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Abstract— Vision-aided inertial navigation systems combine
data from a camera and an IMU to estimate the position,
orientation, and linear velocity of a moving vehicle. In planar
environments, existing methods assume knowledge of the ver-
tical direction and ground plane to exploit accelerometer mea-
surements. This paper presents a new solution that extends the
estimation to arbitrary planar environments. A deterministic
Riccati observer is designed to estimate the direction of gravity
along with the vehicle pose, linear velocity, and the normal
direction to the plane by fusing bearing correspondences from
an image sequence with angular velocity and linear accelera-
tion data. Comprehensive observability and stability analysis
establishes an explicit persistent excitation condition under
which local exponential stability of the observer is achieved.
Simulation and real-world experimental results illustrate the
performance and robustness of the proposed approach.

I. INTRODUCTION

Estimating the pose of a moving camera, i.e. determining
its position and orientation, from visual data is a fundamental
challenge in robotics and computer vision. Over the past 15
years, numerous state-of-the-art methods for pose estimation
using vision systems have involved Inertial Measurement
Units (IMU). The integration of visual information with
inertial measurements has given rise to visual-inertial (VI)
systems, which combine data from an IMU with measure-
ments from onboard (monocular or stereo) cameras. These
systems find applications in vision-aided inertial navigation
[1], visual-inertial odometry (VIO) [2] and Simultaneous
Localization and Mapping (SLAM).

When estimating the pose using monocular vision, based
on landmark bearing (i.e. direction) measurements, the prob-
lem is classically referred to as the Perspective-n-Point (PnP)
problem when the coordinates of the landmarks in the inertial
frame are known. In the cases where the coordinates are
unknown, the relative pose can be obtained using the epipolar
constraints. These problems have been widely addressed in
the literature [3], [4], [5], and have been revisited in [6] and
[7], where nonlinear Riccati observers, exploiting first-order
approximations and relying on solutions to the Continuous
Riccati Equation (CRE), are derived.

When the landmarks belong to a planar surface, the
relative pose is generally obtained from the algebraic com-
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putation or estimation of the homography matrix [8]. The
relative pose up to a scale and the plane’s normal direc-
tion are typically retrieved using homography decomposition
(SVD-based [9], [10], or analytical [11] approaches). The
homography estimation problem has been extensively studied
in the literature. Classical approaches developed by the
computer vision community have tackled this problem frame-
by-frame by solving algebraic constraints and/or a mini-
mization problem related to the correspondences of image
features [8], [12]. More recently, researchers in the field of
Control Systems have addressed the homography estimation
differently using nonlinear observers designed on the Special
Linear group SL(3) [13], [14], [15], [16]. By exploiting
velocity information to interpolate across a sequence of
images, these algorithms provide filtering effects and signif-
icantly improve individual homography estimates. However,
the common assumption used in these algorithms is that the
translational velocity is constant in the reference or body-
fixed frame due to the lack of linear velocity measurements.
While this assumption has proven useful in many practical
situations, it is unreliable when the vehicle experiences large
accelerations. Recent solutions [1], [17] have attempted to
associate homography and acceleration measurements but
require restrictive assumptions of a dominant ground-plane
environment and a standard reference (vertical) direction in
the inertial frame known a priori from inertial data. To
the authors’ understanding, the present work is the first to
jointly estimate the pose and direction of gravity with no
assumptions on the vehicle motion or the scene.

This paper addresses the problem of determining the pose,
linear velocity, and gravity direction of a camera moving
while viewing a planar scene, using bearing measurements
extracted from a sequence of images coupled with angular
rate and linear acceleration data from an IMU. We pro-
pose a deterministic Riccati observer, based on the general
framework presented in [6], which does not require prior
knowledge of the vertical direction, thus allowing for ar-
bitrary scene orientations and initial camera configurations
with respect to the inertial frame. By exploiting the planar
homography constraint as in [18], we derive the measurement
equation of the Riccati error system. Observability and
stability analyses demonstrate that the proposed observer is
locally exponentially stable, provided that the set of bearings
measured in the reference frame is uniformly consistent [13]
and that the vehicle’s motion is sufficiently exciting.

The remainder of the paper is organized as follows.
Section II provides an overview of the Riccati observer
design framework and definitions related to the uniform
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observability of linear time-varying systems. The problem
addressed is formally stated in Section III. The derivation
of the proposed observer with associated observability and
stability analysis are provided in Section IV. Simulation and
experimental results are presented in Sections V and VI,
respectively, followed by concluding remarks in Section VII.

