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Abstract—In this paper, we extend the design of data-
adaptive retrofit control for power system stabilizers (PSS)
from the one-axis generator model to the Park generator
model, which is the most detailed representation of synchronous
generators. The data-adaptive retrofit control allows individual
sub-controller designers to design and implement PSS, using
only a local subsystem model and local measurements. The
data-adaptive PSS can also adapt to the variation of grid
characteristics through the process of real-time estimation of
intricate dynamical feedback effects between the main grid
and the generator states. This paper presents the details of an
extended retrofit control method that accounts for the higher
order dynamics and increased parameters of the Park generator
model. In addition, we perform a multi-objective optimization
for online identification of grid characteristics to improve the
performance of the PSS. Finally, we demonstrate the efficacy
of the proposed data-adaptive PSS by conducting a detailed
numerical simulation on the IEEE 68-bus power system model
composed of the Park generator models, resulting in a large-
scale complex nonlinear differential algebraic equation system.

I. INTRODUCTION

Power system stabilizers (PSS) are decentralized con-
trollers in power systems that generate control signals for
automatic voltage regulators (AVR) of generator excitation
systems. They are important to damp frequency oscillations
caused by disturbances and improve the transient stability of
the power system. Industry-standard conventional PSS, de-
signed with a lead-lag structure have significantly contributed
to enhancing power system stability [1], [2]. Numerous
research efforts have been dedicated to optimizing parameters
for conventional PSS, utilizing techniques such as genetic
algorithms, tabu search, and particle swarm optimization [3]–
[5]. These methods effectively fine-tune the parameters in
conventional PSS but lack the flexibility to adapt to diverse
conditions. Recently, [6], [7] proposed PSS design methods
that aim to enhance performance by adapting to dynamic grid
characteristics. While these modern PSSs were designed to be
adaptive, they were only validated using the single machine
connected to infinite bus. For the adaptive PSS with the
application in multi-machine power system, neural network
based adaptive PSS [8], [9] were introduced. However, there
is still a concern regarding active modifications made to the
design of PSS as these changes may potentially result in the
destabilization of the entire power system, particularly when
implemented in large-scale power systems.

Data-adaptive retrofit control for PSS, employing the one-
axis generator model has been introduced in the study [10]
to address the issues of PSS design procedure, which include
a lack of consideration for variations in grid characteris-
tics and the potential destabilization of the entire power

system through active modifications. The study addressed
those issues by online identification of a dynamic feedback
effect between the states of a generator and the main grid,
and by the use of retrofit control approach [11]–[14] that
ensures the stability of the power system. The details of
the retrofit control approach for data-adaptive PSS design
will be explained in Section III. Even though the study
validated the efficacy of data-adaptive retrofit control for PSS
designed with the one-axis generator model using the IEEE
9-bus power system model, we identify two main concerns
regarding practicality.

1) The existing data-adaptive retrofit control for PSS is
designed based on the one-axis generator model, which
is a reduced-order model, and therefore may not have
optimal performance in real-world applications.

2) The IEEE 9-bus power system model is a small-scale
model that may significantly differ from that in real-life
large-scale power systems.

In this paper, we address concern 1) by extending the
data-adaptive retrofit control using the Park generator model,
which is the most detailed representation of synchronous
generators. We aim to resolve concern 2) by conducting a
detailed numerical simulation on the IEEE 68-bus model
to assess the practical significance of data-adaptive retrofit
control on one of the large-scale power system models
during the fault occurrence. These considerations are the
main practical contributions of this paper.

This paper is organized as follows. In Section II, we
describe the power system model discussed in this paper.
In Section III, we review the existing data-adaptive retrofit
control approach using the one-axis generator model. In
Section IV, we present the details of an extended data-
adaptive retrofit control using the Park generator model. In
Section V, we examine the efficacy of the proposed PSS
through a numerical demonstration on the IEEE 68-bus
system. In Section VI, we provide the concluding remarks.

II. POWER SYSTEM MODEL

In this section, we review a standard power system model.
The same model will be used for the numerical simulation
in Section V. The details can be found in [15] while the
standard values of the generators are taken from [16].

A. Park Model of a Synchronous Generator

The detailed representation of a synchronous generator is
modeled using Park’s transformation, while reduced-order
modelings, such as one-axis and classical models are often

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1990



used for research purposes. In this paper, a synchronous
generator is described with thePark model.

