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Abstract— Many industrial processes, computing devices,
and networks, such as traffic systems and power grids,
exhibit complex dynamics. The model capturing the true
dynamics may not be readily available for these systems.
Due to advanced sensing technologies, it is possible to
collect large amounts of real-time data. Leveraging this
data offers an opportunity to design data-driven control
without constructing an explicit model for the system. In this
paper, we derive data-dependent matrices from an ensemble
of input-state trajectories to parameterize the closed-loop
Linear Time-Invariant (LTI) system, accounting for exogenous
inputs. The stabilizing control law is designed in such a
way that it gets updated based on events, where an event
refers to the violation of certain performance conditions. The
results proposed are implemented on a computing system, in
particular demonstrating auto-scaling of web servers hosted
on a private cloud.
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I. INTRODUCTION

Many complex systems such as power grids [1], com-
puting systems [2], [3], asynchronous machine systems [4],
have exogenous inputs that cannot be manipulated, and
affect the system’s performance. In literature, researchers
have employed various strategies to design control laws for
systems with exogenous inputs. For instance, the authors
in [5] have designed appropriate feedback gains to nullify
the effect of the exogenous inputs, which involves designing
different gains, one for controlling the system and the other
for canceling the effect of exogenous input. In [1], the cost of
exogenous input is added to minimize the overall quadratic
cost function under optimal control formulation.

These approaches depend on having precise system mod-
els, typically derived from first principles or system iden-
tification methods. In many cases, like in biological or
computing systems, a model derived from first principles
may not be readily available. In other cases where models are
available, the system size and complexities may hinder using
the first principle-based models. For systems that generate a
rich amount of data, data-driven approaches for controller
design and implementation have gained significant traction.
This has found wide acceptance in the community, owing
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to the simplified procedure of designing high-performance
control systems without identifying a model [6].

An extension of this approach, for the case of linear
parameter varying (LPV) systems, is discussed in [7]. The
control of complex networks without the knowledge of the
network dynamics is studied in the data-driven framework
in [8] and [9]. Many data-driven formulations and control
design methods result in semi-definite programs using data-
dependent LMI conditions as in [10]. However, this article
does not consider systems with exogenous inputs under a
data-driven framework. In a recent work [11], a data-driven
LQR controller is designed, considering explicitly the effect
of exogenous inputs. This approach attenuates the effect of
exogenous inputs on the states and minimizes the net costs
associated with the control efforts and state deviations.

The popular approach for the digital implementation of
controllers is to update the control in a time-triggered or
periodic manner [12]. This approach is often conservative
and does not fully account for resource limitations. The
main objective is to determine how frequently the control
law needs to be executed to achieve the desired system
performance with judicious utilization of resources. Instead
of a periodic implementation, event-based control and com-
munication are the techniques employed to optimize resource
utilization, a topic that has been extensively explored within
the control systems community. The key idea behind event-
based strategies is to employ resources or implement changes
only when certain stability or performance conditions are
violated. [13].

Event-based control involves the continuous or periodic
evaluation of a condition known as the triggering condition.
The thresholding conditions are designed to capture unfore-
seen alterations in measurements, parameters crossing some
specified thresholds, or faults, leading the system towards
instability [14]. When these conditions are breached, feed-
back signals are prompted to be transmitted to the controller,
triggering the update of the control system. The authors in
[15] show that resource utilization is better in event-based
implementation.

This motivates us to generalize data-driven event-triggered
control techniques to be applicable to systems with ex-
ogenous inputs. Many real-world processes incorporate ex-
ogenous inputs as a fundamental part of the system. It
is crucial that the data acquisition phase and the closed-
loop operations remain unaffected by the presence of these
exogenous inputs. In this context, we present a data-driven
approach to design state-feedback event-triggered controllers
for stabilizable discrete-time linear systems, with exogenous
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inputs whose explicit model is unknown. The exogenous
input data is conscientiously considered both during data
acquisition and in the implementation phase. The main
contributions of this paper are as follows:

1) Relative thresholding-based event-triggered control is
designed for discrete-time linear systems with exoge-
nous inputs operating within a data-driven framework.