II. PRELIMINARIES

A. Mathematical notation

I := {O, e1, e2, e3} denotes a north-east-down (NED)
right-handed global inertial frame of reference with a fixed
origin O and the canonical basis of R3.

The Euclidean norm of the vector x ∈ Rn is denoted by
|x|. The set Bn

r := {x ∈ Rn : |x| ≤ r} is the closed ball
in Rn of radius r. The sphere embedded in Rn with radius
equal to one is denoted by Sn−1 := {x ∈ Rn : |x| = 1}. For
any p ∈ S2, πp := I3 − pp⊤ denotes the projection operator
onto the plane orthogonal to p.

The identity matrix of dimension n×n is denoted by In,
the null matrix of dimension n × m is denoted 0n,m and
S+(n) denotes the set of positive definite n× n matrices.

The special orthogonal group of 3D rotations is defined by
SO(3) := {R ∈ R3×3 : RR⊤ = R⊤R = I3,det(R) = 1},
so(3) := {a× : a ∈ R3} denotes its associated Lie algebra,
where a× denotes the skew-symmetric matrix associated
with the cross product, satisfying a×b = a×b for all b ∈ R3.

Let f be a vector-valued function that depends on
the two variables x and y, and on the time variable t.
We write f = O(|x|k1 |y|k2) with k1, k2 ≥ 0 if ∀t :
|f(x, y, t)|/(|x|k1 |y|k2) ≤ κ < ∞ in the neighbourhood of
(x, y) = (0, 0). If f depends only on x and t then we write
f(x, t) = O(|x|k) if ∀t : |f(x, t)|/|x|k ≤ κ < ∞ in the
neighbourhood of x = 0.

B. Recalls of the Riccati observer design framework

The observer presented here is a modified version of the
Riccati observer design framework as introduced in [6].
While some modifications are made, the proof proceeds
analogously to the proof of Theorem 3.1 in [6].

Consider a class of nonlinear systems, whose state x :=
[x⊤

1 x⊤
2 ]

⊤, with x1 ∈ Bn1
r and x2 ∈ Rn2 (with n1+n2 = n),

evolves according to the following equations:{
ẋ = A(x, t)x+ u+O(|x|2) +O(|x||u|)
y = C(x, t)x+O(|x|2) (1)

A is a continuous matrix-valued function uniformly bounded
w.r.t. (with respect to) t and uniformly continuous w.r.t. x,
of the form

A(x, t) :=

[
A1,1(t) 0n1×n2

A2,1(x, t) A2,2(x, t)

]
∈ Rn×n

and C is a continuous matrix-valued function uniformly
bounded w.r.t. t and uniformly continuous w.r.t. x.

C(x, t) :=
[
C1(x, t)

⊤ C2(x, t)
⊤]⊤ ∈ Rm×n

The following input is applied

u := −PC⊤D(t)y (2)

with P ∈ S+(n) solution to the continuous Riccati equation:

Ṗ = AP + PA⊤ − PC⊤D(t)CP + S(t), P (0) = P0 (3)

with S(t) a bounded continuous symmetric positive definite
matrix-valued function and D(t) a bounded continuous sym-
metric positive semi-definite matrix-valued function.

Then, from Theorem 3.1 and Corollary 3.2 in [6], the
equilibrium x = 0 is locally uniformly exponentially stable
provided that the pair (A⋆(t), C⋆(t)), with A⋆(t) := A(0, t)
and C⋆(t) := C(0, t), is uniformly observable and D(t) and
S(t) are both larger than some positive matrix.

C. Uniform observability of linear time-varying systems

The following definition outlines the well-known uniform
observability condition for linear time-varying systems.

Definition 1 (Uniform observability). The pair (A(t), C(t))
is called uniformly observable if there exists δ, µ > 0 such
that ∀t ≥ 0

W (t, t+ δ) :=
1

δ

∫ t+δ

t

Φ⊤(s, t)C⊤(s)C(s)Φ(s, t)ds ≥ µIn

(4)
where Φ(s, t) is the transition matrix associated with A(t),
such that d

dtΦ(s, t) = A(t)Φ(s, t), ∀s ≥ t, Φ(t, t) = In.
The nonnegative definite matrix-valued function W (t, t+ δ)
is known as the observability Gramian.

Assumption 1. The k-th order time-derivative of A (resp.
C) is well defined and bounded on [0,+∞) up to k = K ≥ 0
(resp. up to k = K + 1).