Let Eqi denote the internal voltage due to field winding and
Edi, ψdi and ψqi denote internal voltages due to three damper
windings of the generator connected to Bus i. Let δi denote
the generator’s rotor angle relative to the frame rotating at
the standard angular frequency ω0. The bus voltage phasor
V i and the bus current phasor Ii of the network reference
frame are given as

V i = (Vdi + jVqi)e
j(δi−

π
2 ), Ii = (Idi + jIqi)e

j(δi−
π
2 )

(1a)

where Vdi and Vqi are real and imaginary parts of Bus i
voltage; Idi and Iqi are real and imaginary parts of Bus i
current on the machine reference frame, described as

Vdi = |Vi| sin(δi − ∠Vi), Vqi = |Vi| cos(δi − ∠Vi)

Iqi =
−(X′′

qi−Xlsi)

X′′
qi(X

′
qi−Xlsi)

Edi +
(X′

qi−X
′′
qi)

X′′
qi(X

′
qi−Xlsi)

ψqi +
Vdi

X′′
qi

Idi =
(X′′

di−Xlsi)
X′′

di(X
′
di−Xlsi)

Eqi +
(X′

di−X
′′
di)

X′′
di(X

′
di−Xlsi)

ψdi − Vqi

X′′
di

(1b)

where X ′′
di, X

′
di denote sub-transient and transient reactance

of d-axis, X ′′
qi, X

′
qi denote sub-transient and transient reac-

tance of q-axis, and Xlsi denotes the leakage reactance of the
generator connected to Bus i.

The relation between Vi and Ii can be derived from (1a)
and (1b). Active power Pi and reactive power Qi of Bus i can
be defined as the real and imaginary parts of ViIi, namely

Pi = VqiIqi + VdiIdi

Qi = VqiIdi − VdiIqi.
(1c)

The dynamics of the Park generator model, with the
subscript “i” neglected for simplicity, are described as

δ̇ = ω0ω

Mω̇ = −Dω − P + P ∗
m

T ′
doĖq = −Eq − (Xd −X ′

d)
[
Id − X′

d−X
′′
d

(X′
d−Xls)2

(ψd + (X ′
d −Xls)Id − Eq)

]
+ Vfd

T ′′
doψ̇d = −ψd + Eq − (X ′

d −Xls)Id

T ′
qoĖd = −Ed + (Xq −X ′

q)
[
Iq −

X′
q−X

′′
q

(X′
q−Xls)2

(ψq + (X ′
q −Xls)Iq + Ed

]
T ′′
qoψ̇q = −ψq − Ed − (X ′

q −Xls)Iq

(1d)

where ω is the angular frequency deviation relative to the
standard angular frequency ω0, while M , D and P ∗

m are
inertia constant, damping coefficient and mechanical input re-
spectively. Xd, Xq are synchronous reactances of d-axis and
q-axis respectively, T ′′

do, T
′
do are sub-transient and transient

open-circuit time constants of d-axis respectively, T ′′
qo, T

′
qo

are sub-transient and transient open-circuit time constants of
q-axis respectively, and Vfd is the field voltage input. The
mechanical input P ∗

m is supposed to be constant to maintain
ω0 at equilibrium, while the field voltage input Vfd from the
automatic voltage regulator (AVR) is considered as a control
input that will be described in Section II-C.

For comparison, we introduce the following dynamics of
the one-axis generator model, given as

δ̇ = ω0ω

Mω̇ = −Dω − P + P ∗
m

T ′
doĖq = −Xd

X′
d
Eq + (Xd

X′
d
− 1)|V | cos(δ − ∠V ) + Vfd

(2)

where the dynamics of the four states Eq, Ed, ψq, and ψd

in (1d) are reduced to the dynamics of the single state Eq.
For this simplified model, (1b) can also be simplified as

Iq = −Ed+Vd

X′
q

, Id =
Eq−Vq

X′
d
. (3)

The one-axis generator model is used in Section III only for
review purposes while the Park generator model is used to
demonstrate the main practical contributions in Sections IV
and V.

B. Power System Stabilizer Model

The main purpose of the PSS is to generate an input to
the automatic voltage regulator (AVR), denoted as Vpss. We
introduce the following standard PSS model used in [17].

ẋpss = Apssxpss +Bpssω

Vpss = Cpssxpss +Dpssω
(4)

where xpss is denoted as xpss := [xpss1 xpss2 xpss3]
⊺

that consists of three state variables of PSS and
Apss, Bpss, Cpss, Dpss are the state matrices composed of
PSS gain and time constants.

