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Abstract— The aim of this paper is to study the appli-
cability of the control allocation (CA) framework for dual-
stage actuator (DSA) systems - a subclass of overactuated
precise positioning devices, characterised by serial connection
of a coarse and fine stage. In contrast to the typical control
frameworks developed for DSAs, such as master-slave and
decoupled design, the CA framework approaches the control in
a modular way, clearly separating the motion control from the
allocation of efforts among the actuators. To achieve this, the
concept of redundant controllability is introduced with the aim
to analyse weakly input redundant LTI systems to determine
the virtual effort that enables the separation of the system in
terms of the CA approach. As a result, it shows that with
serially connected actuators, the redundancy is clearly present
in the displacement domain. In addition, the application of the
framework is shown and the possible control approaches are
discussed.

I. INTRODUCTION

Dual-Stage Actuators (DSA) are mechatronic systems
characterized by the serial connection of two complementary
actuators, designed for driving precise positioning applica-
tions. The first (coarse) stage is designed to cover the total
range of motion, and the second (fine) stage provides the
required accuracy and bandwidth. Having two independent
actuators contributing to the one dimensional output posi-
tioning, the DSA falls under the broader category of the
overactuated systems.

Overactuation always implies some kind of input redun-
dancy (IR) [1]. According to [2] this term can be further
split into two types, namely strong and weak IR. Depending
on where in the system the redundancy occurs, in the first
case, the input operator is rank deficient, whereby in the latter
case the redundancy occurs somewhere in the system, i.e. the
state- or the output space. Upon closer examination of the
weak IR, it becomes evident that this characterization encom-
passes several potential system configurations, as illustrated
in Fig. 1. Consequently, the requirements for controlling
such systems vary based on the specific internal structure
in question, such as the need to compensate for low-level
dynamics or implement a decoupling controller.

In all input redundant systems, apart from achieving the
standard output control objectives, there arises the need to
address an allocation problem. In the context of motion
control, this task can be understood as how to distribute the
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Fig. 1. Possible configurations for weak input redundancy in the context
of an dual-input single-output system. Σi is to be understood as a dynamic
subsystem. I.) Non-negligible dynamics of the actuators Σ1 and Σ2,
combined with a strongly IR subsystem Σ3. II.) Actuators with interaction.
III.) Fully coupled system, e.g. the consideration of Back-EMF effects. IV.)
A strongly IR system for comparison. In this case, the ki are static gains.

total control effort among the actuators by considering their
characteristics and constraints. In order to enable a structured
approach for control and allocation design, in the last decades
a wide variety of solutions under the term Control Allocation
(CA) have been developed. When examining the literature,
two primary CA frameworks become evident: Historically
the first one to appear is characterized by the extraction of a
virtual control effort in the system, whose dimensionality
equals the number of controlled system outputs (see [3],
[4], [5] and the references therein). This allows a system
decomposition into a square subsystem (see Def. 3) and
an input redundant part. The advantage of this approach
lies in the clear separation of the control and the allocation
tasks. All control modules arise as square systems, and only
the allocation module has to resolve the overactuation (see
Fig. 2). However, its applicability depends on whether such
virtual control effort can be found. Introduced by the work
of [2], another type of control framework under the term
contol allocation has been established (and well researched,
e.g., by [6], [7], [8]). The strategy proposed there solves the
allocation problem alongside with the control task inside a
single module. Since this is not a strict separation of control
and allocation of the control inputs, this approach is not taken
into consideration here.

To indicate the problem statement of this paper, a closer
examination of the main idea behind DSAs is required.
The specific actuator combination of a coarse and fine
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TABLE I
COMPLEMENTARY PROPERTIES OF DSA.

Coarse stage fine stage

Long range Short range
Low bandwidth High bandwidth

Low tracking-accuracy High tracking-accuracy

stage implies an interconnection of so called complementary1

properties (see Table I).
Due to the unique structure of serially connected comple-

mentary actuators, a toolbox of DSA-specific control frame-
works has arisen including Master-Slave Design, Decoupled
Design, and Parallel Design (see [10], [11]). Analysed and
developed mainly within the field of Hard Disk Drives
(HDD), these frameworks have established themselves as
state-of-the-art for DSAs in other applications. Common
across all of them is the use of two controllers designed
with respect to each stage, and specific feedback connec-
tions which lay down the allocation principle between the
controlled stages. In a survey paper [10], the advantages and
drawbacks of these frameworks are analysed. Irrespective
of the framework, both controllers can be designed using
a variety of methods, and many recent papers propose new
algorithms which provide enhanced performance (e.g., based
on sliding mode control [12]).