2) A data-driven controller is designed to accommo-
date exogenous inputs and performance specifications.
These constitute extensions of the results in [10] and
are crucial in designing a relative thresholding-based
event-triggered implementation.

3) We validate the results through an experimental setup:
a web-server system without a readily available model.

II. NOTATION AND PRELIMINARIES

A. Notation

The notation R denotes the set of real numbers. The
Euclidean vector norm or the induced matrix norm is rep-
resented by ∥ · ∥, depending on its argument. I refers to the
identity matrix with an appropriate dimension. Sn denotes
the set of all n×n real symmetric matrices.

B. Preliminaries

Definition 2.1 ([10]): Given a signal, z : Z ∈ Rp, a vec-
torized form of z in the restricted interval [k,k+ T ]∩Z is
denoted by z[k,k+T ] where k ∈ Z,T ∈ N. Furthermore, the
signal z[0,T−1] ∈ Rp is considered persistently exciting of
order L if the Hankel matrix associated with z[0,T−1],

Z0,L,T−L+1 =


z(0) z(1) . . . z(T −L)
z(1) z(2) . . . z(T −L+1)

...
...

. . .
...

z(L−1) z(L) . . . z(T −1)


has a full rank pL.

For a signal z to be persistently exciting of order L, it
must be sufficiently long with the number of samples T ≥
(p+1)L−1. The next section delves into concepts from the
literature used in deriving the results presented in this article.

C. Persistency of Excitation

Consider a discrete-time linear system of the form

x(k+1) = Ax(k)+Bu(k)+Ew(k) (1)

where, x(k) ∈ Rn denotes the state, u(k) ∈ Rm1 denotes the
control inputs and w(k) ∈Rm2 denotes the exogenous inputs
to the system. w(k) is assumed to be bounded, that is,

∥w(k)∥ ≤ γ∥x(k)∥, ∀ k ≥ 0, (2)

where γ > 0. This manuscript assumes that the system
matrices are unknown and that only the state and the input
measurements from open-loop experiments are available. It
is also assumed that the system is controllable and that the
values of x(·) and w(·) are known or can be predicted at each
time instant. Let {x(k)}k=T

k=0 denote the sequence of states
collected during an open-loop experiment from application

of input sequences {u(k)}k=T−1
k=0 and {w(k)}k=T−1

k=0 , where T
denotes the final time of the experiment.

Employing the structure of the Hankel matrix for input and
state data collected, we construct the following data matrices

U =
[
u(0) . . . u(T −1)

]
, W =

[
w(0) . . . w(T −1)

]
X− =

[
x(0) . . . x(T −1)

]
, X+ =

[
x(1) . . . x(T )

]
.

The notations mentioned above are used in the rest of this
paper. The results in [10] guarantees the rank condition

rank
[
X⊤
− U⊤ W⊤]⊤ = n+m1 +m2 (3)

under the assumption that {u(k)}k=T−1
k=0 and {w(k)}k=T−1

k=0
are persistently exciting input sequences. In the open-loop
experiment, T > (m1+m2+1)n+(m1+m2) is necessary for
the persistency of excitation to hold. The rank condition (3)
implies that a finite set of system trajectories can represent
a linear system’s whole set of trajectories.

D. Event-triggered Control

Event-triggered control is a control strategy that offers
the potential to reduce the communication and computation
load in networked control systems, thereby enhancing their
efficiency and responsiveness. It is a valuable approach in
scenarios where resource efficiency and reduced data trans-
mission are essential. At the same time, careful engineering
and analysis are required to ensure system stability and de-
sired performance. In event-triggered control, the triggering
condition is periodically checked, and upon violation, the
feedback signals are sent to the controller for update. Thus,
in event-triggered control, the control input is held constant
until the next event occurrence,

u(k) = Kx(ki), k ∈ [ki, ki+1) (4)

where ki and ki+1 are the event instants. The nature of control
update (4) induces a state measurement error

e(k) = x(ki)− x(k) (5)

where x(ki) is the last state instant of control update and
x(k) is current value of state. In this work, the relative
thresholding event condition is considered of the form

∥e(k)∥ ≤ σ∥x(k)∥ (6)

where σ > 0 is the threshold parameter.

