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Abstract— In this paper, we analyze the regret incurred
by a computationally efficient exploration strategy, known as
naive exploration, for controlling unknown partially observable
systems within the Linear Quadratic Gaussian (LQG) frame-
work. We introduce a two-phase control algorithm called LQG-
NAIVE, which involves an initial phase of injecting Gaussian
input signals to obtain a system model, followed by a second
phase of an interplay between naive exploration and control
in an episodic fashion. We show that LQG-NAIVE achieves a
regret growth rate of Õ(

√
T ), i.e., O(

√
T ) up to logarithmic

factors after T time steps, and we validate its performance
through numerical simulations. Additionally, we propose LQG-
IF2E, which extends the exploration signal to a ‘closed-loop’
setting by incorporating the Fisher Information Matrix (FIM).
We provide compelling numerical evidence of the competitive
performance of LQG-IF2E compared to LQG-NAIVE.

I. INTRODUCTION

In this work, we address adaptive control of unknown
partially observable linear dynamical systems in the Linear
Quadratic Gaussian (LQG) setting. Adaptive control caters
to the control of unknown systems, where the controller is
updated online from the collected data, to optimize some
performance measures [1]. The LQG control problem is one
of the key issues in adaptive control [2]. The seemingly
benign difference of not being able to measure the true states
will in fact pose a significant challenge when controlling
a system with unknown dynamics [3]. The errors in the
state estimates due to approximate models could potentially
accumulate to have a significant impact on the control
performance.

A metric called regret quantifies an adaptive controller’s
performance, i.e., its capability to balance exploration and
exploitation [4]. The regret measures the cumulative perfor-
mance gap over a finite time horizon between the adaptive
controller and the ideal controller having full knowledge of
the true system dynamics. For the adaptive control in the
LQG setting, several works have contributed to statistical
guarantees on both learning and control [3], [5]–[9].

The adaptive control algorithm in [3] uses an exploration
approach called optimism in the face of uncertainty, which
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utilizes model parameter uncertainty to engender optimism
in its deployed policy. Although this scheme is shown to
guarantee a regret growth of Õ(

√
T ), i.e., O(

√
T ) after

T time steps up to logarithmic factors in T , finding op-
timistic model parameters involves non-convex optimiza-
tion. In [5], the performance of the Certainty Equivalence
Controller (CEC) is analyzed, but it is analyzed without
any exploration or online model updates. A Thompson-
sampling-based approach is adopted in [7], which exploits
parameter uncertainty and promises computational efficiency.
This approach is also shown to guarantee a regret growth of
Õ(

√
T ). The results in [8] show that the best regret upper

bound that one can achieve is Õ(
√
T ), for the LQ setting.

In [6], under an additional assumption that the optimal
controller persistently excites the true underlying system, a
convex reparametrization of a linear dynamical controller is
considered, which guarantees a polylogarithmic regret upper
bound. However, this assumption can be restrictive since
the optimal controller in the LQ setting typically cannot
persistently excite the true underlying system [8].

In the Linear Quadratic Regulator (LQR) setting, it has
been shown that naive exploration, which involves a simple
CEC with an additive excitation signal, whose covariance
diminishes at a rate O(1/

√
t) for intermediate time step t ≤

T , is sufficient to guarantee a regret growth of Õ(
√
T ) [5],

[10]. Whereas, naive-exploration-based control with regret
guarantee in the LQG setting is still an open problem.

In the present work, we investigate naive exploration in the
LQG setting. We propose two adaptive control algorithms,
LQG-NAIVE and LQG-IF2E, which operate in an episodic
fashion and conduct exploration by injecting additive Gaus-
sian signals. While the covariance of the Gaussian explo-
ration signal in LQG-NAIVE decreases over episodes, the
covariance of the exploration signal in LQG-IF2E adjusts
adaptively to the data informativity by exploiting the Fisher
Information Matrix (FIM). The latter exploration strategy
is inspired by the approach in [11] designed for the LQR
setting.

The structure of the adaptive control algorithms proposed
in this work is similar to the one in [3]; however, the
main difference lies in the exploration strategy: the algo-
rithm in [3] employs optimism in the face of uncertainty
and thus requires solving non-convex optimization problems
online for exploration, whereas in this work, we consider
an additive Gaussian signal for exploration. This additive
exploration avoids solving optimization problems online and
is thus much more computationally efficient. This difference
in the exploration strategy poses a major challenge to the
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regret analysis of the proposed algorithms. In this work, we
establish a regret growth rate of Õ(

√
T ) for LQG-NAIVE.