Nevertheless, a specific connection between the controllers
represents a restriction for the possibilities how to distribute
the commands among the stages. As [13] argues, specific
trajectories are not achievable with these existing schemes.
Additionally, the established DSA control strategies approach
the typical control objectives (stabilization, tracking, dis-
turbance rejection, etc.) and the effort allocation not in a
separate way, but they are a product of the controller tuning
and the specific feedback connections. In order to alter the
allocation among the controlled actuators, the individual
controllers have to be retuned. However, this would in turn
affect the control objectives. Furthermore these approaches
are not scalable and therefore restricted to the typical DSA
setting.

In the paper at hand, the assumption is made that the
targeted exploitation of the complementary properties is
closely associated to the distribution of redundant inputs and
therefore should, as far as possible, be treated in a separate
module, independent of the controller design. Having the
advantages of modular design and a variety of developed
allocation schemes, the CA framework represents a promis-
ing approach to address the mentioned issues. In the last
decade the CA framework has found increasing application
in many engineering fields (power electronics [14], power
systems [15], precise positioning devices [16] and nuclear
fusion technologies [17]), but still its utilisation for DSA
systems has been insufficiently researched.

Hence the novelty of this paper is to analysis the capability
of the CA framework to DSA. To do this, a general analysis

1These properties are consistent with the antagonisms, defined in [9].

of the redundancy within weakly IR systems is given. The
paper is organised in the following way: Section II provides
formal definitions of overactuation, input redundancy, as well
as a brief introduction to the CA framework. In section III
the concept of redundant controllability is given. Furthermore
the existence of the virtual effort in weakly IR systems is
investigated. In Section IV the DSA system is analysed with
respect to the CA framework requirements. In Section V, a
CA framework is formulated for DSAs.

II. BACKGROUND

Nomenclature

Within this paper calligraphic symbols C are used to
represent operators which can be understood as a generic
control law. im(·) denotes the image of a matrix. ker(·)
denote the right nullspace of a matrix. Σ(·) denote a LTI
system according to Eq. 1 and X(·) is the corresponding state
space.

A. Overactuation vs. Input Redundancy

In order to give a delineation of the terms according to
the current state-of-the-art, we consider the LTI System Σ:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(1)

with the states x(t) ∈ Rn, the control inputs u(t) ∈ Rp and
the systems outputs y(t) ∈ Rq at time t.

Definition 1. (Overactuation) According to [8], Σ is said to
be overactuated if p > q and rank(B) ≥ q holds. In Addition
it is assumed that the system is minimal and rank(C) = q.

A closer look at Def. 1 shows that a case distinction
regarding the rank of linear map B can be made, which
leads to the definitions of strong and weak IR:

Definition 2. (Input Redundancy) An overactuated system
is called strongly IR, if p > rank(B) = q holds, and weakly
IR, if p = rank(B) > q is given.

According to our distinction the CA framework is char-
acterised by the fact, that the control law - irrespective if it
is open or closed-loop - has to face additionally the actuator
coordination. This leads to the fact, that it has to handle the
computation of a higher dimensional signal out of a lower
dimensionality. In order to ensure generality, we will indicate
this control law as a non-square2 operator C:

Definition 3. (Square Systems) A system is called square if
the number of inputs p is equal to the number of outputs q.
In an analogous way we define an operator O: X → Y as a
square operator, if it is a bijection.