III. PROBLEM FORMULATION

Consider the system (1) with state-feedback control law,

u(k) = Kx(k) (7)

where K is the feedback gain matrix. Now, the closed loop
system is given by,

x(k+1) = (A+BK)x(k)+Ew(k). (8)

In an event-triggered framework, the control signal is updated
whenever condition (6) is violated. Now, ∀ k ∈ [ki,ki+1), the
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closed-loop system (8) under event-triggered controller (4)
with state measurement error (5) is described by

x(k+1) = (A+BK)x(k)+BKe(k)+Ew(k). (9)

We formulate the data-driven event-triggered control problem
for discrete-time LTI systems with exogenous inputs. As
the matrices (A, B, E) are unknown, we derive a data-
based representation of the closed-loop system dynamics (9).
This representation is instrumental in formulating an event-
triggered control law. The goal is to ensure the stability and
optimal performance of the system under exogenous inputs.

IV. DATA-DRIVEN REPRESENTATION OF CLOSED-LOOP
SYSTEM

In this section, the equivalent data-driven representation of
the system (9) without state measurement errors is derived,
enabling the design of a data-driven stabilizing controller.

Lemma 1: The equivalent data-driven representation of
the system (8) is

x(k+1) = X+G1x(k)+X+Hw(k) (10)

where G1 and H are matrices satisfying[
I K⊤ 0
0 0 I

]⊤
=
[
X⊤
− U⊤ W⊤]⊤ [

G1 H
]
. (11)

Proof: The rank condition (3) implies that the matrix[
X⊤
− U⊤ W⊤]⊤ has full row rank and therefore there always

exist matrices G1 and H satisfying (11). System (8) can be
written as

x(k+1) =
[
A B E

][
I K⊤ 0

]⊤ x(k)

+
[
A B E

][
0 0 I

]⊤ w(k).

Using (11), the closed-loop system has the equivalent data-
driven representation:

x(k+1) =
[
A B E

][
X⊤
− U⊤ W⊤]⊤ G1x(k)

+
[
A B E

][
X⊤
− U⊤ W⊤]⊤ Hw(k).

Note that X+ =
[
A B E

][
X⊤
− U⊤ W⊤]⊤. Therefore,

x(k+1) = X+G1x(k)+X+Hw(k).
On similar lines as Lemma 1, the data-driven equivalent

representation of the closed-loop system with state measure-
ment errors (9) is arrived at as

x(k+1) = X+G1x(k)+X+G2e(k)+X+Hw(k) (12)

where G2 satisfies[
0 K⊤ 0

]⊤
=
[
X⊤
− U⊤ W⊤]⊤ G2. (13)

Next, we derive conditions under which the closed-loop
system (12) is exponentially stable. The problem of interest
here is to design an appropriate state-feedback control law
(4) to maintain system stability within an event-triggered
framework. After introducing the concepts of event-triggered
control and the equivalent data-driven representation of a
closed-loop system with state measurement errors, the next
section presents an optimization problem to determine the

suitable range for the thresholding parameter σ .
Optimizing thresholding parameters within event-triggered

feedback control is essential to balance control effectiveness
and resource efficiency. Notably, the triggering parameters
in the data-driven event-triggered scheme are predefined,
eliminating the need for repetitive experiments to optimize
this parameter, σ . This predefined setup ensures the stabil-
ity of the system (12) under the state-feedback controller
(4) meeting a given performance parameter λ and with a
bounding parameter γ of the exogenous input.