This is achieved by exploiting and extending the analysis
techniques for the naive exploration in the LQR setting [10]
and the techniques for analyzing the CEC in the LQG setting
[5]. Moreover, the performance of LQG-NAIVE and LQG-
IF2E is validated in numerical simulations.

The contributions of this work can be summarized as
follows:

• A novel regret guarantee of Õ(
√
T ) is established for

a naive-exploration-based adaptive control algorithm in
the LQG setting.

• A novel adaptive control algorithm that exploits the FIM
for exploration is proposed for the LQG setting and is
validated in simulations.

Due to space constraints, only the sketches of the proofs
are presented. Full proofs can be found in the extended
version of this paper in [12].

II. PRELIMINARIES

A. Notations

The Euclidean norm of a vector x is denoted by ||x||. For
a matrix X ∈ Rn×m, ||X|| denotes the spectral norm, ||X||F
denotes the Frobenius norm, ρ(X) denotes the spectral
radius, and Tr(X) denotes the trace. The jth singular value
of a matrix X is denoted by σj(X), where σmax(X) :=
σ1(X) ≥ σ2(X) ≥ ... ≥ σmin(X) := σmin(n,m)(X) ≥ 0.
Similarly, λmin(X) and λmax(X) have analogous meanings
for eigenvalues of a square matrix X . In this work, we use
X̂t to denote an estimate of X at time step t. The notation
diag(·) denotes a block diagonal matrix with the arguments
as the blocks along the main diagonal. Given two functions
f(·) and g(·), whose domain and co-domain are subsets
of non-negative real numbers, we write f(x) = O(g(x))
if ∃ c > 0 and x̃ ≥ 0 such that f(x) ≤ cg(x) for all
x ≥ x̃. We write f(x) = Ω(g(x)) if ∃ c > 0 and x̃ ≥ 0
such that f(x) ≥ cg(x) for all x ≥ x̃. The notations Õ(·)
and Ω̃(·) ignore constants that depend on the true system
parameters and poly-logarithmic factors that depend on the
number of time steps T . The inequality f(x) ≲ g(x) denotes
f(x) ≤ cg(x) for a universal constant c > 0. The notation
poly(·) denotes a polynomial function.

B. Problem setting

A discrete-time Linear Time-Invariant (LTI) system is
characterized by the state-space equation

xt+1 = Axt +But + wt, wt ∼ N (0, σ2
wI),

yt = Cxt + zt, zt ∼ N (0, σ2
zI),

(1)

for t = 0, 1, 2, . . . , A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈
Rny×nx . At time step t, ut ∈ Rnu is the input, xt ∈ Rnx

is the state, wt ∈ Rnx is the process noise, yt ∈ Rny is the
system output, and zt ∈ Rny is the measurement noise. Let
the model parameter of the true system be Θ = (A,B,C). To

measure the performance of a controller, the cost ct incurred
at time step t is defined as

ct = y⊤t Qyt + u⊤
t Rut,

where Q ∈ Rny×ny is positive semi-definite and R ∈
Rnu×nu is positive-definite. In this work, the infinite-horizon
setting is considered, wherein the goal is to design an
input signal such that the long-term average expected cost
is minimized. The long-term average expected cost in this
setting is given by

J = lim
T→∞

1

T
E

[
T−1∑
t=0

ct

]
s.t. (1).

Let J∗ denote the optimal long-term average expected cost
for the true system with parameter Θ. The true system is
assumed to be controllable and observable to ensure that J∗
exists [2].

An optimal feedback control law minimizing J has the
following form:

ut = −Kx̂t|t,Θ, (2)

where x̂t|t,Θ is the state estimate given the true parameter
value Θ and the observations until time step t, and

K = (B⊤PB +R)−1B⊤PA,

with P solving the following Discrete-Time Algebraic Ric-
cati Equation (DARE) [2]:

P = C⊤QC +A⊤PA−A⊤PB(B⊤PB +R)−1B⊤PA.
(3)

The state estimate x̂t|t,Θ in (2) is obtained from the Kalman
filter:

x̂t|t,Θ = (I − LC)x̂t|t−1,Θ + Lyt,

x̂t+1|t,Θ = Ax̂t|t,Θ +But,

L = ΣC⊤(CΣC⊤ + σ2
zI)

−1,

(4)

where L is the Kalman gain, and Σ is the solution to the
following DARE:

Σ = σ2
wI +AΣA⊤ −AΣC⊤(CΣC⊤ + σ2

zI)
−1CΣA⊤.

