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Abstract— This paper serves as a first identification step in
a two-step model-based control synthesis problem of switched
linear systems (SLSs). More precisely, we present an algorithm
that addresses the realization of the multi-input/multi-output
MIMO-SLSs from Markov parameters under mild assumptions
on the dwell-times and the submodels. A key point of the
proposed approach is the introduction of the forward and
backward correction operators, which relieves the dependence
on the choice of basis vectors in computing state-space matrices
of the realizations. A numerical example illustrates the derived
results.

I. INTRODUCTION

Hybrid systems characterize the interplay between dis-
crete and continuous phenomena. They have seen broad
application span, in robotics [1], communication networks
[2], networked control systems [3], computer vision [4],
etc. The SLSs form an important class of hybrid systems
governed by an external switching signal. A large body of
the literature on hybrid system identification has focused
on single-input/single-output (SISO) models, for example,
the piecewise auto-regressive exogenous (PWARX) and the
switched auto-regressive exogenous (SARX) models, see the
survey in [5]. For MIMO systems, state-space models are
preferable since for such system classes there exist a plethora
of elegant theories on controller design [6], observer design
[7], balanced truncation [8] and so on.

The estimation problem of the SLSs in the state-space
form faces extra difficulty compared to that in the in-
put/output form, since first, in state-space the continuous-
state is unknown, and second, the discrete-states estimated
locally, for example by the subspace algorithms [9], usually
lie in different state-bases. As a result, the discrete-state
estimates cannot be used to predict outputs to prescribed
inputs without performing a state basis correction [10]. The
difficulties in estimating the SLSs require hybrid identifica-
tion algorithms to operate under various assumptions on the
dwell times [11], the observability of the discrete states [12],
and in some cases, knowledge of the switching sequence
[13].
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University, Eskişehir, 26555 Turkey. E-mails: {semihaturkay,
huakcay}@eskisehir.edu.tr

The first author is a member of the ELLIIT Strategic Research Area at
Lund University.

A. Previous work

Realization of the discrete-time SLSs from input-output
maps was studied in [14]. It is based on the theory of rational
formal power series in noncommutative variables. The SLSs
can also be considered a type of linear parameter-varying
(LPV) systems with non-smooth and abrupt changes in the
dynamics. The relationship between the input-output maps
and the state-space representations for the class of LPV
system was recently explored in several works [15], [16],
[17]. In [18], a four-stage algorithm for the realization of
the MIMO-SLSs from Markov parameters was proposed.
Balanced truncation of the SLSs was studied in [19]. The
authors therein derived a bound on the approximation error.
The Loewner framework for model reduction was studied in
[20] for the SLSs. Through this procedure, one can derive
state-space models directly from input-output data.

B. Motivation for the paper

Control and stabilization of switched systems have re-
ceived considerable attention in the literature. This divides
into two main streams: the more recent data-driven ap-
proaches [21], [22], [23] and the classical model-based
approaches [24], [25], [26], [6]. While the first category of
control synthesis approaches either completely bypasses or
maybe be characterized by an implicit system identification
step, the second requires a model that motivates the need to
develop identification/realization algorithms for the SLSs.

Despite the recent advances in the realization theory for
LPV systems, it is still incomplete. The work reported in [18]
relies on the earlier linear time-varying (LTV) realization
results [28]. A preliminary analysis in [18] showed that if
the state-space matrices of the LTV realization are subjected
to forward/backward corrections, more accurate segment
estimates may be derived. These corrections eliminate the
dependence on the basis vectors selected to compute the
LTV realization as well. We show here that under mild
assumptions on the discrete states and the switching se-
quence, a simple realization algorithm could be built around
these forward/backward correction operators, therefore sim-
plifying the procedure significantly as compared to that in
[18]. Ultimately, we aspire to develop an algorithm for the
identification of the MIMO-SLSs from the input-out data
based on the results derived in this paper and [18], [27],
[10].

C. Organization of the paper

This paper is structured as follows. In Section II, earlier
work on the realization problem from Markov parameters is
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reviewed and the problem studied in this paper is introduced.
In Section III, the forward and backward correction operators
are defined. In Section IV, an algorithm that estimates
the discrete states and the switches from the SLS Markov
parameters is proposed and the main result of the paper is
stated. In Section V, a numerical example showcases the
effectiveness of the proposed approach. Lastly, Section VI
concludes the paper.