V. DATA-DRIVEN CONTROLLER DESIGN AND
EVENT-TRIGGERED IMPLEMENTATION

In the state-feedback design paradigm, it is assumed all the
inputs to the system are control inputs, which means that
the controller can manipulate them. However, in practical
scenarios, this may not always be the case, and some inputs
to the system may be from external sources that can neither
be disabled nor manipulated.

In this section, state-feedback gain K as in (7) is designed
for (10) in the presence of exogenous inputs and then
relative threshold parameter σ of (6) for event-triggered
implementation of the controller is calculated.

A. Computation of State-feedback Gain

Theorem 1: Let rank condition (3) hold. For a given γ , and
performance parameter λ , let Q1 be any matrix satisfying

(1−λ )X−Q1 0 Q⊤
1 X⊤

+ X−Q1
0 qIn Q⊤

2 X⊤
+ 0

X+Q1 X+Q2 X−Q1 0
X−Q1 0 0 q

γ
In

⪰ 0 (14)

q > 0, WQ1 = 0,
[
X⊤ U⊤ W⊤]⊤ Q2 =

[
0 0 qI

]⊤
.

Then, the stabilizing state-feedback gain for (10) is given by

K =UQ1(X−Q1)
−1. (15)

Proof: Consider a candidate Lyapunov function V :
Rn → R defined by V (x(k)) = x⊤(k)Px(k), P = P⊤ ≻ 0.
To prove stability of the system (10), we need P ≻ 0 and
the evolution of the Lyapunov function satisfies V (k+1)−
V (k)≤−λV (k) for all x with λ > 0. Plugging the value of
V (k) and V (k+ 1) along the trajectories of the closed-loop
system (10), we obtain

V (k+1)− (1−λ )V (k)

= x(k+1)⊤Px(k+1)− (1−λ )x⊤(k)Px(k)

=

[
x
w

]⊤
F2

[
x
w

]
where F2 =

[
G⊤

1 X⊤
+ PX+G1 − (1−λ )P G⊤

1 X⊤
+ PX+H

H⊤X⊤
+ PX+G1 H⊤X⊤

+ PX+H

]
, and

the exogenous input w is bounded as given by (2). To
guarantee stability, it is required to get a P ≻ 0 and[

x
w

]⊤
F2

[
x
w

]
≤ 0, when

[
x
w

]⊤ [
−γIn 0

0 In

][
x
w

]
≤ 0. (16)
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The S-procedure [16] ensures that (16) holds. Thus, the
sufficient condition for the existence of a quadratic Lyapunov
function is given by

ε

[
−γIn 0

0 In

]
−F2 ⪰ 0 (17)

for some ε ≥ 0. Applying Schur’s complement, we obtain−εγIn +(1−λ )P 0 G⊤
1 X⊤

+

0 εIn H⊤X⊤
+

X+G1 X+H P−1

 ⪰ 0.

Pre and post-multiplying by the positive definite matrix
diag(P−1, In, In), and applying Schur’s complement again,

(1−λ )P−1 0 P−1G⊤
1 X⊤

+ P−1

0 εIn H⊤X⊤
+ 0

X+G1P−1 X+H P−1 0
P−1 0 0 ε−1

γ
In

 ⪰ 0.

Pre and post-multiplying by the positive definite matrix
diag(In, ε−1In, In, In), we obtain


(1−λ )P−1 0 P−1G⊤

1 X⊤
+ P−1

0 ε−1In ε−1H⊤X⊤
+ 0

X+G1P−1 X+Hε−1 P−1 0
P−1 0 0 ε−1

γ
In

⪰ 0

X−G1P−1 = P−1, UG1P−1 = KP−1

where the two equality constraints are obtained from (11)
after multiplying both sides with P−1. We define the change
of variables, Q1 = G1P−1, Q2 = ε−1H, q = ε−1. Then, we
have P−1 = X−Q1 from the equality constraint. Thus, we
arrive at an LMI (14) by incorporating all the variables, while
the remaining equality constraints WQ1 = 0 and (11) are
satisfied a posteriori with the choice K =UQ1(X−Q1)

−1.
Theorem 1 provides a sufficient condition guaranteeing

the stability of system (10). The next section implements the
controller (15) under an event-triggered framework (6).