Define N0 := C,Nk+1 := NkA + Ṅk, k = 1, . . . , and
the set MK of matrix-valued functions M(·) of dimension
(q×n) (q ≥ 1) composed of row vectors of N0(·), N1(·), . . .
Proposition 1 (necessary condition for non-uniform observ-
ability). The pair (A(t), C(t)) is not uniformly observable
only if the following statement

∀δ > 0,∃{tp}p∈N,∃x ∈ Sn−1 :

lim
p→+∞

∫ δ

0

|M(tp + s)Φ(tp + s, tp)x|2ds = 0
(5)

holds true for all matrix-valued functions in MK .

This proposition follows directly from [19], proof of
Proposition 1, relation (16).

III. PROBLEM FORMULATION

Consider a vehicle equipped with an attached VI sensor
consisting of an onboard monocular camera and an IMU
providing angular rate and linear acceleration measurements.

Let {Ct} denote the moving body-fixed frame attached at
the focal point of the camera, assumed to be the center of
mass of the body, and let {C̊} represent the constant initial
frame aligned with the camera’s initial configuration (t = 0).
The IMU frame is assumed perfectly aligned with {Ct}.

Let R ∈ SO(3) denote the vehicle attitude w.r.t. to the
frame {C̊} and ξ ∈ R3 denote the position of the vehicle
expressed in the reference frame {C̊}.
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Fig. 1. Euclidean homography depicting the relation among the vehicle’s
pose, the distance to the plane and the plane’s normal vector.

We consider that the attached camera observes a (static)
planar scene with arbitrary configuration in the inertial frame.
The camera provides the bearing (direction) measurements
pi ∈ S2, (resp. p̊i ∈ S2), i ∈ {1, . . . , l} expressed in frame
{Ct} (resp. {C̊}) of l landmarks that belong to the plane.
The bearing correspondences (p̊i, pi) of the i-th landmark
are related by [16]

pi =
H−1p̊i
|H−1p̊i|

, i = {1, . . . , l} (6)

H is the (Euclidean) homography matrix given by

H := R+
ξη⊤

d
=

(
R⊤ − R⊤ξη̊⊤

d̊

)−1

(7)

where η̊ ∈ S2 (resp. η ∈ S2) denotes the unit normal vector
pointing towards the target plane expressed in the frame {C̊}
(resp. {Ct}), and d̊ > 0 (resp. d > 0) denotes the distance
of the plane to the origin of {C̊} (resp. {Ct}). For a static
scene, η̊ and d̊ are constant.

The IMU consists of a 3-axis gyrometer that measures
the angular velocity Ω ∈ R3, and a 3-axis accelerometer that
provides measurements of the specific acceleration aS ∈ R3,
both expressed in the body-fixed frame {Ct}. The kinematics
of the linear velocity V ∈ R3 expressed in {Ct} are

V̇ = −Ω×V + aS + gγ (8)

where g denotes the gravity constant (typically g ≈
9.81m/s2) and γ ∈ S2 denotes the gravitational acceleration
direction expressed in {Ct}.

IV. RICCATI OBSERVER DESIGN

A. Observer derivation

The kinematic equations expressing the rigid-body motion
of the vehicle in the reference frame {C̊} are given by

Ṙ = RΩ×, ξ̇ = v (9)

with v := RV denoting the linear velocity expressed in the
reference frame {C̊}, one verifies that

v̇ = RaS + gγ̊ (10)

where γ̊ := Rγ denotes the (constant) gravity direction
expressed in {C̊}. We consider in this work that both γ̊ and
γ are unknown.

The vehicle position can only be extracted from the
homography matrix (7) up to a scale factor. To account for
this scaling, we define the inverse of the distance to the scene
ρ := 1/d̊. Then, the vehicle position and velocity (up to a
scale) are ξ̄ := ξ/d̊ = ρξ and v̄ := v/d̊ = ρv, respectively.

Our aim is to design a nonlinear observer to estimate
(R, γ̊, η̊, ρ, v̄, ξ̄) ∈ SO(3)× (S2)2×R7. Given that γ̊, η̊ and
ρ are constant quantities and using (9) and (10), we obtain
the following system dynamics

Ṙ = RΩ×
˙̊γ = 03,1
˙̊η = 03,1

ρ̇ = 0

˙̄v = ρRaS + ρgγ̊
˙̄ξ = v̄

(11)

The direction vectors γ̊, η̊ ∈ S2 are over-parametrized by
introducing rotation matrices G,Q ∈ SO(3), such that

γ̊ := G⊤e3, η̊ := Q⊤e3 (12)

where the downward direction e3 of the inertial frame serves
as the reference direction.

Remark 1. This parametrization allows one to lift the
kinematics of S2 on SO(3) in order to avoid error system
complexities in first-order approximations that arise when us-
ing minimal parametrizations such as spherical coordinates
(for a comprehensive discussion, refer to [20]).

