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Abstract— In personalized medicine applications such as
general anesthesia, an individualised pharmacokinetic (PK)
model requires to move away from the classical assumption
of homogeneous drug mixing in various tissue compartments
in the body. By default, these model coefficients are pre-
surgery initialized from population based models as a function
of age, gender, weight, height, lean body mass and do not
include at this moment specific drug diffusion patterns in the
fat compartment, whereas various types of fat will induce
various time constants in non-lean patients. In this work, the
pharmacokinetic compartmental model structure is revisited to
account for non-uniform distribution of uptake/clearance time
constants in patients as a nonlinear function of body mass
index. Simulations are confirming expected patterns of drug
distribution in the body and can account for post-anesthesia
side effects up to 72 hours. The model is a novel advance in
providing the control community with yet increasingly realistic
patient models for closed loop control of anesthesia.

I. INTRODUCTION

Anomalous diffusion is an important deal breaker in
terms of controlling areas of variable diffusion coefficients
and modified permeability due to material structure and
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properties of material cell composites [1]. In practice, it
implies a careful tuning of the controller to be robust to these
variations while assuming homogeneous mixing and time
invariant dynamics (i.e. today’s standard), irrespective of the
patient individualised patterns at hand. In today’s paradigm
of personalised medicine, and targeted drug therapy, there is
a need to move away from the assumption of homogeneity
and to embrace tools which enable a polyvalent distribution
of drug molecules in complex and dynamic tissue environ-
ment.

According to a March 2023 report from the World Obesity
Atlas (WOA), more than half of the global population (51%,
or over 4 billion people) will have obesity by 2035, which
will affect all regions and continents of the world. Obesity
lies at the very baseline of comorbidities challenging surgery
outcomes and patient recovery times. Massive expansion and
remodeling of adipose tissue during obesity differentially
affects specific adipose tissue depots and significantly con-
tributes to vascular dysfunction and cardiovascular diseases
[2]. Evidence has shown that it even affects neuro-cognitive
related processes in elderly [3]. As the majority of patients
undergoing general anesthesia are obese, elder and suffer
from cardio-vasculatory pathologies, these are challenges
which need to be addressed with updates in today’s ex-
isting population based models for closed loop control of
anesthesia. To say that fat is just one compartment of the
minimally three involved in the physiological models of
general anesthesia, is clearly an understatement, but it works
well in lean and overweight patients and for relatively short
(less than 6 hours) time anesthesia. General anesthesia is reg-
ulated by means of multi-drug cocktails of carefully designed
ratios to achieve clinical effect of hypnosis, analgesia and
neuromuscular blockade while maintaining lack of awareness
during surgical stimuli. Population based models assume
a Gaussian distribution normal variance of homogeneous
distribution of drugs within the soft tissues, muscle and fat.
The only notable difference is their time constant, as the
uptake and clearance rates are faster in muscle tissue than in
fat tissue mainly due to the higher blood perfusion density.

In major surgery the duration of general anesthesia may
take anything between 6 to 18 hours. This implies a long time
that the patient stays in the horizontal position, with a slight
15 degrees angle inclination. The compartmental models for
characterising the time constants of drug distribution within
the body, i.e. blood, muscle and fat, are no longer valid
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in these extreme situations and need to take into account
drug diffusion patterns which may no longer adhere to the
normal distribution of population models. In fact, it may
well be linked to fractal dimension of tissue cell structure
and fractal Brownian motion models [4]. Specifically, this
paper introduces the concept of anomalous diffusion in
slow acting soft tissue metabolite binding as a function of
percent fat mass in the body volumetric distributions. An
analogy to geological porosity and permeability models is
made to illustrate a parallelism to fat cells and their various
compositions and properties depending on the type of fat
existing in the body.

This paper is organised as follows: we introduce the
theoretical framework on which fat tissue properties vary as
a function of increasing body mass index, thereby affecting
dynamic exchange of absorption and clearance of drug from
the compartment. We propose in third section the augmented
pharmacokinetic model to include an extra fat volume where
the drug molecules are trapped for longer times as a func-
tion of body mass index. In the fourth section we present
simulation results and discussion, along with limitations of
the study. A conclusion section summarizes the novelty of
the paper and proposes further developments.

II. SLOW ACTING COMPARTMENT MODEL: FAT VOLUME

Fat tissue is comprised of various types of cells, dependent
on the type of fat it makes and the period of time the
fat has been formed. Much like different types of geology
materials: clay, sand, gravel, stones, there is a degree of
porosity and degree of permeability of water through these
kind of substrates. We will build hereafter a theoretical
framework based on such analogy between geology and fat
tissue properties.

Fig. 1. Evolution of fat cells as a function of changes in body mass index.