In (4), the two expressions concerning x̂t|t,Θ and x̂t+1|t,Θ
can be combined to obtain the innovation form [13]:

x̂t+1|t,Θ = Ax̂t|t−1,Θ +But + Fet,

et = C
(
xt − x̂t|t−1,Θ

)
+ zt,

et ∼ N (0,Σe),

(5)

where Σe = CΣC⊤ +σ2
zI and F = AL is the Kalman gain

in the innovations form. Equation (5) can be expanded to
obtain the one-step-ahead prediction model [13]:

x̂t+1|t,Θ = (A− FC)x̂t|t−1,Θ +But + Fyt,

ŷt+1|t,Θ = Cx̂t+1|t,Θ,
(6)

where the Kalman gain here ensures that A−FC is asymp-
totically stable. There exists a closed-form expression for the
optimal long-term average expected cost when applying the
optimal feedback control law (2) [14]:
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J∗ = Tr
(
C⊤QCΣ̄

)
+ σ2

zTr (Q) + Tr
(
P (Σ− Σ̄)

)
, (7)

where

Σ̄ = Σ− ΣC⊤ (CΣC⊤ + σ2
zI
)−1

CΣ.

In this work, the true model parameter Θ is unknown,
whereas Q and R are user-defined (known). The main
problem considered in this work is to design a controller
that computes an input ut based on the past observations It:

It = {(yk, uk) | k = 0, 1, . . . , t− 1} ∪ {yt}. (8)

Moreover, the designed controller should perform optimally
with respect to specific metrics. Following the literature [4],
we consider the notion of regret as our metric. Given a finite
time horizon of length T , the cumulative regret Regret(T )
is given by

Regret(T ) =

T−1∑
t=0

(ct − J∗), (9)

where ct is the cost incurred by the controller at time step t. It
is desired to have a controller whose Regret(T ) grows sub-
linearly, i.e., limT→∞ R(T )/T → 0 with high probability
(w.h.p.). In this case, the average performance of the adaptive
controller converges to the optimal average performance J⋆.

As Θ is unknown, given another parameter value Θ′ =
(A′, B′, C ′), the notations K(Θ′), L(Θ′), and P (Θ′) denote
the control gain in (2), the Kalman gain in (4), and the
solution of the DARE in (3) respectively, obtained from the
parameter value Θ′. The main assumptions of this work are
summarized as follows and are considered to hold throughout
the entire paper.

Assumption 2.1: Q, R are positive-definite, x0 ∼
N (0,Σ), and x̂0|−1,Θ = 0. The state dimension nx is known.

The positive definiteness of Q is required to quantify the
sub-optimality in the long-term average cost [5, Th. 3]. Since
the convergence of the Kalman filter gain is exponentially
fast, the assumption on x0 is not restrictive [3].

Assumption 2.2: The unknown model parameter Θ is an
element in a set S satisfying

S ⊆

Θ′ = (A′, B′, C ′)

∣∣∣∣∣∣∣∣∣
ρ(A′) < 1,

(A′, B′) is controllable,
(A′, C ′) is observable,
(A′, F ′) is controllable.

 .

Assumption 2.2 is standard in the literature of finite-
sample system identification and regret minimization [3], [5],
[15]–[17]. The stability of the open-loop plant is assumed in
Assumption 2.2 to avoid explosive behavior during the initial
system identification phase [3].

Definition 2.1 ( [7]): Given an invertible matrix T ∈
Rnx×nx and Θ̂t = (Ât, B̂t, Ĉt), the estimated model param-
eters at time step t, we define the following model mismatch
pseudo-metric:

τ(Θ̂t,Θ) := min
T∈GLn

max


||Ât −T⊤AT||,
||B̂t −T⊤B||,
||Ĉt − CT||

 ,

which is invariant under similarity transformations.