Let Ĝ, Q̂ ∈ SO(3) denotes the estimates of G and
Q, respectively. The estimates ˆ̊γ, ˆ̊η ∈ S2 are obtained by
projecting onto S2, expressed as ˆ̊γ := Ĝ⊤e3 and ˆ̊η := Q̂⊤e3.
Then, the convergence of Ĝ⊤e3 (resp. Q̂⊤e3) to G⊤e3 (resp.
Q⊤e3) is equivalent to the one of ˆ̊γ (resp. ˆ̊η) to γ̊ (resp. η̊).

Let R̂ ∈ SO(3), ˆ̄ξ, ˆ̄v ∈ R3, ρ̂ ∈ R denote the estimates of
R, ξ̄, v̄, ρ, respectively. The proposed observer is given by

˙̂
R = R̂Ω× + σR×R̂
˙̂
G = σG×Ĝ
˙̂
Q = −σQ×Q̂
˙̂ρ = −σρ

˙̄̂v = ρ̂R̂aS + ρ̂gĜ⊤e3 − σv

˙̄̂
ξ = ˆ̄v − σξ

(13)

where σR, σG, σQ, σξ, σv ∈ R3, σρ ∈ R are the innovation
terms to be determined according to the design approach
outlined in II-B. Define the following observer errors:

R̃ := R̂R⊤, G̃ := ĜG⊤, Q̃ := QQ̂⊤ ∈ SO(3),

˜̄ξ := R̃ξ̄ − ˆ̄ξ, ˜̄v := R̃v̄ − ˆ̄v ∈ R3, ρ̃ := ρ− ρ̂ ∈ R

Remark 2. The observer errors of the elements (R, ξ̄, v̄) ∈
SO(3) × R3 × R3 are defined using the SE2(3) Lie group
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error construction [21] which provides a more natural rep-
resentation of the composition of extended poses.

To derive the Riccati error system, first-order approxima-
tions are required. The approximations of the error equations
that involve rotation matrices are derived using a (local)
minimal parametrization of SO(3). The chosen parametriza-
tion in this work is the vector part of the Rodrigues unit
quaternion q = [q0, qv] associated with R ∈ SO(3).
Rodrigues’ formula that relates q to R is given by

R(q) = I3 + 2qv×(q0I3 + qv×)

From this relation, one can write

R = I3 + λ× +O(|λ|2), with λ := 2 sign(q0)qv ∈ B3
2

One obtains the following first-order approximations

R̃ = I3 + λR× +O(|λR|2)
G̃ = I3 + λG× +O(|λG|2)
Q̃ = I3 + λQ× +O(|λQ|2)

(14)

where λR, λG, λQ ∈ B3
2 denote the (linearized) states asso-

ciated with the errors of R, G and Q, respectively. Given
equation (14) and the first three equations of (11) and (13)
one derives the error dynamics of R̃, G̃ and Q̃ as follows

˙̃R = σR×R̃, ˙̃G = σG×G̃, ˙̃Q = Q̃σQ×

It follows that, in first-order approximations, the dynamics
satisfy the following equations

λ̇R = σR +O(|λR||σR|), λ̇G = σG +O(|λG||σG|),
λ̇Q = σQ +O(|λQ||σQ|) (15)

For the dynamics of ˜̄ξ, from (11) and (13), we have
˙̄̃
ξ = ˙̃Rξ̄ + R̃ ˙̄ξ − ˙̄̂

ξ = σR×R̃ξ̄ + R̃v̄ − ˆ̄v + σξ

= σR×(
˜̄ξ + ˆ̄ξ) + ˜̄v + σξ

= ˜̄v + σ̄ξ +O(| ˜̄ξ||σR|) (16)

with σ̄ξ := σξ + σR×
ˆ̄ξ ∈ R3.

Similarly, the dynamics of ˜̄v can be expressed as

˙̄̃v = ˙̃Rv̄ + R̃ ˙̄v − ˙̄̂v

= σR×R̃v̄ + ρR̃ (RaS + gγ̊)− ρ̂R̂aS − ρ̂gĜ⊤e3 + σv

= σR×(˜̄v + ˆ̄v) + (ρ− ρ̂) R̂aS + g(ρR̃G⊤ − ρ̂Ĝ⊤)e3 + σv

= g
(
ρR̃G̃Ĝ⊤ − ρ̂Ĝ⊤

)
e3 + ρ̃R̂aS + σ̄v +O(|˜̄v||σR|)

with σ̄v := σv +σR× ˆ̄v ∈ R3. Substituting R̃ and G̃ with the
first-order approximations (14), this simplifies to
˙̄̃v = g