D. Notation

In refers to the identity matrix of size n×n. ∥X∥F denotes
the Frobenius norm of a given matrix X . 0m×n denotes the
m by n matrix of zeros.

II. PROBLEM FORMULATION

Let us consider the SLS represented by the state-space
model

x(k+1) = Aϕ(k)x(k)+Bϕ(k)u(k),
(1)

y(k) = Cϕ(k)x(k)+Dϕ(k)u(k)

where u(k) ∈ Rm, y(k) ∈ Rp, x(k) ∈ Rn for 1 ≤ k ≤ N are
the input, the output, and the continuous-state vectors. ϕ , on
the other hand, is an external switching sequence. Let the
quadruplets Pϕ(k) = (Aϕ(k),Bϕ(k),Cϕ(k),Dϕ(k)), 1 ≤ k ≤ N
denote the discrete-states. We assume that n and the number
of the discrete-states σ are unknown, but bounded above by
some integers n∗ and σ∗, that is, n≤ n∗ and σ ≤ σ∗. Assum-
ing that ϕ([1 N]) = S = {1, · · · ,σ}, let P =

{
P j : j ∈ S

}
be the set of discrete-states. Thus, ϕ partitions [1 N] into
the segments such that ϕ(k) = ϕ(ki), ∀k ∈ [ki ki+1) = I(i)
and ∀i ∈ [0 i∗] where for convenience, we set k0 = 1 and
ki∗+1 =N+1. Let χ = {ki : 1≤ i≤ i∗} be the set of switches .
The dwell-times are defined by δi = ki+1−ki, 0≤ i < i∗. The
minimum dwell-time is then δ∗ = min0≤i≤i∗ δi. The Markov
parameters of the SLS (1) are defined as

h(k, t) =

 D(k), k = t
C(k)Φ(k, t +1)B(t), k > t
0, k < t

(2)

where Φ(k, t) is the state-transition matrix defined by
Φ(k,k) = In and Φ(k, t) = A(k− 1) · · · A(t) if k > t. The
following realization problem was formulated in [18].

Problem 1: Given n∗, σ∗, and the Markov parameters
h(k, t), ∀1 ≤ t ≤ k ≤ N, determine n, σ , ϕ , and P j ∈P ,
∀1≤ j≤σ uniquely up to one similarity transformation only.
A realization algorithm that solves Problem 1 was proposed
in [18] under the following two assumptions.

Assumption 1 (submodels set): Every P j ∈ P , j =
1, · · · ,σ is bounded-input/bounded-output (BIBO) stable and
has a MacMillan degree n.

Assumption 2 (Switching sequence): ϕ satisfies δ∗ ≥ n∗.
An LTI system of state dimension n that is both observable

and controllable, and thus minimal, has Macmillan degree n.
This is also true for (1) when Assumptions 1–2 hold and
k ∈ (2n∗ N− 2n∗+ 1], see Lemma 3.1 in [18]. This result
allows one to extract an LTV realization that is topologically

equivalent to (1) by robust numerical linear algebra tech-
niques. Recall that two realizations (A(k),B(k),C(k),D(k))
and (Ǎ(k), B̌(k),Č(k), Ď(k)) have the same Markov parame-
ters if they are topologically equivalent, i.e., there exists a
bounded matrix T (k) ∈Rn×n with bounded inverse, called a
Lyapunov transformation, such that for all k

Ǎ(k) = T (k+1)A(k)T−1(k), B̌(k) = T (k+1)B(k),

Č(k) =C(k)T−1(k), Ď(k) = D(k).

Input-output maps of topologically equivalent realizations are
invariant: They produce the same outputs as identical inputs.

A. An LTV Realization from Markov Parameters
For all k > 2n∗, we define the Hankel matrices by

H (k) =

 h(k,k−1) · · · h(k,k−2n∗)
...