C. Closed-loop system identification

In this work, we adopt a model-based control approach, in
which an estimate of the unknown parameter Θ is obtained
and continuously updated online using a system identification
technique. We specifically use the subspace identification [6].
We consider the predictor form in (6), and for the sake of
brevity, we introduce the notation Ā = (A − FC). At time
step t, we examine the system’s evolution over the last H
time steps, with the condition that t ≥ H. Then we obtain

yt = Mϕt + et + CĀH x̂t−H|t−H−1,Θ, (10)

where

M :=
[
M (0) · · · M (H−1)

]
∈ Rny×(ny+nu)H , (11)

with M (i) := CĀi[F B], and ϕt ∈ R(ny+nu)H is defined as

ϕt :=
[
y⊤t−1 · · · y⊤t−H u⊤

t−1 · · · u⊤
t−H

]⊤
. (12)

Since Ā is stable, the last term in (10) becomes negligible
for a large enough H , specifically for H ≥ H̄ with some
H̄ = Ω(log T ). The exact expression of H̄ can be found in
[12, eq. 63]. Now with {yi}ti=0 and {ui}t−1

i=0 , we have

Yt = ΦtM
⊤ + Et +Nt

=⇒ Yt ≈ ΦtM
⊤ + Et, (13)

where Yt = [yH yH+1 ... yt]
⊤,Φt = [ϕH ϕH+1 ... ϕt]

⊤,
Nt = [CĀH x̂0|−1,Θ ... CĀH x̂t−H|t−H−1,Θ], and Et =
[eH eH+1 ... et]

⊤. The approximation in (13) comes from
the fact that Nt becomes negligible for a large enough
H . Therefore, from (13), the Markov parameters M of the
unknown true system can be estimated using regularized least
squares [3]:

M̂⊤
t = (Φ⊤

t Φt + λI)−1Φ⊤
t Yt, (14)

where λ > 0 is a regularization parameter. Define Vt =
Φ⊤

t Φt + λI .
Following [6], from M̂t, a subroutine called SYSID will

be deployed in the control algorithms of this work to
obtain an estimate of the model parameters Ât, B̂t, Ĉt, L̂t.
This subroutine is a variation of the classical Ho-Kalman
realization algorithm [18], and details of this identification
approach are found in [6].

III. ADAPTIVE CONTROL WITH ADDITIVE EXPLORATION

A. Naive exploration

This section presents LQG-NAIVE (Algorithm 1), which
provides a computationally efficient method to address regret
minimization in the LQG setting. Overall, the algorithm
consists of two phases: the warm-up phase and the adaptive-
control phase.

Warm-up phase: To obtain an initial CEC that can
stabilize the unknown true system, an initial model parameter
estimate is obtained. This is achieved through pure explo-
ration by injecting Gaussian input signals for Tw time steps
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to effectively excite the system and then conducting system
identification. The length Tw of this phase depends on how
accurate the initial estimate needs to be [3]. Moreover, we
let Tw ≥ H .

Adaptive-control phase: Following the warm-up phase,
the algorithm proceeds in an episodic fashion. The number
of time steps lk of the kth episode satisfies lk = 2kTw, for
k = 0, 1, 2, . . . It holds that the time step at the beginning
of the kth episode equals lk. Since lk+1 = 2lk, the total
number of episodes kfin within a time horizon of length T is
⌊log2(T/Tw)⌋, where ⌊·⌋ denotes the floor function.

At the beginning of the kth episode, LQG-NAIVE updates
the parameter estimate to Θ̂lk . Then, within this episode,
the corresponding CEC with an additive Gaussian excitatory
signal is deployed:

ut = −K(Θ̂lk)x̂t|t,Θ̂lk
+ ηt,

ηt ∼
(
γ/
√
lk

)1/2
N (0, I),

(15)

where γ > 0 is a tuning parameter, and K(Θ̂lk) is the opti-
mal feedback gain computed from Θ̂lk = (Âlk , B̂lk , Ĉlk).

Algorithm 1 LQG-NAIVE
1: Initialize Q,R, γ > 0, H , Tw, nx, ny , nu, σ2

u

2: procedure WARM-UP
3: for t = 0, 1, ..., Tw − 1 do
4: Inject ut ∼ N (0, σ2

uI)
5: end for
6: Store {(yt, ut)}Tw−1

t=0

7: end procedure
8: procedure ADAPTIVE CONTROL
9: for k = 0, 1, ... do

10: Let lk = 2kTw
11: Calculate M̂lk using Ilk and (14)
12: Perform SYSID [6] to obtain Âlk , B̂lk , Ĉlk , L̂lk

13: for t = 2kTw, ..., 2
k+1Tw − 1 do

14: Inject ut as in (15)
15: end for
16: end for
17: end procedure

B. FIM-based exploration (LQG-IF2E)
The adaptive control algorithm based on the FIM employs

the same structure as in Algorithm 1, with the only difference
at step 14 for exploration. To present the algorithm, called the
LQG-IF2E, we first provide an intuition for using the FIM.
The recent work [11] uses the FIM to explicitly design the
exploration signal for the LQR setting. The usage of FIM
is particularly advantageous when adapting the magnitude
of the additive excitation signal to unexpected disturbances
[11]. Moreover, the FIM reflects the informativity of data
and thus can be exploited to generate informative data for
model re-estimation.