(
(ρ̃+ ρ̂)(I3 + λR×)Ĝ

⊤(I3 + λG×)− ρ̂Ĝ⊤
)
e3

+ ρ̃R̂aS + σ̄v +O(|˜̄v||σR|)
= ρ̃R̂aS + g(ρ̃Ĝ⊤ + λR×ρ̂Ĝ

⊤ + ρ̂Ĝ⊤λG×)e3 + σ̄v

+O(|λR||λG|) +O(|λR||ρ̃|) +O(|λG||ρ̃|) +O(|˜̄v||σR|)
= −ρ̂g(Ĝ⊤e3)×λR − ρ̂gĜ⊤ (e2λG,1 − e1λG,2) + ˙̂vρ̃+ σ̄v

+O(|λR||λG|) +O(|λR||ρ̃|) +O(|λG||ρ̃|) +O(|˜̄v||σR|)
(17)

where λG,1 and λG,2 are the first two components of λG and
˙̂v := (R̂aS + gˆ̊γ).

To derive the measurement equation, let Ĥ denote the
estimate of the homography, computed from the individual
estimates of its components (R̂, ˆ̄ξ, ˆ̊η). In view of (7), one
shows that Ĥ = Γ̂R̂, with Γ̂ := (I3 − ˆ̄ξ ˆ̊η⊤)−1. Defining
ˆ̊pi :=

Ĥpi

|Ĥpi|
∈ S2 as the estimates of p̊i, and exploiting the

constraint given in (6), yield

ˆ̊pi =
Ĥpi

|Ĥpi|
=

Ĥ H−1p̊i

|H−1p̊i|

|Ĥ H−1p̊i

|H−1p̊i| |
=

H̃p̊i

|H̃p̊i|
(18)

where H̃ := ĤH−1 denotes the homography error. Using
the fact that π ˆ̊pi

ˆ̊pi = 0,∀i ∈ {1, . . . , l}, one has

0 = |H̃p̊i|π ˆ̊pi

ˆ̊pi = π ˆ̊pi
H̃p̊i = π ˆ̊pi

ĤH−1p̊i

= π ˆ̊pi
Γ̂R̂R⊤(I3 − ξ̄η̊⊤)p̊i

= π ˆ̊pi
Γ̂(R̃− ( ˜̄ξ + ˆ̄ξ)e⊤3 Q̃Q̂)p̊i

using the first-order approximations (14), it follows that

0 = π ˆ̊pi
Γ̂
(
I3 + λR× − ( ˜̄ξ + ˆ̄ξ)e⊤3 (I3 + λQ×)Q̂

)
p̊i

+O(|λR|2) +O(|λQ|2)
= π ˆ̊pi

p̊i − π ˆ̊pi
Γ̂
(
−λR× + ˜̄ξe⊤3 Q̂+ ˆ̄ξe⊤3 λQ×Q̂

)
p̊i

+O(|λR|2) +O(|λQ|2) +O(| ˜̄ξ||λQ|)
Then, by setting yi := π ˆ̊pi

p̊i for all i = 1, . . . , l, one deduces

yi = (Q̂p̊i)2π ˆ̊pi
Γ̂ ˆ̄ξλQ,1 − (Q̂p̊i)1π ˆ̊pi

Γ̂ ˆ̄ξλQ,2 + π ˆ̊pi
Γ̂p̊i×λR

+(Q̂p̊i)3π ˆ̊pi
Γ̂ ˜̄ξ +O(|λR|2) +O(|λQ|2) +O(| ˜̄ξ||λQ|)

where λQ,1, λQ,2 denote the first two components of λQ.
Defining the output vector as y := [y⊤1 , . . . , y⊤l ]

⊤, we
obtain LTV first-order approximations in the form (1) with

x := [λ⊤
R, λG,1, λG,2, λQ,1, λQ,2, ρ̃, ˜̄v⊤, ˜̄ξ⊤]⊤

u := [σ⊤
R , σG,1, σG,2, σQ,1, σQ,2, σρ, σ̄

⊤
v , σ̄

⊤
ξ ]

⊤

A(x, t) :=

08,3 08,1 08,1 08,2 08,1 08,3 08,3

α̂1 α̂2 α̂3 03,2 ˙̂v 03,3 03,3

03,3 03,1 03,1 03,2 03,1 I3 03,3


C(x, t) :=

[
β̂1 03l,2 β̂2 β̂3 03l,4 β̂4

]
(19)

with α̂1 = −ρ̂g(Ĝ⊤e3)×, α̂2 = −ρ̂gĜ⊤e2, α̂3 = ρ̂gĜ⊤e1,
β̂k = [β̂⊤

k,1 . . . β̂
⊤
k,l]

⊤, k = 1, . . . , 4, β̂1,i = π ˆ̊pi
Γ̂p̊i×, β̂2,i =

(Q̂p̊i)2π ˆ̊pi
Γ̂ ˆ̄ξ, β̂3,i = −(Q̂p̊i)1π ˆ̊pi

Γ̂ ˆ̄ξ, β̂4,i = (Q̂p̊i)3π ˆ̊p1
Γ̂.