C. Automatic Voltage Regulator Model

An AVR is attached to every generator in the power system
to produce the external input Vfd in (1d). We refer to a
combination of the data-adaptive PSS and the standard PSS
as a refined PSS. The model of AVR with refined PSS is
described as{

τ V̇fd = −Vfd + kap(V
∗
ref − |V |+ Vpss − Vpss,re − uext)

V ∗
ref =

V ∗
fd

kap
+ |V |∗

(5)

where Vpss,re is the control input produced by the data-
adaptive PSS based on retrofit control.

D. Load Model

Let z∗load denote as a load impedance and we use the
constant impedance model given as

I = − V
z∗load

. (6)

E. Transmission Network Model

A transmission network of N buses is represented by[
I1
...

IN

]
=

[
Y11 ··· Y1N

...
. . .

...
YN1 ··· YNN

]
︸ ︷︷ ︸

Y

[
V1

...
VN

]
, (7)

where Yij is the admittance between Bus i and Bus j, and
Y is the admittance matrix. The power system model in
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this paper is represented as a differential-algebraic equation
(DAE) model where the generators in (1) and the loads in
(6) are interconnected by the algebraic equation in (7).

III. REVIEW OF DATA-ADAPTIVE RETROFIT CONTROL

A. System Description and Controller Design
In this sub-section, we review the design of data-adaptive

PSS using the one-axis generator model proposed in [10].
In the retrofit control framework, the system is divided into
a “local linear subsystem G ”, which is the linear part of a
single generator assumed to be controlled by a local decision
maker or a generator owner, and an “environment G ”, which
represents the main grid connected to the generator and
assumed to be unknown to the generator owner. The entire
power system is regarded as the feedback connection of a
local linear subsystem G and an environment G given as

G :

{
ẋ = Ax+Bu+ Lv

w = Γx
(8)

G :

{
˙̄x = fp(x̄, w)

v = gp(x̄, w)
(9)

where x and x̄ are the internal states of the local linear
subsystem and the environment respectively, v and w are
interaction signals, A,B,L and Γ are system matrices of G,
and fp and gp are smooth functions.

The generator owner has access to the system constants
and internal states of their own generator, AVR and standard
PSS. In addition, the generator owner can also measure
the exogenous inputs Pm and V affecting their generator
and AVR. Therefore, interaction signals can be obtained.
An operating point of interest or equilibrium is defined as
(x∗, x̄∗) that satisfies the following conditions

0 = Ax∗ + Lv∗, 0 = fp(x̄
∗, w∗), (10)

and interaction signals

w∗ := Γx∗, v∗ := gp(x̄
∗, w∗). (11)

Due to the unavailability of the detailed representation of
the environment G, we consider its approximate modeling.
The approximate linear static model of the environment is
represented as

Gapx : vapx = v∗ +Θ(w − w∗) (12)

where Θ is a learning parameter in the matrix form. The
retrofit controller using the approximate linear model of the
environment is described in the structure of

K(Θ) :

{
˙̂x = Ax̂+ L{v −Θ(w − Γ x̂)}
u = K̂(Θ)(y − Cx̂).

(13)

The retrofit controller with the gain of K̂(Θ) is designed
to stabilize the feedback system G+ in Fig. 1 consisting of
the local linear subsystem G and the learning parameter Θ,
which is given as

G+ :

{
˙̂
ξ = (A+ LΘΓ )ξ̂ +Bû

˙̂y = Cξ̂.
(14)

Fig. 1. Model for Retrofit Controller Design.

B. Environment Identification

In order to determine the learning parameter Θ in (12),
derivation of a linear static environment around an operating
point of interest is proposed. We decompose Θ as

Θ = ∂v
∂w

∣∣∣
(x∗,x̄∗)︸ ︷︷ ︸
Θ

int

+ ∂v
∂|V |

∂|V |
∂w

∣∣∣
(x∗,x̄∗)

+ ∂v
∂∠V

∂∠V
∂w

∣∣∣
(x∗,x̄∗)

,︸ ︷︷ ︸
Θ

ext

(15)

where the first part Θ
int

corresponds to a local feedback
effect, and the second part Θ

ext
corresponds to a global

feedback effect via the bus voltage phasor.