Definition 3.1 ( [8]): For a family of parameterized prob-
ability densities {pθ, θ ∈ S̄} of a random variable x ∈ Rn,
where S̄ ⊆ Rd, the FIM Īp(θ) ∈ Rd×d is given by

Īp(θ) =

∫
Rn

∇θ log pθ(x) (∇θ log pθ(x))
⊤
pθ(x)dx, (16)

whenever the integral exists.
In the present work, the FIM is constructed with respect

to the Markov parameters (M) that govern the dynamics of
the approximate model (13). In this case, the FIM under any
policy π after collecting the observations {(yi, ui)}t−1

i=0 for
t ≥ H , is given by

IH,t =

t∑
i=H

E
[
ϕiϕ

⊤
i ⊗ Σ−1

e

]
. (17)

The FIM cannot be constructed for the first H time steps
since the ϕt vector is not defined during this period. This is
acceptable because after the warm-up phase, sufficient data
is collected, i.e., Tw ≥ H , to construct the FIM, which is
then used in the adaptive control phase. The derivation of
(17) is presented in the extended version of this paper [12,
Lemma 6.7] and is an extension of [8, Lemma 3.3] from the
LQR setting to the LQG setting.

There is however a caveat in using the FIM: the FIM
requires knowledge of the unknown true parameter Θ, as in
(17). To circumvent this issue, we evaluate the FIM instead
at Θ̂lk . Even if Θ̂lk can only converge to a similarity trans-
formation of Θ, the eigenvalues of a matrix are preserved
under similarity transformation, and thus one can evaluate
the FIM with Θ̂lk . For the simplicity of notations, we use
Θ̂t here to denote the estimated parameter at time step t to
estimate the FIM, and note that in Algorithm 1, Θ̂t = Θ̂lk

when t ∈ [lk, lk+1). This holds for other estimates as well,
e.g., M̂t = M̂lk when t ∈ [lk, lk+1). Therefore, we can
estimate the ‘true’ FIM as

ÎH,t =

t∑
i=H

ϕiϕ
⊤
i ⊗ Σ̂−1

e,i , (18)

and

Σ̂e,i =
1

i+ 1

i∑
j=0

(
yj − ŷj|j−1,Θ̂j−1

)(
yj − ŷj|j−1,Θ̂j−1

)⊤
,

with ŷj|j−1,Θ̂j−1
= Ĉj−1x̂j|j−1,Θ̂j−1

.
To ensure that the FIM is not ill-conditioned, the explo-

ration strategy in (15) is used until λmin

(
ÎH,t

)
is larger

than some tolerance value. After achieving this tolerance, the
FIM-based exploration strategy is deployed. That is, given
ctol > 0, if λmin

(
ÎH,t

)
≥ ctol,

ut = −K(Θ̂lk)x̂t|t,Θ̂lk
+ ηt,

ηt ∼
(
α/λmin

(
ÎH,t

))1/2
N (0, I),

(19)

where α > 0 is a tuning parameter. Given that ÎH,t depends
on past inputs and outputs through the vector ϕt, the FIM-
based exploration strategy is a type of ‘closed-loop’ explo-
ration strategy capable of adaptively changing the magnitude
of the exploration signal to the ‘degree’ of informativity.
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IV. REGRET GUARANTEE

We now establish a theoretical guarantee on the regret
growth of LQG-NAIVE. To this end, this section presents
a finite-time guarantee on the persistency of excitation of
the data, which is necessary for parameter estimation, and
a guarantee that the closed-loop system is stabilized during
the adaptive control phase. From these two guarantees, we
ensure that the model parameter estimation error is upper-
bounded by a monotonically decreasing rate of Õ(1/

√
t).