From there, the expressions of the innovation terms are
directly computed according to equations (2) and (3), where
the matrices S and D (involved in (3)) are chosen larger than
some constant positive matrix.

Remark 3. While G̃ and Q̃ are elements of SO(3), only the
first two components of λG and λQ appear in system (19),
which results in a minimal state representation in the first-
order approximations. Accordingly, the last components of
the innovation terms σG and σQ are set to zero for simplicity.
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B. Observability and stability analysis

According to Corollary 3.2 in [6], good conditioning of the
solutions P (t) to the CRE (3) and the exponential stability
of the error origin of the observer (13) rely on the uniform
observability of (A⋆(t), C⋆(t)) obtained by setting x = 0 in
the expressions of the matrices A(x, t) and C(x, t) given in
(19). The corresponding matrices are
A⋆(t) :=

08,3 08,1 08,1 08,2 08,1 08,3 08,3

α1 α2 α3 03,2 v̇(t) 03,3 03,3

03,3 03,1 03,1 03,2 03,1 I3 03,3


C⋆(t) :=

[
β1 03l,2 β2 β3 03l,4 β4

]
(20)

with α1 = −ρg(G⊤e3)×, α2 = −ρgG⊤e2, α3 = ρgG⊤e1,
βk = [β⊤

k,1 . . . β
⊤
k,l]

⊤, k = 1, . . . , 4, β1,i = πp̊i
Γp̊i×, β2,i =

(Qp̊i)2πp̊i
Γξ̄, β3,i = −(Qp̊i)1πp̊i

Γξ̄, β4,i = (Qp̊i)3πp̊1
Γ.

Definition 2 (Uniformly consistent set1). A set Ml of l ≥ 4
constant vector directions p̊i ∈ S2, (i = 1 . . . l) is termed
uniformly consistent if it contains a subset M4 ⊂ Ml of four
vector directions such that all its vector triplets are uniformly
linearly independent; that is, there exists ϵ > 0 such that
det ([p̊i p̊j p̊k]) = p̊i · (p̊j × p̊k) ≥ ϵ for all p̊i, p̊j , p̊k ∈ M4.

Assumption 2. The set Ml of the measured directions p̊i ∈
S2 is uniformly consistent, and there exists ε > 0 such that
|ξ̄(t)| ≥ ε for all t ≥ 0.

Proposition 2. If Assumption 2 holds and v̇(t) is uniformly
continuous and bounded and is “persistently exciting” in the
sense that there exists δ, µ > 0 such that ∀t ≥ 0,

1

δ

∫ t+δ

t

|v̇(s)|2ds ≥ µ. (21)

Then, the pair (A⋆(t), C⋆(t)) is uniformly observable and
the equilibrium of the proposed Riccati observer is locally
exponentially stable.

The proof is given in the Appendix.

V. SIMULATION RESULTS

This section provides simulation results to illustrate the
performance of the observer (13). The simulation scenario
involves a square planar target (with four known corner direc-
tions) tilted at a 45-degree angle relative to the inertial frame
and a camera that follows a Lissajous reference trajectory
with linear acceleration and angular velocity measured in
the body-fixed frame (subject to Gaussian additive noise).

We conduct a Monte-Carlo simulation with 100 runs, the
initial estimation errors are randomly generated for each
run using Gaussian distributions with the following average
values: R̃(0) corresponds to 22.5(deg) errors in roll, pitch
and yaw, G̃(0) (resp. Q̃(0)) corresponds to a 15(deg) angle
between γ̊(0) (resp. η̊(0)) and ˆ̊γ(0) (resp.ˆ̊η(0)), ˜̄ξ(0) =
[0.2, 0.2, 0.2], ˜̄v(0) = [0.1, 0.1, 0.1], ρ̃(0) = 0.1. The fol-
lowing initial Riccati matrix and parameters are chosen:
P (0) = diag(I7, 0.4, 2I6), D = 25I12, S = 0.1I14.