B. Design of Relative Thresholding Parameter

This section solves an optimization problem, obtaining a
range for the thresholding parameter (σ ), ensuring the sta-
bility of system (12) under event-triggered implementation.
We maximize the relative thresholding parameter, leading to
larger inter-event times and better utilization of resources.

Theorem 2: Let the rank condition (3) hold. Then, the
relative thresholding parameter of event-triggered implemen-
tation (6) with controller (15), obtained by solving

max
q2, Q2, Q3

σ (18)

subject to

(1−λ )X−Q1 0 0 Q⊤
1 X⊤

+ X−Q1 σX−Q1
0 q2In 0 Q⊤

3 X⊤
+ 0 0

0 0 q1In Q⊤
2 X⊤

+ 0 0
X+Q1 X+Q3 X+Q2 X−Q1 0 0
X−Q1 0 0 0 q1

γ
In 0

σX−Q1 0 0 0 0 q2In

 ⪰ 0

[
X⊤ U⊤ W⊤]⊤ Q3 =

[
0 q2K⊤ 0

]⊤[
X⊤ U⊤ W⊤]⊤ Q2 =

[
0 0 q1I⊤

]⊤
,

stabilizes the system (12).
Proof: Using the equivalent data-driven representation

of a closed-loop system under an event-triggered framework
(6), the difference of Lyapunov function V (k + 1)− (1 −
λ )V (k) along the trajectories of the system (12) is

V (k+1)− (1−λ )V (k) = y⊤F1y (19)

where F1 =

G⊤
1 X⊤

+ PX+G1 − (1−λ )P G⊤
1 X⊤

+ PX+G2 G⊤
1 X⊤

+ PX+H
G⊤

2 X⊤
+ PX+G1 G⊤

2 X⊤
+ PX+G2 G⊤

2 X⊤
+ PX+H

H⊤X⊤
+ PX+G1 H⊤X⊤

+ PX+G2 H⊤X⊤
+ PX+H

.

and y :=
[
x⊤ e⊤ w⊤]⊤. The state measurement error

e(k) shown in (5) and exogenous input w(k) satisfy (6) and
(2) respectively. To guarantee stability of the system (12),
we need P ≻ 0 and y⊤F1y ≤ 0, when

y⊤

−γIn 0 0
0 0 0
0 0 In

y ≤ 0, y⊤

−σ2In 0 0
0 In 0
0 0 0

y ≤ 0 (20)

where both inequalities in (20) are obtained by recasting
(2) and (6) in quadratic form, respectively, using the S-
procedure. Thus, the sufficient condition for the existence
of a quadratic Lyapunov function is given by (21) for some
τ1 ≥ 0, τ2 ≥ 0.G⊤

1 X⊤
+ PX+G1 − (1−λ )P G⊤

1 X⊤
+ PX+G2 G⊤

1 X⊤
+ PX+H

G⊤
2 X⊤

+ PX+G1 G⊤
2 X⊤

+ PX+G2 G⊤
2 X⊤

+ PX+H
H⊤X⊤

+ PX+G1 H⊤X⊤
+ PX+G2 H⊤X⊤

+ PX+H


+ τ1

γIn 0 0
0 0 0
0 0 −In

+ τ2

σ2I 0 0
0 −I 0
0 0 0

⪯ 0. (21)

On simplification of (21) and with the application of
Schur’s complement to the result, we get

(1−λ )P− τ2σ2In − τ1γIn 0 0 G⊤
1 X⊤

+

0 τ2In 0 G⊤
2 X⊤

+

0 0 τ1In H⊤X⊤
+

X+G1 X+G2 X+H P−1

 ⪰ 0.