2As an example for a square control law, one can think of a classical
PID controller. In contrast, Linear Quadratic Regulators (LQR) or Model
Predictive Controllers (MPC) are able to handle overactuation, and therefore
can be implemented as non-square operators.
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B. Control Allocation (CA)
The CA framework is usually divided into three levels

as a hierarchical structure. The high-level controller CH, an
allocator CA and possible low-level controllers CL (see Fig.
2). The proposed division of the control requires separation
of the system, i.e. it must be possible to separate the system
dynamics, which allows to extract the redundant controllable
states. Provided that these states are unique, the ”location”
where the overactuation starts in the system can be found and
specifically addressed by the allocator. This new system input
is referred to as a virtual effort (or task) τ and can usually
be understood as the sum of all actuator forces, although an
alternative is shown in this paper (see Sec. IV). Remaining
dynamics are assigned to the individual input paths and taken
into account by the respective low-level control. Thus, all
controlled sub-systems appear to be square.

II.)

I.)

Fig. 2. I.) Structure of the CA framework [4] including CH as a high-level
controller designed with respect to Σs, CA as the allocator, and a possible
low-level control unit CL. According to [1], the system Σ is decomposed
into Σa, which is IR, and a square part Σs. II.) Further decomposition of Σ
to be consistent with [18] and Def. 4: Σ̄a is to be handled by the low-level
control CL and for M it holds that ker(M) ̸= {0}. Whereby the mapping
M is also called the actuator effectiveness matrix.

This separation highlights a fundamental property of
overactuated systems: redundancy and the associated
requirements must always be defined in terms of the input
of the redundant states, i.e., the virtual effort τ . In the CA
setting, the effort to be produced τref represents the output
of the high-level controller. It is then up to the allocator
to compute a solution from a large number of possible
combinations of u. The concrete set of feasible solutions is
directly related to the use case of the system and therefore
to the chosen algorithm in CA.

Regardless of this fact, the first question that arises is the
separability of the system. According to [19], for strongly
IR systems the virtual effort corresponds to the following
definition:

Definition 4. (Virtual Effort): Let B ∈ Rn×p the input
mapping of an strongly IR system. This implies that fac-
torization is possible, i.e. B = B̂M , whereby B̂ ∈ Rn×q

and M ∈ Rq×p. The product Mu =: τ ∈ Rq is then defined
as the virtual effort.

Obviously, this definition cannot be applied to weakly IR
without further elaboration. Consider the different system
configurations shown in Figure 1, which are united under
the term weakly IR. For system II.) and III.), for example,
it is possible to find several matrices that satisfies definition
4. In other words there are various subsystems, which have
the property of being strongly IR. In order to analyse the
separability of overactuated systems in the general case,
in the following the concept of selective controllability by
[20] is revisited and extended to the concept redundant
controllability.

III. REDUNDANT CONTROLLABILITY

Proposition 1. Consider the Hermite controllability matrix
as introduced in [21] by the matrix pair (A,B) ∈ Rn×n ×
Rn×p:

H(A,B) := [b1 Ab1 ... An−1b1 ... bp Abp ... An−1bp] (2)

where b(·) is the respective column vector of B. H(A,B)
can be rewritten as a block matrix in the form of

H(A,B) =: Ĥ(Qc,j)j∈{1,...,p} = [Qc,1 ... Qc,p], (3)

whereby the respective elements of Ĥ are understood as the
selective controllability matrices:

Qc,j := [bj Abj ... A
n−1bj ] ∈ Rn×n. (4)

Based on these matrices, the Kalman criterion can be used to
prove complete controllability determined by the j-th input.
In the case of full controllability, the question of selective
controllability is trivial, which is why it is assumed that this
is not the case, i.e. rank(Qc,j) < n. Furthermore, there is no
restriction on the algebraic multiplicity of the eigenvalues
of A. Also, if only the i-th row vector of Qc,j is taken into
account, the i-th component of x(t) is selectively controllable
by the j-th component of u(t) if, and only if, it contains at
least one non-zero element. (Proof see [20, p. 451].)

Definition 5. (Redundant Controllability) A component
xi(t) ∈ R of the state vector x(t) from the system Σ is called
redundant controllable if there exists at least two components
(uj(t) and uk(t)) ∈ R with j ̸= k, of the control vector u(t),
for which xi(t) is controllable, in the sense that there exists
a finite time tE with the corresponding state xi(tE) = xi,E, so
that the inital state xi(t0) = xi,0 can be transfered into xi,E
by both uj and uk. In other words, xi(t) must be selective
controllable by at least two distinct components from u(t).

