE, and how does the network
topology affect the formation of NE?
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