Warm-up phase: The modeling error of the initial pa-
rameter estimate after the warm-up phase can be bounded as
shown in [3], [19] under the same setting. From [3, Lemma
3.1], the input-output data persistently excites the underlying
system during the warm-up period, i.e., σmin(VTw) = Ω(Tw).
Further, [3, Th. 3.3] shows that

||M̂Tw −M|| ≤ βTw√
σmin(VTw)

= Õ
(

1√
Tw

)
, (20)

with a probability of at least 1− δ, where

βTw :=

√
ny||Σe|| log

(
det(VTw)

1/2

δdet(λI)1/2

)
+ ||M||F

√
λ+

√
H

Tw

for δ ∈ (0, 1) and Tw ≥ H ≥ H̄ . [3, Th. 3.4] shows that if
H ≥ H̄ , then

τ(Θ̂t,Θ) = O
(
||M̂t −M||

)
w.h.p. (21)

Combining the above result with (20) shows that
τ(Θ̂Tw ,Θ) = Õ(1/

√
Tw) w.h.p. If Tw ≥ T̄w for some

positive integer T̄w, we have τ(Θ̂Tw ,Θ) ≤ ϵw, where ϵw is
a positive constant and the exact formulation of T̄w can be
found in [12, Appendix].

Adaptive Control Period

During the adaptive control period, it is imperative to
guarantee that the input and output signals remain bounded
with high probability, to ensure the safe operation of the
closed-loop system. Such guarantee is provided with LQG-
NAIVE, as shown in the following lemma:

Lemma 4.1: For all t ≥ Tw with Tw ≥ T̄w, LQG-NAIVE
satisfies the following with a probability of at least 1− δ for
δ ∈ (0, 1):

||x̂t|t,Θ̂t
|| ≤ X̄ , ||x̂t|t−1,Θ̂t−1

|| ≤ Xest,ac,

||yt|| ≤ Yac, ||ut|| ≤ Uac, ||xt|| ≤ Xac,
(22)

for some X̄ , Xest,ac, Uac, Yac, Xac = O(
√
log(T/δ)).

Another important pre-requirement for the regret guaran-
tee is to ensure the informativity of the data. To guarantee
informativity, we consider a sufficient number of time steps
Tac after the warm-up phase. The detailed formulation of Tac
can be found in [12, eq. 60] of the extended version of this
paper. Then the guarantee for informativity is presented in
the following result:

Lemma 4.2: If Tw ≥ T̄w, we have the following with
probability of at least 1−δ for δ ∈ (0, 1): for all t ≥ Tac+Tw
and for some constant σc > 0,

σmin

(
t∑

i=Tw

ϕiϕ
⊤
i

)
≥ (t− Tw + 1)

σ2
c min{σ2

w, σ
2
z , σ

2
ηt−1

}
8

.

(23)
From the persistence of excitation property in (23), we

can now provide a bound on the parameter estimation error
during the adaptive control phase.

Lemma 4.3: If Tw ≥ T̄w, for any t ≥ max {Tac + Tw,
2Tw}, the estimate of the Markov parameters, M̂t, obeys
the following bound with a probability of at least 1− δ for
δ ∈ (0, 1):

||M̂t −M|| ≤ β̄ac√
σmin(Vt)

= Õ(1/
√
t), (24)

for some β̄ac = poly(ny,Σe, δ, Yac, Uac).
The complete proof can be found in the extended version

of this paper [12, Lemma 4.3]. From (21) and Lemma 4.3, we
have τ(Θ̂t,Θ) = Õ(1/

√
t). Therefore, the model parameter

estimation error is monotonically decreasing.
The final piece in establishing the regret upper bound

requires bounding the sub-optimality gap ∆Θ̂t
:= J(Θ̂t) −

J∗. This inherently requires a way to represent J(Θ̂t). It is a
standard procedure to write the long-term average expected
cost as a function of the solution to a Lyapunov equation
[10], and thus we connect J(Θ̂t) to a Lyapunov equation as
follows.

Consider the true system (1), and another model parameter
Θ̃ = (Ã, B̃, C̃) ∈ S . Let K̃ = K(Θ̃) and L̃ = L(Θ̃). Now,
define an alternative formulation of the LQG cost function
as