A. Redundant Controllable Subspace

Definition 6. (Redundant Controllable Subspace) The Sub-
space of X which is spanned by the redundant controllable
components of x(t) is called the redundant controllable
subspace, denoted by XR. The orthogonal complement of
XR is called the non-redundant controllable subspace XNR =:
X⊥

R . Under the assumption that Σ is minimal, it holds that
XR ⊕ XNR = X.
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Proposition 2. Consider X as the corresponding state space
to Σ and Qc,j as the selective controllablilty matrix as
introduced in Prop. 1. By

Xc,j := im(Qc,j) ⊆ X (5)

the selective controllable subspace XC,j can be defined.
From this, the redundant controllable subspace is described
through the intersection of the selective controllable sub-
spaces:

XR :=

p⋂
i=1

Xc,j . (6)

∀ XR ̸= {0} one can define a according subsystem ΣR by the
tupel (AR, BR) with the corresponding state vector xR(t) ∈
XR. This results in the overall system description Σ̂ by

˙̂x(t) =

[
ANR 0
AI AR

]
︸ ︷︷ ︸

=:Â

x̂(t) +

[
BNR
BR

]
︸ ︷︷ ︸

=:B̂

u(t). (7)

with the transformed state vector x̂ =
[
xNR xR

]T
=

TRx. The matrices ANR ∈ Rdim(XNR)×dim(XNR) and AR ∈
Rdim(XR)×dim(XR) represents the eigen dynamics of the re-
spective states. Whereas AI ∈ Rdim(XR)×dim(XNR) describes the
coupling between these two subsystems. The transformation
matrix TR is given by a basis (bn ∈ Rdim(XR))n∈{1,...,dim(XR)}
of XR an orthogonal complements of bn.

Based on the characteristics of XR, respective AR, it is now
possible to analyse the separability of the system in terms
of the applicability of Control Allocation. More precisely,
to investigate the existence of an virtual effort in weakly IR
systems, which is done in the following theorem:

Theorem 1. Consider the redundant controllable subspace
XR and the transformed system ΣR as introduced in Prop. 2.
Furthermore Σ is assumed to be weakly IR. Depending on
the size of XR one can carry out a case distinction:

I. XR = {0} ⇒ ker(C) ̸= {0}: This case implies that the
virtual effort can be factorized out of the output matrix
C. Namely, the redundancy of the system starts in the
output.
Proof: Since XR = {0}, all im(Qc,j) are linearly
independent, thus every input j steers an independent
subsystem, which is fully observable. Therefore
C contains at least p-elements in the form of
C = (cj)j∈{1,...,p} ∈ Rq×rank(Qc,j). With p > q it
follows that ker(C) ̸= {0} holds.

II. XR ⊂ X ⇒ ker(
[
aT

I,1 bT
R,1

]
) ̸= {0}: Consider aT

I,1 and
bT

R,1 the first row vector of AI and BR, respectively. The
redundancy starts at the first redundant state of XR,
i.e. in the input space of ΣR. Depending on whether
ΣR is weakly- or strongly IR, there are more than one
possible virtual efforts in the system. In the latter case
it is unique, whereby in each case a factorization out
of

[
aT

I,1 bT
R,1

]
is possible.

Proof: Irresepctive of ΣR is weakly- or strongly IR,

the number of independent inputs in ΣR is larger
than q. Thus the number of non-zero elements p∗ in[
aT

I,1 bT
R,1

]
∈ Rp∗

is also larger than q. Since Σ̂ is
observable by definition, q hat to be larger than 1 and
therefore ker(

[
aT

I,1 bT
R,1

]
) always holds.

III. XR = X: The whole state space is redundant control-
lable. Depending on the nullspace of C a further case
distinction is needed:

III.a ker(C) ̸= {0}: Analogue to case I., τ can be
factorised out of C. However, similarly to case II.
(and ΣR is weakly IR) this might not be a unique
solution.

III.b ker(C) = {0}: Since the nullspace of C is empty,
not even a static subsystem can be separated.
Thus, without further adjustments (e.g.through the
implementation of a decoupling controller), Control
Allocation cannot be applied.