1This definition involves a stricter uniformity condition than that in [13].

The time evolutions of the average estimation errors of the
attitude (defined by trace(I3− R̃)), the normal to the planar
scene (defined by 1− ˆ̊η⊤η̊) and the gravity vector (defined by
1− ˆ̊γ⊤γ̊) are shown in Fig. 2. The average estimation errors
of the scaled position and velocity, as well as the inverse of
the distance, are shown in Fig. 3. The shaded areas illustrate
the 5th to 95th percentile of error. From these figures, one
can see that all the estimation errors converge to zero after
a short transient period for the generated initial estimates.

Fig. 2. Average estimation errors of the attitude, normal to the scene vector
and gravity vector, respectively.

Fig. 3. Average estimation errors of the scaled position, scaled velocity
and inverse of the distance, respectively.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are reported to support
the simulation results and to demonstrate the robustness and
effectiveness of the observer on real-world data.

3806



We perform an online experiment with a mounted Camera-
IMU setup viewing a textured planar target on the ground; the
system is initially aligned nearly perpendicularly to the target
(i.e., γ̊ ≃ η̊ ≃ e3). Its motion is then recorded as it is moved
in various directions and orientations. The setup includes a
Basler camera capturing 25 frames per second at a resolution
of 1200× 1024 pixels, and an MPU-9250 IMU operating at
100 Hz. The estimation results are compared to ground-truth
data collected at 200 Hz using an OptiTrack motion capture
system (MOCAP). The observer is implemented in C++, and
the collected data are time-synchronized using ROS.

The following initial state estimates and Riccati ma-
trix are considered for the experiment: R̂0 = Ĝ0 =

Q̂0 = I3, ρ̂0 = 1, ˆ̄v0 = ˆ̄ξ0 = [0, 0, 0]
⊤ and P0 =

diag(0.5I3; 0.2I4; 0.2; 0.75I6). The matrices involved were
chosen as follows: D = 10I3l, S = 0.01I14.
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Fig. 4. Attitudes (Euler angles) and scaled positions given by the proposed
observer (red) and MOCAP ground truth (blue).

The plots in Fig. 4 show the true and estimated attitude
(represented by the Euler angles) and scaled position. It can
be observed from these plots that the resulting estimates
evolve consistently near the corresponding ground truths and
remain particularly stable and noise-free as a result of the

filtering property of the proposed observer.

VII. CONCLUSIONS

In this paper, the problem of estimating the pose, linear
velocity and gravity direction of a vehicle observing a planar
target with arbitrary configuration has been addressed. The
proposed solution exploits direct bearing correspondences
from a sequence of images satisfying the planar homography
constraint, along with angular rate and linear acceleration
measurements, to derive a nonlinear observer based on a
recent Riccati observer design framework. A key contribution
lies in establishing an explicit persistent excitation condition
under which the local exponential stability of the observer
is guaranteed. The theoretical results were supported by
extensive simulation and experiments, demonstrating the
performance and robustness of the presented approach.
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APPENDIX

Proof of Proposition 2. Using the Peano–Baker series, one
verifies that the transition matrix associated with A⋆ is

Φ(t+ s, t) =

[
I8 08,3 08,3

α1s α2s α3s 03,2 a(t+s,t)

α1
s2

2 α2
s2

2 α3
s2

2 03,2 b(t+s,t)

I3 03,3
sI3 I3

]
where a(t + s, t) := v(t + s) − v(t), b(t + s, t) := ξ(t +
s)− ξ(t)− sv(t). In view of (20), one can express C⋆(t) as
C⋆(t) = Z(t)C̄, with Z(t) :=

[
β1(t) β2(t) β3(t) β4(t)

]
and

C̄ :=

 I3 03,2 03,2 03,4 03,3
02,3 02,2 I2 02,4 02,3
03,3 03,2 03,2 03,4 I3


Define Z̄(t) := Z⊤(t)Z(t). Then, the observability

Gramian associated with the pair (A⋆, C⋆) is of the form

W (t, t+ δ) =
1

δ

∫ t+δ

t

Φ⊤(s, t)C̄⊤Z̄(s)C̄Φ(s, t)ds (22)

As proven in [18], Assumption 2 establishes a sufficient
condition to ensure the full column rank of Z(t). Moreover,
this assumption guarantees the existence of ϵ̄ > 0 such
that λmin(Z̄(t)) ≥ ϵ̄ for all t ≥ 0. Then, it follows that
Z̄(t) ≥ ϵ̄I8 for all t ≥ 0. This directly implies from (22)
that W (t, t+ δ) ≥ ϵ̄W̄ (t, t+ δ), where

W̄ (t, t+ δ) :=
1

δ

∫ t+δ

t

Φ⊤(s, t)C̄⊤C̄Φ(s, t)ds

represents the observability Gramian of the pair (A⋆, C̄).
Consequently, ensuring the uniform observability of the pair
(A⋆, C⋆) is equivalent to ensuring that (A⋆, C̄) is endowed
with this property.