Js(Θ̃) = lim
T→∞

1

T
E

[
T−1∑
t=0

x⊤
t Qcxt + x̂⊤

t|t,Θ̃K̃
⊤RK̃x̂t|t,Θ̃

]
,

s.t. (1),

x̂t|t,Θ̃ = (I − L̃C̃)x̂t|t−1,Θ̃ + L̃yt,

x̂t+1|t,Θ̃ = Ãx̃t|t,Θ̃ + B̃ut,

ut = −K̃x̂t|t,Θ̃,

where Qc = C⊤QC, K̃ stabilises the true system, and
Ã−F̃ C̃ is asymptotically stable. This alternative formulation
of the quadratic cost shows up when upper bounding the
cumulative cost in the regret analysis. Further, consider the
following closed-loop state-space equation with extended
states: [

xt

x̂t|t,Θ̃

]
= G̃1

[
xt−1

x̂t−1|t−1,Θ̃

]
+ G̃2

[
wt−1

zt

]
,

where

G̃1 =

[
A −BK̃

L̃CA
(
I − L̃C̃

)(
Ã− B̃K̃

)
− L̃CBK̃

]
,

G̃2 =

[
I 0

L̃C L̃

]
.

Consider the discrete Lyapunov equation S̃ = G̃⊤
1 S̃G̃1 +

diag(Qc, K̃
⊤RK̃) with S̃ being its positive semi-definite

solution. Then, we have
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Js(Θ̃) = Tr
(
G̃⊤

2 S̃G̃2diag(σ2
wI, σ

2
zI)
)
. (25)

Moreover, it holds that J(Θ̃) = Js(Θ̃) + Tr(Qσ2
zI) [5, Th.

3]. This property can aid in quantifying the sub-optimality
gap ∆Θ̂t

. Now, we are ready to state the regret upper bound.
Theorem 4.1: If Tw ≥ T̄w, with a probability of at least

1−δ for δ ∈ (0, 1), we have for any T ≥ max{Tac+Tw, 2Tw}
that the regret of LQG-NAIVE is bounded as

Regret(T ) ≲
kfin−1∑
k=0

lk

(
Js(Θ̂lk)− J∗

)
+ lknyσ

2
zTr (Q)

+ lkσ
2
ηlk

poly
(
τ(Θ̂lk ,Θ)

)
+
√
lkpoly

(
τ(Θ̂lk ,Θ), Xac, X̄ , ||Q||, ||R||

)
(26)

= Õ(
√
T )

where lk is the number of time steps in the kth episode, kfin
is the total number of episodes and σ2

ηlk
= γ/

√
lk.

The result in Theorem 4.1 confirms that a naive-
exploration-based adaptive control strategy is sufficient to
guarantee a

√
T -regret growth, which is the optimal rate

of regret growth up to logarithmic terms in the control of
unknown partially observable linear systems. The proof is
presented in the extended version of this paper [12, Th. 4.1].
Now, an intuition is provided on how the regret bound is
derived. As Algorithm 1 operates in an episodic fashion, the
regret is also analyzed episode-wise. First, an upper bound on
the cumulative cost incurred by LQG-NAIVE in any arbitrary
episode is obtained. From this, we can obtain an upper bound
on the regret for any episode. This episode-wise regret bound
is then summed over the number of episodes to obtain the
final regret upper bound incurred by LQG-NAIVE during the
adaptive control phase as shown in (26).

In (26), the sub-optimality gap Js(Θ̂lk)− J∗ and the ex-
ploration cost σ2

ηlk
poly

(
τ(Θ̂lk ,Θ)

)
have significant contri-

butions towards the regret, as they are linearly dependent on
lk. To provide a bound on the sub-optimality gap, we exploit
an earlier result [5, Th. 4], which essentially bounds the
contribution from the sub-optimality gap by Õ(log2(T/Tw)).
On the other hand, the exploration cost is bounded by
Õ(

√
T ) as σ2

ηlk
= γ/

√
lk. We can further see from the 3rd

and 4th terms in (26) that the model parameter estimation
error along with the established bounds on the state and its
estimate, also influence the regret upper bound. From (21)
and Lemma 4.3, we have that the model parameter estimation
errors are monotonically decreasing, and as a consequence,
τ(Θ̂t,Θ) ≤ τ(Θ̂Tw ,Θ) with a high probability. This result
is used in deriving the regret upper bound (26).

V. NUMERICAL SIMULATIONS

In this section, we validate the performance of LQG-
NAIVE and LQG-IF2E through numerical simulations. For
the simulation, we consider a linearized version of the web
server control problem [20]. Different from [20], we consider
the partial observability case, i.e., the inclusion of the C

matrix and the measurement noise. The true system under
consideration is given by

xt+1 =

[
0.54 −0.11

−0.026 0.63

]
xt +

[
−85 4.4
−2.5 2.8

]
ut + wt,

yt =

[
0.2 0.3
0.3 0.2

]
xt + zt,

where wt, zt ∼ N (0, 0.01I). The cost matrices for the
control problem are given by [20]:

Q =

[
5 0
0 1

]
, R =

[
1

502 0
0 1

106

]
.