Pre and post-multiplying by the positive definite matrix diag
(P−1, In, In, In) and applying Schur’s complement again,

(1−λ )P−1 0 0 P−1G⊤
1 X⊤

+ P−1 σP−1

0 τ2In 0 G⊤
2 X⊤

+ 0 0
0 0 τ1In H⊤X⊤

+ 0 0
X+G1P−1 X+G2 X+H P−1 0 0

P−1 0 0 0 τ
−1
1
γ

In 0
σP−1 0 0 0 0 τ

−1
2 In


⪰ 0.

Pre- and post-multiplying by (In,τ
−1
2 In,τ

−1
1 In, In, In, In) and

letting Q3 = τ
−1
2 G2, Q2 = τ

−1
1 H, q1 = τ

−1
1 , q2 = τ

−1
2 we

obtain the inequality in (18).
Maximizing σ over the free variables q2, Q2 and Q3 leads

to the optimization problem (18), where the condition on G2
from (13) is satisfied a posteriori as equality constraints. The
parameter Q1 is obtained from solving (14).

Therefore, any σ ∈ (0,σ∗] stabilizes the system (12)
under event-triggered framework, where σ∗ is the maximum
threshold parameter.
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Fig. 1: Simulation results of the event-triggered implemen-
tation

C. Numerical Example

The above results are validated using an illustrative exam-
ple of a discrete-time linear system of the form (1) with

A =

[
1.0018 0.001

0.36 1.0018

]
, B = E =

[
−0.10
−0.184

]
(22)

The system to be controlled is open-loop unstable with poles
at 1.0208 and 0.9828. The open-loop experiment is carried
out by applying random input and exogenous input sequence
of length T = 30, while the system states data is collected
using MATLAB. CVX [17] is used to solve (14) with design
parameter λ = 0.001,γ = 1, and obtain K = [4.3012 2.4988],
which places the location of the closed-loop poles at 0.8849
and 0.2288. Considering that λ is associated with the ex-
ponential stability of the system and γ represents the bound
on exogenous input, it is imperative to select small values
for these parameters to yield compact LMI (Linear Matrix
Inequality) gains. Further, the optimization problem (18) is
solved by applying the state-feedback controller K in an
event-triggered setup to obtain σ∗ = 0.1498. The simulation
results are presented. In Fig. 1a-1b, simulation results with
artificial injection of the exogenous input w(k) = sin( 2π

1000 k)
are presented. In Fig 1a, the red stems represent the evolution
of the norm of the error e(k) defined in (5), which stays
below the threshold σ∗∥x(k)∥ represented by the black line.
Fig 1b shows that non-trivial triggering is obtained, with
maximum inter-event times of 20 samples and an average
inter-event-time at 3 samples.

VI. APPLICATION: AUTO-SCALING IN CLOUD

In recent years, cloud computing has experienced re-
markable growth, with approximately 83% of companies
delegating their computing needs to cloud-based solutions.
The appeal of cloud computing lies in its ability to offer
subscribers a versatile array of on-demand resources, includ-
ing computing capabilities, storage, and network services.
Moreover, cloud platforms provide a critical feature known
as elasticity, permitting subscribers to acquire and release
instances dynamically.

A. States and Inputs of the System

The state variables describing the dynamics of a web-
server system encompass the mean physical core utilization,
denoted as CPU(k), expressed as a percentage across all

Controller

Client Machine

Log Files

Httperf

Load Balancer

VM
1

VM
2

VM
7

VM
8

. . .

Software 
Virtualiztion

Host
Operating Software

Hardware

VM
Metrices

SSH

SSH

S
S

H
 (O

n/O
ff)

SSH

Host Machine

Fig. 2: Experimental testbed of web-server system

physical cores. The mean response time, represented as
RT (k), is measured in milliseconds (ms) across all Virtual
Machines (VMs) in the system. Additionally, we introduce
the exogenous input variable for our model, the request rate
of the workload denoted as WOR(k), quantified in requests
per second (reqs/s). This input is considered an exogenous
signal in the design of our controller. Conversely, the control
input signifies the number of active virtual machines within
the system, labeled as V M(k). These can be written as:

x(k) = [CPU(k) RT (k)]⊤, u(k) =V M(k), w(k) =WOR(k).