Let us see the various stages of fat tissue and its respective
properties. Assume a set of fat cells and their changes
in properties as a function of body mass index (BMI),
as depicted in Figure 1. In normal fat cells, i.e. brown
fat, the balance of interstitial liquid and inner permeability
are nominal as they can facilitate the molecular binding
in-out of the cell, thereby abiding to a normal diffusion
pattern as best described by Fick’s laws of diffusion. This
is often observed in children and lean adults, with normal
BMI values. Brown fat breaks down blood sugar (glucose)
and fat molecules to create heat and help maintain body
temperature. Lower temperatures activate brown fat, which
leads to various metabolic changes in the body facilitating

permeability of in/out molecular transport of species. Most
of our fat, however, is white fat, which stores extra energy.
Too much white fat builds up in obesity. At this point, the
molecular diffusion becomes anomalous at meso- and micro-
scales of various lattice matrices of fat tissue structural and
their properties [5].

As fat continues to deposit, it becomes ”old” and trans-
forms into white fat cells, which tend to aggregate and stick
together, growing in number and size [6]. As such, the vol-
ume increases and so does porosity as the interstitial liquid
is now larger in capacity to transfer drug molecules into the
tissue. However, as the volume increased, the time constant
for dispersion of drug molecules may become slower. This
is observed in overweight BMI values.

As the fat volume further increases, the fat cells develop
inflammatory response, causing fibrosis of the cells, whereas
the diffusion is much impaired [7]. This also contributes to
trapped interstitial liquid causing further inflammation and
reducing angiogenesis in tissue reconstruction [8]. Further
evidence indicates that local and systemic roles of adipose
tissue derived secreted factors and increased systemic in-
flammation during obesity and increase their detrimental
impact on cardiovascular health [2]. In this extreme case, we
have a mixed porosity pattern whereas permeability is much
impaired - this is much like geological composite layers
where gravel is mixed with sand and fine sediment, thereby
obstructing water flow.

Following the above properties variation with BMI, we
propose to model this as the nonlinear relation given in Fig-
ure 2. This corresponds to a porosity-permeability bistable
equilibrium as depicted in Figure 3.

Fig. 2. Relation between porosity of fat tissue and evolution of the BMI.

There is a nonlinear correlation between the data in Figure
2 and in Figure 3. This relation is seen in Figure 4 which
represents the relationship between the BMI and the relative
ratio of porosity to permeability. To find a good approxi-
mation to this relation, Curve Fitter was used in Matlab,
which gives the regression polynomial in (1). Increasing
the numerical complexity of this latter with a higher order
polynomial (above 4) did not give significant improvement.
Hence 4th order was a good trade-off between accuracy and
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Fig. 3. Relation between porosity of fat tissue and permeability of drug
molecules. Arrows indicate the evolution of BMI from normal to morbidly
obese.

Fig. 4. Relation between relative ratio of porosity to permeability against
BMI from normal to morbidly obese.

complexity. A better approximation could be made in further
studies:

Risk = −0.000436 ·BMI4 + 0.0489 ·BMI3−
2.012 ·BMI2 + 36.01 ·BMI − 236;

(1)

and the approximation is also illustrated in Figure 4.

III. AUGMENTED PHARMACOKINETIC MODEL FOR FAT
VOLUME

The ODEs characterizing the Propofol uptake as the PK
model are given by the relations to the variation of concen-
trations xi with i = 1, 2, 3 the respective compartments [9],
for blood:

ẋ1(t) = −k12x1(t)− k13x1(t)− k10x1(t)
+kt1xt(t) + k21x2(t) + k31x3(t)
+u(t)/V1

(2)

with u(t) the input infusion rate of drug (in our case
propofol), in [mg/min], and V1, in [l], represent the com-
partmental volume of the blood.
For fast acting compartment denoting muscle volume:

ẋ2(t) = k12x1(t)− k21x2(t) (3)

and for slow acting compartment denoting fat volume:

ẋ3(t) = k13x1(t)− k31x3(t) (4)

where the parameters kij for i ̸= j are the drug transfer
frequency from the ith to the jth compartment as defined
in (11), and u(t) [mg/min] is the infusion rate of the
anesthetic drug into the central compartment, i.e. the blood
compartment.

Fig. 5. Compartmental model augmented with additional volume of fat
cells where drug trapping occurs for long term general anesthesia in non-
lean patients.