. . .
...

h(k+2n∗,k−1) · · · h(k+2n∗,k−2n∗)


which factorize as H (k) = O(k)R(k− 1) [28] where the
extended observability/controllability matrices are defined by

O(k) =


C(k+1)

C(k+1)Φ(k+1,k)
...

C(k+2n∗)Φ(k+2n∗,k)

 , (3)

R(k−1) =
[
B(k−1) · · · Φ(k,k−2n∗+1)B(k−2n∗)

]
.

(4)

Since O(k) and R(k − 1) are full-rank matrices and
rank(H (k)) = n, an LTV realization which is topologically
equivalent to the SLS (1) may be extracted from the pairs
{H (k),H (k+ 1)}, 2n∗ < k ≤ N− 2n∗ by performing sin-
gular value decompositions (SVD) [18].

Observe that O(k) and R(k−1) may be determined up to
two similarity transformations. In fact, let J↑ and J↓ denote
the shift matrices of block-row up/down and J← and J→
denote the block-column left/right shift matrices defined by

J↑ = [02n∗p×p I2n∗p] , J↓ = [I2n∗p 02n∗p×p] ,

J← =

[
0m×(2n∗−1)m
I(2n∗−1)m

]
, J→ =

[
I(2n∗−1)m
0m×(2n∗−1)m

]
.

Then, from the factorization formula with k and k+1 plugged
in, we derive two formulas J↑O(k) =

(
J↓O(k+1)

)
A(k) and

R(k)J← = A(k)(R(k−1)J→). Hence, we retrieve A(k) from
A(k) =

(
J↓O(k+1)

)† J↑Oq(k) where X† = (XT X)−1XT .
It remains to estimate O(k) and O(k+1). Apply SVD to

H (k) and H (k+1) yielding H (k) =U(k)Σ(k)V T (k) and
H (k+1) =U(k+1)Σ(k+1)V T (k+1). Let

Ô(k) =U(k)Σ1/2(k), R̂(k−1) = Σ
1/2(k)V T (k),

Ô(k+1) =U(k+1)Σ1/2(k+1),

R̂(k) = Σ
1/2(k+1)V T (k+1).

Up to two non-singular matrices T (k) and T (k+ 1), Ô(k)
and Ô(k+1) provide estimates of O(k) and O(k+1), that
is, O(k) = Ô(k)T (k) and O(k+1) = Ô(k+1)T (k+1). Let

Â(k) =
(
J↓Ô(k+1)

)†
J↑Ô(k) = T (k+1)A(k)T−1(k).
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Note that the SVDs reveal n. To estimate B(k) and C(k), let

JC = [Ip Op×2np] , JB =

[
Im
0(2n−1)m×m

]
.

Then, C(k) = JCO(k), B(k) = R(k)JB as the estimates of
C(k) and B(k), set Ĉ(k) = JCÔ(k), B̂(k) = R̂(k)JB. Then,
Ĉ(k) =C(k)T−1(k), B̂(k) = T (k+1)B(k), D̂(k) = h(k,k) and
P̂(k) = (Â(k), B̂(k),Ĉ(k), D̂(k)) is topologically equivalent
to P(k) on (2n N−2n]. This derivation forms Algorithm 1.

Algorithm 1: LTV realization from Markov parameters
Input: Markov parameters h(k+ i,k− j), 0≤ i≤ 2n∗,

1≤ j ≤ 2n∗, and k ∈ (2n∗ N−2n∗+1]
1: while k ∈ (2n∗ N−2n∗] do
2: Compute H (k) and H (k+1)
3: Compute the SVDs and determine n
4: Compute the extended observability/controllability

matrix estimates
5: Estimate Â(k), Ĉ(k), B̂(k), and set D̂(k) = h(k,k)
6: P̂(k) = (Â(k), B̂(k),Ĉ(k), D̂(k))
7: k← k+1
8: end
9: Restore the state dimension : n∗ = n

Output: P̂(k), ∀k ∈ (2n∗ N−2n∗]

As step 9 in algorithm 1 indicates, once n is learned, n∗ is
brought down to n, which shall be assumed in the analysis
that follows in the later sections.