IV. MAIN RESULTS: DATA-ADAPTIVE RETROFIT
CONTROL USING PARK GENERATOR MODEL

A. Particular System Description for Retrofit Control

We describe the details of an extended data-adaptive
retrofit control with the Park generator model. The internal
states of the local linear subsystem G and interaction signals
in (8) can be described as

x =


δ
ω
Eq

Ed

ψq

ψd

Vfd
xpss1
xpss2
xpss3

 , v :=


P∗

m−P
Efd

Efq

ψqs

ψds

|V |

 , w :=


δ
ω
Eq

Ed

ψq

ψd

 (16)

where P is defined as in (1a)-(1c), and Efd, Efq, ψqs, ψds are
defined as

Efd = Eq + (Xd −X ′
d)
[
Id − X′

d−X
′′
d

(X′
d−Xls)2

{ψd+

(X ′
d −Xls)Id − Eq}

]
Efq = Ed − (Xq −X ′

q)
[
Iq −

X′
q−X

′′
q

(X′
q−Xls)2

{ψq+

(X ′
q −Xls)Iq + Ed)}

]
ψqs = −ψq − Ed − (X ′

q −Xls)Iq

ψds = −ψd + Eq − (X ′
d −Xls)Id.

(17)
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The system matrices A,B,Γ , and L are described in (18)
while the input u corresponds to Vpss,re in (5) which is the
control input produced by a local PSS designed by retrofit
control approach.

A =



0 ω0 0 0 0 0 0 0 0 0

0 − D
M 0 0 0 0 0 0 0 0

0 0 0 0 0 0
1
T ′
do

0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
Dpsskap

τ 0 0 0 0 − 1
τ

Cpsskap
τ

0 0 0 0 0 0
0 Bpss 0 0 0 0 0 Apss

0 0 0 0 0 0


,

B =


0
0
0
0
0
0

−
kap
τ
0
0
0

 ,Γ =

 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

 ,

L =



0 0 0 0 0 0
1
M 0 0 0 0 0

0 − 1
T ′
do

0 0 0 0

0 0 − 1
T ′
qo

0 0 0

0 0 0 − 1
T ′′
do

0 0

0 0 0 0 − 1
T ′′
qo

0

0 0 0 0 0 −
kap
τ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

(18)

B. Environment Identification

The proposal of the environment identification algorithms
using the Park generator model described below is one of the
main contributions of this paper. The local feedback effect
matrix Θ

int
in (15) can be described as

Θ
int

:=
[
∂v
∂δ

∂v
∂ω

∂v
∂Eq

∂v
∂Ed

∂v
∂ψq

∂v
∂ψd

] ∣∣∣
(x∗,x̄∗)

. (19)

Although an explicit representation is omitted, a standard
numerical tool can be used to find the Jacobian matrix. The
global feedback effect matrix Θ

ext
in (15) is described as

Θ
ext

=
[
∂v
∂|V

∂v
∂∠V |

] ∣∣∣
(x∗,x̄∗)

θ̂ (20)

where θ̂ is an estimated value of

θ :=

[
∂|V |
∂δ

∂|V |
∂ω

∂|V |
∂Eq

∂|V |
∂Ed

∂|V |
∂ψq

∂|V |
∂ψd

∂∠V
∂δ

∂∠V
∂ω

∂∠V
∂Eq

∂∠V
∂Ed

∂∠V
∂ψq

∂∠V
∂ψd

] ∣∣∣∣∣
(x∗,x̄∗)

(21)

From the initial tests, we have empirically found that
the magnitude and the phase of the bus voltage phasor are
significantly influenced by internal voltages and the rotor
angle respectively. Therefore, we estimate the values of θ1

to θ5 in (22) while the rest of the values are supposed to be
zero.

θ1 := ∂|V |
∂Eq

(x∗, x̄∗), θ2 := ∂∠V
∂δ (x∗, x̄∗),

θ3 := ∂|V |
∂Ed

(x∗, x̄∗), θ4 := ∂|V |
∂ψq

(x∗, x̄∗),

θ5 := ∂|V |
∂ψd

(x∗, x̄∗),

(22)

We present two distinct methods for numerical estimation of
the values in (22), both following the same steps from 1 to
3, with variations in Step 4 for each method.

Step 1: The generator owner obtains measurements of the
state variables of the standard PSS during an external distur-
bance to produce Vpss according to (4), which will be used
as an excitation input in the later steps. For clarification, this
external input will be denoted as V̂pss(t).