Remark 1. The analysis presented focusses only on a single
separation of the system. Especially in case II., if ΣR is
weakly IR and case III. of Th. 1. Deeper considerations of
the redundant controllable subspace, as well as the proof of
Prop. 2 and Th. 1, case III. are left out for further research.

IV. DUAL-STAGE ACTUATOR ANALYSIS

For the following analysis a generic DSA configuration is
considered, consisting of a linear drive (e.g., spindle motor)
as the coarse stage and a piezoelectric actuator as the fine
stage. Developing the dynamic physical model of mecha-
tronic actuators is usually approached with lumped parameter
models, which include both the electrical and mechanical
components that constitute the system. Fig. 3 shows the
lumped parameter model of the serially connected actuators
(i.e., the DSA). Apart from the represented linear elements,
these systems exhibit pronounced non-linear behaviour too,
such as hysteresis and stick-slip effect.

+ +
--

+
-

I.)

II.)

Fig. 3. Lumped-parameter schematic of a DSA, separated into fine and
coarse stage. I.) Electrical circuits. II.) Mechanical circuit of the whole serial
coupled DSA.
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Ubiquitous in the DSA literature are certain simplifications
of this physical model. First, as stated for example in [22]
and [16], current (or voltage) control of the actuators is
usually assumed which compensates the back-emf forces.
Consequently, the actuators are viewed as pure torque (or
force) generators, and the system is modelled only with
its mechanical subsystem, with a proportional relationship
between the input voltage and the electrical torque assumed.
The system is described by the equations of motion, which
leads to the following state space representation ΣD:

ẋD =


a11 0 a13 a14
1 0 0 0
a31 0 a33 a34
0 0 1 0


︸ ︷︷ ︸

=:AD

xD +


b11 b12
0 0
b31 b32
0 0


︸ ︷︷ ︸

=:BD

uD (8)

and

yD =
[
0 1 0 1

]︸ ︷︷ ︸
=:CD

xD. (9)

where xD =
[
ẏm ym (ẏpz − ẏm) (ypz − ym)

]T
are the

respective states and uD =
[
Fm Fpz

]T
represents the input

forces generated by the actuators. The subscript (·)D stands
for DSA. Since only the structure of the matrices are relevant,
a detailed description of the individual parameters is omitted.
Due to the coupling of the actuators, when a driving force
is applied on one stage, its displacement induces a force
on the other stage, which alters its state as well. A second
very common simplification is to represent the system as
decoupled. This is justified as many linear motors are self-
locking, and because the inertia of the fine stage is negligible
in comparison to the coarse stage. The structural effect on
the state space model is the cancellation of the coupling
parameters a13, a14, a31, b12 and b31. By setting these
parameters to zero, the decoupled system Σ∗

D results with
the triplet (A∗

D, B
∗
D, CD). Irrespective of the simplifications

assumed, the DSA systems are overactuated in all cases, as
they have two inputs and one output (p > q∧rank(CD) = q).
Furthermore, they are weakly input redundant, as the input
matrix is at full rank (p = rank(BD) = rank(B∗

D)), which is
consistent with Def. 2. As introduced in Sec. II-B, for the CA
framework it is required to define a virtual effort τ . In the
domain of mechatronic positioning systems, the virtual effort
is exclusively interpreted as forces or moments. By following
this interpretation, one can distinguish between several forces
occurring in the system. Intuitively, it seems first to choose
the electrical forces that are generated by the actuators and
act as input to the system. However, this approach fails for
both the coupled and the decoupled system (ΣD and Σ∗

D).
This is because both forces act on different masses in the
system. In fact, neither the electrically generated forces nor
any other force occurring in the system can be understood
as the beginning of redundancy. This is only the case with
actuators that are connected in parallel.

Considering Σ∗
D as the actuator model, one can apply case

I. of Th. 1, which means that X∗
R,D = {0} holds. This allows

to factorise τ out of the output matrix C. If, on the other
hand, we look at the fully coupled system ΣD the complete
state space became redundant, which is consistent with Th. 1,
case III.a. Therefore, defining τ as the output of the system
is also a valid solution. Nevertheless, due to the coupling of
the actuators, this may not be a unique solution. In summary,
the preceding analysis shows that with a serial connection of
actuators, the redundancy certainly occurs at the output of
the system, i.e. the total displacement:

τ =

p∑
i

yi = ym + ypz = MTY. (10)

where M becomes the identity I ∈ R1×2 and Y =[
ym ypz

]T
represents the vector of actuator displacements.