To complete the proof, we introduce the matrix valued-
function M(t) := [N⊤

0 N⊤
1 N⊤

2 ]⊤, with N0 = C̄, N1(t) =
C̄A⋆(t), N2(t) = N1A

⋆(t) + Ṅ1. One verifies using the
expressions of A⋆(t) and C̄ that

M(t) =


I3 03,1 03,1 03,2 03,1 03,3 03,3
02,3 02,1 02,1 I2 02,1 02,3 02,3
03,3 03,1 03,1 03,2 03,1 03,3 I3
03,3 03,1 03,1 03,2 03,1 I3 03,3
α1 α2 α3 03,2 v̇(t) 03,3 03,3



For the sake of conciseness, we define f(t, s, x) := M(t+
s)Φ(t+ s, t)x. This yields

f(t, s, x) =


x1
x4
x5

s2

2 (α1x1+α2x2+α3x3)+b(t+s,t)x6+sx7+x8

s(α1x1+α2x2+α3x3)+a(t+s,t)x6+x7

α1x1+α2x2+α3x3+v̇(t+s)x6


with xi (i = 1, . . . , 8) denoting the i-th vector-part compo-
nent of the vector x ∈ R14 of adequate dimensions, such
that x1, x7, x8 ∈ R3, xj ∈ R, j = 2, . . . , 6 and fk(t, s, x)
(k = 1, . . . , 6) denoting the k-th vector-part component of
f(t, s, x).

We now proceed by contradiction and assume that the
pair (A⋆, C̄) is not uniformly observable. Then, according to
Proposition 1, there exists a sequence {tp}p∈N and x ∈ S13

(i.e. |x| = 1) such that limp→+∞
∫ δ+δ̄

0
|f(tp, s, x)|2ds = 0

with δ̄ > 0 as large as desired.
In view of the first three components of f(tp, s, x), the

satisfaction of the condition in Proposition 1 requires that
|x1| = |x4| = |x5| = 0. Let us rewrite the fourth component
of f(tp, s, x) as follows

f4(tp, s, x) =
s2

2
ρgG⊤

[−x3
x2
0

]
+ sa(tp+ s, tp)x6+ sx7+x8

Given that s2

2 ρgG
⊤[−x3 x2 0]⊤ significantly dominates all

other terms by a factor s, when s is large, the satisfaction
of the condition in Proposition 1 implies that |x2| and
|x3| must become small as fast as 1/δ̄ when δ̄ becomes
sufficiently large. Then, we may assume from now on that
|x2|, |x3| ≪ 1. Now, let us rewrite the last component
of f(tp, s, x) as f6(tp, s, x) = v̇(tp + s)x6. Using the
persistent excitation assumption in (21), according to which∫ tp+δ+δ̄

tp
|v̇(s)x6|2ds ≥ δµ|x6|2. This yields∫ δ+δ̄

0

|f6(tp, s, x)|2ds ≥ δµ|x6|2

This relation indicates that the convergence of∫ tp+δ

tp
|f6(tp, s, x)|2ds to zero implies that |x6| must

become small when δ̄ is sufficiently large. Thus, we may
also assume that |x6| ≪ 1. Similarly, considering the fifth
components of f(tp, s, x) that simplifies to f5(tp, s, x) = x7,
the satisfaction of the condition in Proposition 1 implies
that |x7| ≪ 1 when δ̄ is sufficiently large. Then, the fourth
component of f(tp, s, x) reduces to f4(tp, s, x) = x8, and
likewise, the satisfaction of the condition in Proposition 1
implies that |x8| ≪ 1 when δ̄ is sufficiently large.

Given that all components of x must be zero or small as
δ̄ becomes sufficiently large, the norm of x must be smaller
than one to satisfy the condition of Proposition 1. However,
the satisfaction of this condition also requires that |x| = 1,
which results in a contradiction that ultimately proves that
the assumption of nonuniform observability of (A⋆, C̄) is
not valid. As a result, the pair (A⋆, C̄), and by extension
(A⋆, C⋆), is uniformly observable. The remainder of the
proof follows directly from the application of Theorem 3.1
and Corollary 3.2 in [6].
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