Step 2: The generator owner acquires a data set of the
actual generator states by injecting an excitation input to
the AVR connected to the generator of interest. Instead of
an artificial random input, we use V̂pss(t) from Step 1 to
simulate a realistic disturbance. The resultant time series data
of δ(t), ω(t), Eq(t), Ed(t), ψq(t) and ψd(t) will be recorded
and used as a reference for optimization.

Step 3: Using the same input V̂pss(t) as û in (14), the
generator owner acquires estimated time series data of
δ̂(t), ω̂(t), Êq(t), Êd(t), ψ̂q(t) and ψ̂d(t). Note that the learn-
ing parameter Θ requires allocation of θ1 to θ5 values in (22),
the process of which will be described in Step 4.

Step 4: We decide the values of θ1 to θ5 using time series
data from Step 2 and Step 3.

(Algorithm A) This algorithm aims to follow the same
optimization process as that in the one-axis generator model
[10] by using only the principal states in the Park generator
model. Therefore, the generator owner sets θ3, θ4 and θ5 as
zero. Then, the generator owner optimizes θ1 with temporary
value of θ2 by minimizing the following objective function:

QEq(θ1, θ2, 0, 0, 0) :=

√∫ t2

t1

|Eq(t)− Êqθ(t)|2dt. (23)

Moreover, optimization of θ2 follows the same process with
temporary value of θ1 by minimizing the following objective
function:

Qδ(θ1, θ2, 0, 0, 0) :=

√∫ t2

t1

|δ(t)− δ̂θ(t)|2dt. (24)

The generator owner repeats the optimization of θ1 and θ2
until the values from both processes converge. For reference,
using the IEEE 68-bus system, the generator owners at Bus
2 and Bus 16 individually obtain the converged values of θ1
and θ2 given in Table I.

(Algorithm B) Data-adaptive PSS using Algorithm B in-
volves optimization of five variables and two minimum
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TABLE I
ESTIMATED VALUE FROM ALGORITHM A

Bus No. θ1A θ2A θ3A θ4A θ5A

2 0.3158 0.2632 0.000 0.000 0.000
16 0.9474 0.8421 0.000 0.000 0.000

TABLE II
ESTIMATED VALUE FROM ALGORITHM B

Bus No. θ1A θ2A θ3A θ4A θ5A

2 0.4771 0.4653 0.9043 0.3238 0.0896
16 0.0194 0.6692 0.1539 0.9893 0.4778

objective functions in the Park generator model. We define
the two objective functions as

QEq(θ1, θ2, θ3, θ4, θ5) :=

√∫ t2

t1

|Eq(t)− Êqθ(t)|2dt,

Qδ(θ1, θ2, θ3, θ4, θ5) :=

√∫ t2

t1

|δ(t)− δ̂θ(t)|2dt.

(25)

We employ a controlled and elitist Genetic Algorithm (GA)
for multi-objective optimization [18] to obtain a pareto set.
We propose the following prioritization rule to choose the
best values from the pareto set. We propose to prioritize
the error minimization of the generator’s rotor angle during
the light load condition. However, during the heavy load
condition, Eq values are predominantly higher, causing high
error sensitivity. Therefore, we propose to prioritize the error
minimization of the internal voltage due to field winding
during the heavy load condition.

For reference, using the default multi-objective Genetic
Algorithm from MATLAB Global Optimization Toolbox with
100 generations and a population size of 100, the generator
owners at Bus 2 and Bus 16 obtain the optimized values
given in Table II.

V. NUMERICAL SIMULATION

In this section, we demonstrate the efficacy of the data-
adaptive PSS through a detailed numerical simulation of the
IEEE 68-bus test system, which consists of 16 Park generator
models, resulting in a 160-dimensional DAE. The presenta-
tion of this large-scale and complex numerical demonstration
is the second contribution of this paper. All the generators in
the IEEE 68-bus system are equipped with the standard PSS
in (4) and AVR in (5) without the data-adaptive PSS input,
designed with the parameters given in Table III. All loads are
represented as the constant impedance model given in (6).