Having relation in (1) at hand, we propose to augment
the pharmacokinetic model of general anesthesia with the
additional trap compartment as depicted in Figure 5:

ẋt(t) = k3tx3(t)− kt1xt(t) (5)

denoting the fat compartment volume with trapped drug
molecules. k3t and kt3 represent the constants of the drug
transfer rate from the fat compartment to the fat trap com-
partment and vice versa (12). Next, we have the hypothetical
compartment for characterising effect of drug into the body
xe, which is called the effect-site concentration:

ẋe(t) = k1ex1(t)− ke0xe(t) (6)

The parameters of the PK model depend on age, weight,
height and gender and are linked to the type of drug used.
This study uses Schnider model for propofol as described in
[10]:

V1 = 4.27
V2 = 18.9− 0.391 · (age− 53)
V3 = 238

(7)

The volumes V1, V2 and V3 , in [l], represent the compart-
mental volume, i.e. blood, muscle and fat, respectively. We
introduce here the relation for trap volume Vt as a function
of BMI:

Vt = BMI · V3/100 (8)
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The clearance rates, in [l/min], are calculated as:

Cl1 = 1.89 + 0.0456 · (weight− 77)
−0.0681 · (lbm− 59)
+0.0264 · (height− 177)

Cl2 = 1.29− 0.024 · (age− 53)
Cl3 = 0.836

(9)

and the augmented compartment needs a clearance rate as a
function of relation in (1):

Clt = Cl3/Risk (10)

where Risk may be considered as the amount of risk for
trapping, hence the higher the Risk values (as the BMI
increases), the slower the clearance from the trap volume,
hence the molecules stay longer times in the fat trap tissue.
Next, we can calculate the model coefficients, in [min−1],
as a function of their clearances and volumes respectively:

k10 = Cl1

V1
, k12 = Cl2

V1
, k13 = Cl3

V1

k21 = Cl2

V2
, k31 = Cl3

V3
, ke0 = k1e = 0.456

(11)

and for the additional compartment of fat trap volume:

k3t =
Clt

Vt
, kt1 = Clt

V1
(12)

where lbm represent the lean body mass [11] for men :

lbmm = 1.1 · weight− 128 · weight2

height2
(13)

and for women:

lbmf = 1.07 · weight− 148 · weight2

height2
(14)

The relation between the effect site concentration from (6)
and the measured effect in the brain, i.e. the Bispectral Index
(BIS) is modeled as a nonlinear sigmoid Hill curve scaled
between 0%-100%, with 100% denoting fully awake patient
[12]:

BIS(t) = E0 − Emax
xγ
e (t)

xγ
e (t) + Cγ

50

(15)

where E0 is the BIS value when the patient is awake; Emax

is the maximum effect that can be achieved by the infusion
of Propofol; C50 is the Propofol concentration at half of
the maximum effect and γ describes the steepness of the
dose-response curve. E0 and Emax are considered equal
to the value of 100. Arguably, apart from the induction
phase when the nonlinear sigmoid shape of the function
from (15) is traversed, during maintenance of depth of
anesthesia at constant values between 40-60%, the response
can be approximated by a linear function [13]. In long term
anesthesia, the function in (15) therefore can be reduced to
a linear approximation as a mere gain scheduling control
strategy.

IV. RESULTS AND DISCUSSION

To illustrate the effects taking place in the new com-
partment we employ our open-source patient simulator that
is described in detail in our previous work [14] avail-
able in Matlab/Simulink ® software environment. This latter
reproduces the clinical expected effects of various drugs

interacting among the anesthetic and hemodynamic states
[15]. In this paper, we focus only on the hypnotic part of
this simulator. Table I gives the biometric and drug effect
values for a set of representative patients.

TABLE I
REPRESENTATIVE PATIENT DATABASE (ALL MALES) WITH PK MODEL

BIOMETRIC VALUES AND PD MODEL SENSITIVITY VALUES FROM [14].

Index Age Height Weight BMI lbm C50 γ
- (yrs) (cm) (kg) (mg/ml) -
1 74 164 88 32.7 60 2.5 3
2 67 161 69 26.6 53 4.6 2
3 75 176 101 32.6 69 5 1.6
4 69 173 97 32.4 67 1.8 2.5
5 45 171 64 21.9 52 6.8 1.78
6 57 182 80 24.2 62 2.7 2.8
7 74 155 55 22.9 44 1.7 3.5
8 71 172 78 26.4 60 7.8 2.9
9 65 176 77 24.9 60 2.9 1.88
10 72 192 73 19.8 62 3.9 3.1
11 69 168 84 29.8 60 2.3 3.1
12 60 190 92 25.5 71 4.8 2.1
13 61 177 81 25.9 62 2.5 3
14 54 173 86 28.1 62 2.5 3
15 71 172 83 28.1 62 4.3 1.9
16 53 186 114 33 77 2.7 1.6
17 72 162 87 33.2 59 4.5 2.9
18 61 182 93 28.1 69 2.7 1.78
19 70 167 77 27.6 58 6.8 3.1
20 69 168 82 29.1 60 9.8 1.6
21 69 158 81 32.4 55 3.2 2.1
22 60 165 85 31.2 60 5.1 2.51
23 70 173 69 23.1 56 3.67 3.1
24 56 186 99 28.6 73 5.8 2.3