A feedback control law can be implemented on the web-
server system to ensure the allocation of an appropriate num-
ber of VMs and the adjustment to varying workloads while
adhering to predefined performance criteria. Specifically, the
goal is to guarantee that the response time remains below
a defined threshold denoted as RTf . Providing adequate
VMs is necessary to address the over-provisioning or under-
provisioning of VMs and maintain the desired response time.
Consequently, we rely on the design of a feedback control
law to ensure the performance guarantee of the web-server
system. Given the unavailability of a model, we prefer a
data-driven approach over a model-based one to design the
feedback controller gains in this article.

B. Web-Server Testbed

Our experimental setup (Fig. 2) simulates real-world net-
work conditions. The client machine, with 16 GB RAM
and four 3.2GHz CPU cores, uses httperf to generate HTTP
requests. The web-server host, running Ubuntu OS with 32
GB RAM, hosts 8 VMs allocated with one core and 2 GB
RAM each. An HAProxy load balancer evenly distributes
requests among VMs. A separate machine acts as a controller
device and runs the MATLAB script to execute the control
algorithm. All machines are communicating with each other
via a dedicated 1 Gbps Ethernet connection.

C. Open-Loop Data-Acquisition

We begin by conducting an open-loop experiment to
gather data from the web-server system. We systematically
vary the workload and number of active VMs to create a
comprehensive dataset covering a wide spectrum of operating
conditions for the web-server system.
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Fig. 3: Performance of data-driven controller

We make the following assumptions for the data acquisi-
tion process: a) we ensure that no CPU or memory-intensive
background processes are running within the system to
maintain a controlled environment; b) We establish a crucial
threshold for the incoming request rate to prevent system
overload, saturation, and potential failure.

D. Results

The data collected from the system is found to be per-
sistently exciting, and the rank condition (3) holds. The
assumptions of Theorem 1 are satisfied, and matrix Q1
is obtained using CVX [17]. The state-feedback gain K
that asymptotically stabilizes the system is found to be
K =

[
0.0652 0.0303

]
. To obtain the relative thresholding

parameter σ∗, the optimization problem (18) is solved using
CVX, and σ∗ is found to be 0.24. Thus, the range of σ

guaranteeing asymptotic stability is (0 , 0.24].
We employ two distinct implementation frameworks to

evaluate the controller’s performance: time-triggered and
event-triggered approaches. The time-triggered implementa-
tion updates the control law at each specified sample time.
The performance assessment of our proposed method is
illustrated in Fig. 3. Our objective is to achieve a response
time (RT) under 30ms. The desired RT is achieved when
implemented, which proves the effectiveness of the proposed
event-triggered approach. The Fig. 3 highlights the close
alignment between the event-triggered and time-triggered
implementations. It is evident that the event-based controller
ensures infrequent alterations to the control law. Specifically,
we observed only 19 updates for the given workload, whereas
the time-triggered approach updated the control law 150
times. This results in significant savings in communication
channel bandwidth and unnecessary updates of the control
law. This result affirms the effectiveness of the data-driven
event-triggered implementation, especially in complex sys-
tems such as cloud computing.

VII. CONCLUSION

In this work, an event-triggered implementation of con-
trollers for discrete-time linear systems with exogenous input

in a data-driven framework is introduced. The methods
presented do not necessitate explicit model identification
and rely on finite system data collected from open-loop
experiments. We first established a data-driven representa-
tion of the closed-loop system, accounting for measurement
errors. Subsequently, this representation was employed to
design a relative threshold using S-procedure for event-
triggered control implementation, with the relative threshold
parameter determined through the resolution of an optimiza-
tion problem involving data-dependent LMI constraints. The
efficacy of the proposed approach was validated through
numerical simulations and real-world experimentation on a
cloud-hosted web-server system.
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