The optimal long-term average expected cost calculated from
(7) is 0.0707.

To implement the adaptive control algorithm, the length of
the warm-up phase is set to Tw = 25. During the warm-up
phase, Gaussian excitatory signals are injected, where ut ∼
N (0, 0.1I). For the adaptive control phase, the number of
episodes is taken to be kfin = 11. The hyper-parameters for
the adaptive control policies (15) and (19) are γ =

√
Tw
10

and α = 1 respectively. To avoid ill-conditioned FIM, we
select ctol = 1. Finally, the length of the input-output data for
constructing the ϕ vector in system identification is H = 12.
Each of the algorithms LQG-NAIVE and LQG-IF2E are run
100 times to report the mean and the standard deviation of
the regret growth.

Fig. 1 shows the regret growth of the 100 simulations. The
bold red line represents the mean regret of LQG-NAIVE,
whereas the bold blue line represents the mean regret of
LQG-IF2E. LQG-NAIVE incurs a long-term average cost of
0.0744 and LQG-IF2E incurs a long-term average cost of
0.0742, averaged over the 100 simulations. The LQG-IF2E
algorithm switches to the FIM-based exploration strategy
at the 35th time step, on average. This means that with a
delay of approximately one episode, the algorithm is able
to deploy the FIM-based exploration strategy. The hyper-
parameter α is chosen such that LQG-NAIVE and LQG-IF2E
have similar behavior for the regret growth, which is evident
from Fig. 1. An intuitive way to understand this similarity
in regret growth is by plotting the evolution of the minimum
eigenvalue of the FIM.

Fig. 2 shows how the minimum eigenvalue of the FIM
varies over the time steps. The bold blue line represents the
mean growth of λmin

(
ÎH,t

)
of LQG-IF2E, whereas the bold

red line represents the mean growth of λmin

(
ÎH,t

)
of LQG-

NAIVE. Based on Fig. 2, the behaviors of the FIMs are also
similar between the two algorithms. Since the FIM captures
the informativity of the data, which influences the parameter
learning rate and hence the growth of the regret, one can
expect two algorithms to have similar regret growth if their
corresponding FIMs behaves similarly. The ‘bumps’ that are
observed in Fig. 2 correspond to the time steps where the
model parameter estimate Θ̂t was updated. The length of
the ‘bumps’ corresponds approximately to the length of the
episodes.
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Fig. 1. Regret growth of LQG-NAIVE and LQG-IF2E.

Fig. 2. Growth of the minimum eigenvalue of the estimated FIM.

VI. CONCLUSIONS

We have focused on control of unknown partially observ-
able LTI systems in an LQG setting. We have developed
two computationally efficient adaptive control algorithms:
LQG-NAIVE and LQG-IF2E. The LQG-NAIVE algorithm,
based on naive exploration, is more computationally efficient
than optimism-in-the-face-of-uncertainty-based exploration.
It also has a guaranteed regret growth of Õ(

√
T ). However,

in the regret upper bound, determining how the system
constants scale with the dimensions is a topic for future work.

On the other hand, LQG-IF2E extends the ‘open-loop’
additive excitation signal in LQG-NAIVE to a ‘closed-loop’
additive excitation by incorporating FIM in designing the
covariance of the exploration signal. However, providing
finite-time regret guarantees for LQG-IF2E is significantly
more challenging, as the additive excitation signal is not
i.i.d. This is because the FIM depends on all the previous
observations. Both algorithms have been validated in numeri-

cal simulations and show competitive performance. Deriving
finite-time regret guarantees for FIM-based adaptive control
strategies such as LQG-IF2E is also a topic for future work.

REFERENCES

[1] N. Matni, A. Proutiere, A. Rantzer, and S. Tu, “From self-tuning
regulators to reinforcement learning and back again,” in IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 3724–3740.

[2] D. Bertsekas, Dynamic Programming and Optimal Control: Volume I.
Athena Scientific, 2012, vol. 4.

[3] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Adap-
tive control and regret minimization in LQG setting,” in American
Control Conference (ACC), 2021, pp. 2517–2522.

[4] Y. Abbasi-Yadkori and C. Szepesvári, “Regret bounds for the adaptive
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