In Algorithm 1, it is not necessary to calculate the discrete-
state estimates P̂(k) over a continuum of points in time, see
Step 11 in Algorithm 2. The estimates P̂(k) are not similar
to P(k), but they match the Markov parameters of (1). If
a fixed basis is used in the SVDs and 2n+ 1 points from
the left and/or the right end of each segment of sufficient
length are removed, the similarity P̂(k) ∼ P(k) will be
enforced on the rest of the points. The fixed basis means that
identical matrices result in identical SVDs. The segments are
estimated by computing the differences H (k+ 1)−H (k)
as k is varied between its limits, see [18] for further details.

III. FORWARD/BACKWARD CORRECTIONS FOR SLSS

Let Ô(k), R̂(k) be defined as in (3-4) by employing the
triplet (Â(k), B̂(k), Ĉ(k)) instead. For all k ∈ (2n N−2n], let

V (k) = O†(k)O(k+1),
V̂ (k) = Ô†(k)Ô(k+1).

The latter is called the forward correction operator and can
be computable from the input-output data since Ô(k) and
Ô(k+1) can be as well [27]. Note that the relationship holds

V̂ (k) = T (k)V (k)T−1(k+1).

Now, pre-multiply Â(k) and B̂(k) with V̂ (k) and let

Âf(k) = V̂ (k)Â(k) = T (k)V (k)A(k)T−1(k),

B̂f(k) = V̂ (k)B̂(k) = T (k)V (k)B(k)

and leave Ĉ(k), D̂(k) the same. Let

Pf(k) = (V (k)A(k),V (k)B(k),C(k),D(k)),

P̂f(k) = (Âf(k), B̂f(k),Ĉ(k), D̂(k)).

Then, T (k) : Pf(k) 7→ P̂f(k) is a forward time-varying
similarity transformation and if V (k) = In, P̂f(k)∼Pϕ(k),
i.e, the forwardly corrected realization is in similarity with
the true discrete-state at time k, which is a key observation to
retrieving the discrete-states as we will see later. Similarly for
all all k ∈ (2n N−2n], we introduce the backward correction
operator given by

Ŵ (k) = R̂(k−1)R̂†(k),

W (k) = R(k−1)R†(k).

Note the relationship Ŵ (k) = T (k)W (k)T−1(k + 1). Post-
multiply Â(k) and Ĉ(k) with Ŵ (k)

Âb(k) = Â(k)Ŵ (k) = T (k+1)A(k)W (k)T−1(k+1),

Ĉb(k) = Ĉ(k)Ŵ (k) =C(k)W (k)T−1(k+1)

and leave B̂(k) and D̂(k) the same. Let

Pb(k) = (A(k)W (k),B(k),C(k)W (k),D(k)),

P̂b(k) = (Âb(k), B̂(k),Ĉb(k), D̂(k)).

Thus, T (k+1) : Pb(k) 7→ P̂b(k) is a backward time-varying
similarity transformation and if W (k) = In, P̂b(k)∼Pϕ(k).

The advantage of working with the forward/backward cor-
rection operators is that one could use arbitrary basis vectors
in computing the SVDs while maintaining the similarity
relations. The following lemma summarizes the properties of
the forward and backward correction operators on constant
ϕ intervals. It appeared as Proposition 3.2 in [18].

Lemma 1: Suppose that Assumptions 1–2 hold and ϕ is
constant on [a b]⊂ (2n N−2n]. Then, V (k) = In, Pf(k)∼
Pϕ(k), ∀k ∈ [a b−2n−1] if b−a≥ 2n+1 and W (k) = In,
Pb(k)∼Pϕ(k), ∀k ∈ [a+2n b] if b−a≥ 2n.

Recall the relationships V̂ (k) = T (k)V (k)T−1(k+1) and
Ŵ (k) = T (k)W (k)T−1(k+ 1). Since T (k) = T (k+ 1) does
not necessarily hold in [a b−2n−1] or [a+2n b] because
arbitrary vector bases might have been used in the SVDs,
we can’t expect V̂ (k) ∼ V (k) = In or Ŵ (k) ∼ W (k) = In
to hold on these intervals. Yet, Pf(k)∼Pϕ(k), ∀k ∈ [a b−
2n− 1] and Pb(k) ∼Pϕ(k), ∀k ∈ [a+ 2n b]. Furthermore,
these are the relationships all we need to extract the discrete-
states and detect the switches. In fact, we apply Lemma 1 to
the following intervals when considering the forward time-
varying similarity transformation

If(0) = [2n+1 k1−2n−2] if δ0(χ)≥ 4n+2,
If(i) = [ki ki+1−2n−2] if i /∈ {0, i∗} and δi(χ)≥ 2n+2,

If(i∗) = [ki∗ N−4n−2] if δi∗(χ)≥ 4n+3.