The result is also consistent with a physical interpretation of
the serial connection. In this, the actuators are interpreted as
springs connected in series, whose spring force is dependent
on the electrical actuation.

V. CONTROL ALLOCATION FORMULATION FOR
DUAL-STAGE ACTUATORS

Fig. 4 illustrates the resulting control allocation structure
which follows from the proposed interpretation.

Fig. 4. Suggested CA framework for a DSA system. Σ̄a,(·) represents
the whole decoupled dynamics of the coarse- and fine stage. CL,(·) are the
respective low-level controllers.

Representing the virtual effort in the position domain, and
more specifically as the output position of the DSA, leaves
the high-level system to have the trivial description τ = y.
Thus, a high-level system essentially drops, and the low-
level system is the whole Dual-Stage Actuator. In this sense,
the resulting low-level and high-level systems are decoupled.
The mapping M constitutes a simple static addition of the
displacement of each stage. The dynamic behavior of the
DSA is modelled in the subsystem between the system inputs
ūcs and ūfs, and the displacements ycs and yfs. Here a model
with actuator interaction can be developed (e.g. ΣD), or two
independent ones (e.g. Σ∗

D), as described in Sec. IV. Essential
for the control framework is the square structure of this low-
level system, having two inputs and two outputs.

Individual motion controllers CL,cs and CL,fs can be devel-
oped independently for each actuator, without considerations
of the over-actuation present in the system. Both controllers
have a SISO structure, which enables a wide range of
choices for the specific control algorithms and the tuning
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approach can be based on typical control systems theory.
For models with actuator interaction, the low-level control
showed in Fig. 4, can be extended by a decoupling network
as realised in [22]. The essential task of the low-level control
is the stabilisation of the actuator dynamics, and the targeted
consideration of robustness and response time criteria.

The allocation algorithm is located in a separate controller
unit, responsible for distributing the reference trajectory
among the actuators. This allows the realisation of wide
range of allocation schemes and the targeted reconfigurability
without retuning the separately developed motion controllers.
As in typical control allocation applications, the distribution
is based on the constraints (rate and magnitude) of the ac-
tuators and their controlled transient response. Characteristic
for the dual-stage actuators is that the coarse stage exhibits
a considerably lower mechanical bandwidth in comparison
to the fine stage. As [23] points out, neglecting actuator
dynamics, especially when one or more actuators have low
bandwidth, can negatively impact overall system behaviour
and potentially lead to instability. The significant difference
of the controlled actuator transient responses necessitates an
allocation algorithm which considers them. Such algorithms
are commonly developed by introducing dynamic compen-
sations in the allocation unit, and thus usually denoted as
dynamic control allocators.

Further research of the modern methods for DSA con-
trol, a developed framework was found which is consistent
with the proposed framework in this section. The work in
[13] proposes a control structure, in which the reference
trajectory is distributed using signal processing algorithm
(spatial-temporal filters). Then the distributed trajectories are
applied to inversion-based feedforward filters, compensating
the following controlled actuators. The compensated signals
are finally fed in individual motion controllers, developed
individually for each stage. The assumptions for decoupled
actuator dynamics and linear behaviour are also met. Without
approaching the DSA control problem from the perspective
of the control allocation framework, the paper has presented
a concept congruent with it.

VI. CONCLUSIONS

This paper uses the introduced concept of the redun-
dant controllable subspace (stated in Th. 1) to study the
separability of weakly IR systems, into to fully redundant
controllable- and non-redundant controllable states. At this
basis, the applicability of the CA for DSA is analysed and as
a result, the need for a high-level controller no longer exists.
The aim of the outlook is to examine the suitability of the CA
setting specifically in relation to the complementary proper-
ties of the DSA (see table I). Furthermore, improvements of
Th. 1 are sought, especially in the direction of fully coupled-
or nonlinear systems.
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