We start by detailing the results for 5 hours to see the
inter-patient variability: Figure 6 depicts the evolution of
the concentrations in the three compartments (blood, muscle
and fat) during the first 5 hours of simulation. The time
constants of drug absorption and clearance correspond to
the clinical onset values for each patient from Table I. Next,
Figure 7 depicts the evolution of the effect site concentration,
trapped drug concentration and the level of anesthesia BIS
in patients. It can be observed that the trapped drug clears
at a much slower rate than the effect site compartment,
therefore creating a long tail in the BIS level response at
the output of the system. This explains why post-surgery,
patients with BIS above 70 which are sent out to recovery
units, are experiencing side effects long after the surgery.
This is visible if the simulation time is increased to 72 hours,
shown in Figure 8. In this figure, we simulated for patient
1, index 1 in Table I with a BMI of 32.7 kg/m2 (obese).

Next, we simulate the full dataset from Table I for 72 hours
with results, depicted in Figures 9 and 10, respectively. In
Figure 10, we can see that patients with a BMI higher than
30 have a slower clearance rate in the fat trap compartment
than others. This effect can be seen in detail in Figure11

The control algorithm mimicking closely the actions of the
anesthesiologist for decision making process to compensate
future actions altering the depth of anesthesia, is by its nature
a predictive control algorithm, and our prior work reported
its feasibility in both simulation [16] and in clinical trials
[10].
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Fig. 6. Evolution of drug concentration in the first three compartments:
blood (X1), muscle (X2), fat (X3), as a function of time during the first 5
hours of simulation.

Fig. 7. Evolution of drug concentration in the adjacent compartments:
effect site (Ce) and fat trap (Xt), followed by hypnosis level induced in
the BIS variable, during the first 5 hours of simulation.

Fig. 8. Evolution of drug concentration in the fat, fat trap and long tails
of BIS levels in the 72 hours of simulation.

Fig. 9. All patients: evolution of drug concentration in the first three
compartments: blood, muscle, fat, as a function of time during 72 hours of
simulation.

Fig. 10. All patients: evolution of drug concentration in the fat, fat trap
and long tails of BIS levels in the 72 hours of simulation.

Fig. 11. Comparison of the fat trap compartment (Xt) clearance rate from
patients that have high BMI (over 30, P17 with the highest:33.2) and the
lowest BMI (P10 with 19.8)
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Other methods such as artificial intelligence algorithms
may deliver additional information on evolutions of anoma-
lous diffusion patterns within the tissue, something which
may be relevant for plastic surgery in critical traumatic
surgery. However, due to long tails in the dynamic re-
sponse, and furthermore long tails of fractal derivatives for
anomalous diffusion [17], errors in estimations may cumulate
and bias significantly the values, introducing a risk for
under- or over-dosing control actions. Some recent correction
mechanisms from such inferential models using artificial
intelligence have been proposed in [18]. This leads us to
discuss some of the limitations of this study. The augmented
compartment model can well benefit from additional features
such as time-varying model coefficients of absorption and
clearance. This is based on the so-called sponge theory: a dry
sponge absorbs faster and more water than an already wet
one. Similarly, a tissue without drug will bind/release faster
drug molecules of drug; as drug molecules populate tissue
cells in a heterogeneous manner (i.e. trapped) the absorption
and clearance vary in time, as shown in Fig 11: Patient 10
with a normal BMI absorbs/release faster and more drugs
molecules than the obese patients. In addition, we could use
memory based models such as those proposed in [19], to
further pinpoint anomalous diffusion patterns [20]. Crowded
environments tends to follows dynamics resembling social
behaviour where residence times are longer as more particles
populate the limited volume [21]. Another limitation of our
study refers to complex additional pathophysiology of the
patient, e.g. co-morbidities such as impaired renal function
affect clearance rates and may well facilitate drug trapping
in other compartments (blood).

V. CONCLUSIONS

This paper introduced a novel compartment in the pharma-
cokinetic model for general anesthesia. The novel compart-
ment indicates the property of fat tissue to locally trap drug
molecules for longer times, following slower clearance rates.
The simulation of the proposed augmented model indicates
good agreement with long tails of drug release which can
be explained by long-term post-anesthesia side effects in
patients undergoing major surgery and/or long-term general
anesthesia. Further developments aim to provide a heteroge-
neous mixing to better model local adipose tissue (visceral,
subcutaneous) as to better estimate drug concentrations for
enabling better closed-loop control of anesthesia.
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