In the case of the backward time-varying similarity transfor-
mation, these intervals are replaced by

Ib(0) = [4n+1 k1−1] if δ0(χ)≥ 4n+1,
Ib(i) = [ki +2n ki+1−1] if i /∈ {0, i∗} and δi(χ)≥ 2n+1,

Ib(i∗) = [ki∗ +2n N−2n−1] if δi∗(χ)≥ 4n+2.
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The dwell times enforced in the forward/backward intervals
I f /Ib are to ensure those intervals are not empty sets. When-
ever a dwell time constraint fails, the corresponding interval
for that index must be replaced by the empty set /0.

Corollary 1: Suppose that Assumptions 1–2 hold and
If(i) ̸= /0, Ib(i) ̸= /0, ∀i ∈ [0 i∗]. Then, for all i ∈ [0 i∗],
Pf(k)∼Pϕ(k), ∀k ∈ If(i) and Pb(k)∼Pϕ(k), ∀k ∈ Ib(i).

The time-varying coordinate transformations were also
utilized in the eigensystem realization algorithm [29] which
uses input-output data from multiple experiments.

IV. ESTIMATION OF THE DISCRETE-STATES AND THE
SWITCHING SEQUENCE

In this section, we combine the results in Sections II–III
to propose a realization algorithm that solves Problem 1.
Though the forward and backward correction operators can
be applied to all points in (2n N− 2n], it is more efficient
to priorly apply the first order difference operator presented
next. This is the case since if a point belongs to the stationary
point set of H it also belongs to I f ∩ Ib as we shall see next.

A. The Stationary Point Set of H

The gradient of the Hankel matrix H (k) in the forward
direction is defined by δH (k) = H (k+ 1)−H (k) for all
k ∈ (2n N−2n]. The stationary point set of H is then

ZH := {k ∈ (2n N−2n] : δH (k) = 0}.

It is possible to relate ZH to If(i) and Ib(i), 0≤ i≤ i∗ when
(1) satisfies the following (one-step) switch detectability
condition and the discrete-states have no poles at zero.

Assumption 3: The SLS (1) satisfies[
Cϕ(k) Dϕ(k)

]
̸=
[
Cϕ(l) Dϕ(l)

]
⇐⇒ ϕ(k) ̸= ϕ(l),[

Bϕ(k)
Dϕ(k)

]
̸=
[

Bϕ(l)
Dϕ(l)

]
⇐⇒ ϕ(k) ̸= ϕ(l),

Assumption 4: For all 1≤ j ≤ σ , P j has no poles at 0.
Let

K(0) = If(0)∩ Ib(0) if δ0(χ)≥ 6n+2,
K(i) = If(i)∩ Ib(i) if i /∈ {0, i∗} and δi(χ)≥ 4n+2,

K(i∗) = If(i∗)∩ Ib(i∗) if δi∗(χ)≥ 6n+3

and denote the cardinality of a given set X by |X |, that is, the
number of the elements in X . Thus, |K(i)|= 1 even if K(i)
has length zero, i.e., a singleton and K(i)⊂ I(i), ∀0≤ i≤ i∗.
The following appeared in [18] as Lemma 5.1.

Lemma 2: Consider Algorithm 1. Suppose that Assump-
tions 1–2 and 3–4 with D(k) ≡ 0 hold. Then, ZH ∩ I(i) =
K(i) if |K(i)| ≥ 1, 0≤ i≤ i∗.