A. Implementation of Single Refined PSS

Given the parameters of the IEEE 68-bus system model,
the generator owners are positioned at Bus 2 and Bus 16 to
assess the effectiveness of the data-adaptive PSS during light
load and heavy load condition respectively. Supposing that
the power system is operated at equilibrium, we model the
local feedback effect in (19) for each Bus. Using the values

TABLE III
PARAMETERS OF STANDARD PSS AND AVR

Bus No. kap τ Kpss τpss τ ′L1, τ
′
L2 τL1, τL2

1 100 0.002 250 10 0.07 0.02
2-12 70 0.002 250 10 0.07 0.02
13-14 60 0.002 250 10 0.07 0.02

15 50 0.002 250 10 0.07 0.02
16 60 0.002 250 10 0.07 0.02

from Table I and Table II, we can model global feedback
effect in (20) for each Bus. Then, with the availability of
the learning parameter Θ, the feedback gain K̂(Θ) in (13) is
designed as an LQR. We perform the numerical simulation
where only the generator of interest is attached with an AVR
with refined PSS as described in (5).

0 1 2 3 4 5 6

t

-15

-10

-5

0

5

10
10-3

standard PSS

refined non data-adaptive PSS

refined data-adaptive PSS:Algorithm A

refined data-adaptive PSS:Algorithm B

Fig. 2. Resultant angular frequency deviations at Bus 2 showing efficacy
of refined PSS

0 1 2 3 4 5 6

t

-4

-2

0

2

4
10-3

standard PSS

refined non data-adaptive PSS

refined data-adaptive PSS:Algorithm A

refined data-adaptive PSS:Algorithm B

Fig. 3. Resultant angular frequency deviations at Bus 16 showing efficacy
of refined PSS

Figs. 2 and 3 show the resultant time responses of the
angular frequency deviations for a fault occurrence between
0 & 0.1 seconds at Bus 2 and Bus 16 respectively. The blue
line response labeled with “refined non data-adaptive PSS”
is obtained by setting the data-adaptive model Θ

ext
to zero

while the green and red responses labeled with “refined data-
adaptive PSS” are obtained by optimizing Θ

ext
. The black

line response is obtained by using a standard PSS only.
We confirm that during the light load condition, the refined

data-adaptive PSS can be effectively designed using the
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influence of the principal states not only in the one-axis
generator model, but also in the Park generator model. On the
other hand, during the heavy load condition where the effects
of the rest of the states become significant, Algorithm A may
lose its effectiveness.

B. Implementation of Multiple Refined PSSs

One significant advantage of data-adaptive retrofit control
is the robust stability of the entire power system network,
during parallel implementation of multiple PSSs. Therefore,
we conduct numerical simulation where all 16 generators in
the IEEE 68-bus model are equipped with respective refined
PSSs. Given the parameters of the IEEE 68-bus model, we
consider Bus 1 to Bus 11 as light load conditions while Bus
12 to Bus 16 are considered as heavy load conditions. We use
the evaluation method based on [14] by denoting the angular
frequency deviations of all generators as ω := (ω1, . . . , ω16)
and draw the box plots of {∥ω(i)∥2}16i=1 in Fig. 4 where ω(i)

represents the resultant deviations during the fault occurrence
between 0 & 0.1 seconds at Bus i.

standard

non data-adaptive

data-adaptive: A

data-adaptive: B
1

2

3

4

5

6

7

8

9

10
#10-3

Fig. 4. Box plots of the magnitude of angular frequency deviations for each
method when all the generators are equipped with refined PSS

The top and bottom black lines of Fig. 4 represent the
maximum and the minimum while the red line represents
the median of each box plot. Fig. 4 shows that the refined
data-adaptive PSS using Algorithm B provides the overall
performance enhancement during parallel implementation of
multiple PSSs that are independently designed based on
local subsystem models and measurements. It also shows
that refined data-adaptive PSS using algorithm A, without
considering the effects of all variables of the Park generator
model in environment identification, can lead to deficiency
in the overall performance.

VI. CONCLUDING REMARKS

We have extended the design of data-adaptive PSS from
using the one-axis generator model to using the Park gener-
ator model in the framework of retrofit control. To address
the higher order dynamics and increased states of the Park
generator model, we proposed two methods for environment
identification. One method utilizes only the effects of the
principal states, while the other considers that of all the

available states in the Park generator model. We remark
that the data-adaptive PSS using the algorithm with the
consideration of the effects of all the states of the Park
generator model provides overall performance enhancement.
Additionally, it is noteworthy this algorithm delivers the
best performance, especially during heavy load conditions.
Finally, we validated the efficacy of the data-adaptive PSS us-
ing the Park generator model during parallel implementation
through numerical simulations on the IEEE 68-bus model.
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