B. A realization algorithm

For each K(i)= [αi βi] with |K(i)| ≥ 1, set ci =(αi+βi)/2
if |K(i)| is odd and ci = (αi + βi− 1)/2 if |K(i)| is even.
Let Iν = {i ∈ [0 i∗] : |K(i)| ≥ ν}, ν ∈ N. From Corollary 1,
Pf(ci) ∼ Pϕ(ci) and Pb(ci) ∼ Pϕ(ci) if ν ̸= 0. These
relations generate the equivalance classes on the collection
I(i), 0≤ i≤ i∗ and from each equivalance class, a represen-
tative discrete-state may be selected. The number of such

choices is bounded above by σ . If ϕ(Iν) = S for some
ν ∈ N, all the discrete-states in P are uniquely recovered
up to σ similarity transformations. Obviously ν is a design
variable but larger values are desired since they permit easier
recovery. The equivalence classes can be retrieved by a
clustering algorithm [30]. A simple feature for clustering is
the sequence MF(k) = ∥H (k)∥F for 2n < k≤ N−2n. This
choice is consistent with the definitions of Pf(k) or Pb(k)
if ν ̸= 0 since on the interval [αi βi], H (k) =H (k+1) and
therefore V (k) = In and W (k) = In which is key in retrieving
the discrete-state set. From Lemma 2, observe that

ki+1 = βi +2n+2, i ∈ [0 i∗),
(5)

ki = αi−2n, i ∈ (0 i∗]

and the recovery will be complete if |K(i)| ≥ 1 for all
0 ≤ i ≤ i∗. When |K(i)| ≥ 1 does not hold for some i ∈
[0 i∗], ki and/or ki+1 can be detected by alternative iterative
switch detection algorithms reported in [18]. Furthermore,
the basis construction scheme outlined there nicely fits into
the realization scheme of this paper. It must be applied when
the realized SLS model is to be used for predicting outputs
to prescribed inputs. An error analysis can be carried out
analogously to [18] to show that Algorithm 2 is robust to
amplitude bounded noise.

Let ZH ,ε = {k ∈ (2n N−2n] : ∥δH (k)∥F < ε}. Since
N < ∞, i∗ < ∞, and the Markov parameters are noiseless,
ZH = ZH ,εZ for some εZ > 0 from ZH = ∩ε>0ZH ,ε . This
fact is useful in the implementation of δH (k) = 0, which
is essential for the retrieval of the stationary point set. We
summarize the results derived in this section in the following
theorem.

Theorem 1: Consider Algorithm 2 with the noiseless
Markov parameters of the SLS (1). Suppose that Assump-
tions 1-2, 3–4 with D(k) ≡ 0 hold. Then, Algorithm 2
recovers P and χ if |K(i)| ≥ 1 for all 0≤ i≤ i∗.

Algorithm 2: SLS realization from Markov parameters
Input: Markov parameters h(k+ i,k− j) for 0≤ i≤ 2n,

0≤ j ≤ 2n, 2n < k ≤ N−2n, a small εZ > 0, a
large ν , and P̂(k), 2n < k ≤ N−2n from
Algorithm 1

1: Compute δH (k) for all 2n < k ≤ N−2n
2: Initialize ZH ,εZ = φ

3: while k ∈ (2n∗ N−2n∗] do
4: if ∥δH (k)∥F ≤ εZ then
5: ZH ,εZ = ZH ,εZ ∪{k}
6: end
7: k← k+1
8: end
9: Determine points ĉi ∈ K̂(i), i ∈ Iν

10: Choose σ points from {ĉi : i ∈ Iν} by clustering MF (ĉi)
11: Calculate P̂f(ĉi) or P̂f(ĉi), 1≤ i≤ σ from Algorithm 1
12: Estimate k̂i and k̂i+1 from (5) for all 0≤ i≤ i∗

Output: P̂ and χ̂

The discrete-states obtained from Algorithm 2 should
undergo a basis correction to produce an identical input-
output map to that of the original system, see for instance
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Section 6 in [18] and reference [10] for basis correction
recipes for SLS.

V. NUMERICAL EXAMPLE

A. SLS Realization in a Noiseless Setup

Consider the MIMO-SLS adopted from [31]. The discrete-
states are given by

A1 =

0.4 0.1 0
0.8 0.4 0
0 0 0.8

 , B1 =

 1.5 0.9
1 −1
−1.5 2.3

 ,

C1 =

 0.8 1.1 2
−1.3 0.7 1.7
1.5 0.7 −0.9

 , D1 = 0;

A2 =

0.3 0.2 0
0.8 0.2 0
0 0 −0.75

 , B2 = B1,C2 =C1, D2 = 0.

Note that this SLS conforms to Assumptions 1, 3–4. A
switching sequence that conforms with Assumption 2 was
generated. It is plotted in Figure 1.

We generated the noiseless Markov parameters for {P,ϕ}
and run Algorithm 1, thus yielding a topologically equivalent
realization to (1) on (2n N−2n]. Next, we run Algorithm 2
with the Markov parameter sequence and the state-space
matrices in P̂(k) for 2n < k ≤ N − 2n returned by Al-
gorithm 1. Clustering over the feature space MF(k), k ∈
ZH ,εZ with εZ = 10−5 using the DBSCAN algorithm [30]
revealed an estimate of σ denoted by σ̂ . The feature for
clustering MF(k) and the histogram of clustering are plotted
in Figure 2. The number of the submodels was correctly
identified, i.e., σ̂ = σ = 2. Next, according to Step 10
of the algorithm we targeted the σ intervals characterized
by K̂(i), i ∈ Iν where we picked ν = 30. Recall that the
corrected realizations over the mid-points of these intervals
are the discrete-state estimates. The estimated eigenvalues
retrieved from the estimated discrete states are found to be
an exact match to the true ones since the algorithm was
driven via noiseless Markov parameters. Note the perfect
match between the two sets. Step 12 of Algorithm 2 allowed
us to recover the entire switching signal since |K(i)| ≥ 1 for
all 0 ≤ i ≤ i∗ for the SLS in the example. The estimated
switching signal and the true one are plotted in Figure 3.
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Fig. 1: The switching sequence.
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Fig. 2: The retrieval of σ via the DBSCAN algorithm [30].
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Fig. 3: The switching sequence estimate (’◦’) and the true
switching sequence (’-’).

B. SLS Realization in a Noisy Setup

We numerically show that the proposed algorithm per-
sists a good performance when driven with noise corrupted
Markov parameters. We consider the following SISO-SLS
adapted from [13]

A1 =

(
0 0.8
−0.8 0.5

)
, B1 =

(
0.4
0

)
,C1 =

(
1 0

)
, D1 = 0;

A2 =

(
0 0.5
−0.5 0

)
, B2 =

(
1

0.5

)
,C2 =

(
1 0

)
, D2 = 0.

We drive Algorithm 1 with noisy Markov parameters
belonging to this SLS. We assess the performance by em-
ploying two different performance metrics. First, we compute
the relative errors ∥M j − M̂ j∥F/∥M j∥F for j = 1,2 where
∥M j∥2

F = ∥A j∥2
F +∥B j∥2

F +∥C j∥2 +∥D j∥2
F and sum over S.

The result is denoted by δP . Second, a measure of fit for
the switching sequence estimates is the percentage of the
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TABLE I: The average performance of Algorithm 2 when
driven with noisy Markov parameters.

Errors δP FITϕ (%)
SNR (dB) 50dB 40dB 30dB 50dB 40dB 30dB

Mean 0.006 0.0.0174 0.0613 100 99.98 99.45
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Fig. 4: The estimated (’◦’) and the true (’+’) submodel eigenvalues
for different noise realizations and SNR = 30db.

correctly classified points. It is called FITϕ and calculated
via the formula

FITϕ =

(
1− 1

N

N

∑
k=1

sign |ϕ̂(k)−ϕ(k)|
)
×100%.

Table I displays the average performance of Algorithm 2
computed over 100 noise realizations for different signal-to-
noise ratio (SNR) in terms of both performance metrics, δP

and FITϕ . Lastly, the estimated eigenvalues are contrasted to
the true ones in Figure 4.

VI. SUMMARY

In this paper, we studied the problem of MIMO-SLS
realization from the Markov parameters initiated in [18].
We proposed a simplified algorithm based on the forward
and backward corrections of an LTV realization that is topo-
logically equivalent to the SLS estimated from the Markov
parameters.
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