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Abstract— Feedback linearization generally implies exact
knowledge of the dynamical model of a nonlinear input-affine
process. This is an inherent limitation of the method in its
current use in the literature, as models are only partially
known, with the remaining unknown dynamics considered as
uncertainties. The purpose of this paper is to consider the
full relative degree case and determine conditions to ensure
asymptotic stability for the entire family of processes by
employing the nominal nonlinear model and an uncertain linear
block. The resulting linear inverse additive uncertainty model
always leads to an improper descriptor system which can be fit
from frequency response data through a proposed algorithm.
A numerical case study further illustrates this approach.

I. INTRODUCTION

The problem of feedback linearization is well known in
the literature, through the seminal works [1], [2], as a starting
point. It implies an adequate change of coordinates such
that the system is transposed into its normal form, having
the zero dynamics and external dynamics as its two main
subsystems. The main drawback is that it necessitates an
exact model for the nonlinear process, which is hard to
accurately determine experimentally or, simply, the dynamics
vary in time. A historical overview with current challenges
regarding the study of zero dynamics is provided in [3], while
the need to manipulate the external dynamics leads to several
control methods. In the context of feedback linearization
and stabilization in the presence of uncertainties, there exist
several emergent studies. A first approach was presented
in [4], in which the authors present conditions for uniform
stability of nonlinear systems using state feedback.

In the conference paper [5], later extended in [6], a robust
feedback stabilization technique is presented for a class of
input-affine nonlinear systems with matched uncertainties
and input bound constraints. In a similar manner, the authors
of [7] propose a method to robustify against parametric un-
certainties. A common characteristic of the previous papers
is that they technically employ three layers for the controller:
the linearization diffeomorphism, the state feedback and one
to counter the uncertainties (using different structures). In
the case of multivariable systems, a recursive procedure to
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design a joint feedback-linearization coupled with a high-
gain observer has been extensively developed in [8], allowing
to recover the performance imposed on the nominal case.

A reinforcement learning approach used to compute the
linearization diffeomorphism is presented in [9]. The authors
propose a model-free technique using general function ap-
proximation architectures, with conditions under which the
learning problem is strongly convex. A recent data-driven
neural network-based solution is presented in [10]. Besides
the nonlinear change of coordinates, the state equation ma-
trices are also learned, with loss terms imposed to also
ensure the pair’s controllability. A signal-centric perspective
is described in [11], also based on the data-driven paradigm,
where nonlinear systems are continuously approximated by
linear models in order to harvest the advantages of frequency
response and robust control methods.

The main contributions of the current paper are: (i) a
methodology for robust feedback linearization in the special
case of systems where uncertainties maintain the full relative
degree; (ii) a non-convex optimization problem formulation
which manages to find the uncertainty model using an im-
proper system (the first available solution, from our findings);
(iii) to illustrate the proposed framework on the nonlinear
mass-spring benchmark system. The uncertainty model is
proved to lead to an inverse additive model, which allows
the poles to cross from the stable to unstable regions by
varying the uncertainty block ∥∆∥≤1 [12], which is adequate
for the studied case. An advantage of the proposed method
compared to [5], [6], [7] is that our regulator architecture
implies only the nonlinear coordinate change and a linear
robust layer, compared to the three layers needed.

The rest of the paper is structured as follows: Sections
II and III provide a theoretical overviews on the feedback
linearization principle and linear uncertainty modelling, re-
spectively. Section IV presents the proposed end-to-end ap-
proach to robustify the feedback linearization method in the
face uncertainties, with an additional algorithm to fit stable
and minimum-phase descriptor system models. Section V
provides a practical illustration on a nonlinear mass-spring
system, with some conclusions in VI.

Notations: Denote a scalar variable as x ∈ R, column
vectors x ∈ Rn, matrices X ∈ Rm×p. ∥ · ∥ will imply the
∞ norm of a matrix or system, depending on the argument
type. Let Lfh(x) =

∂h
∂xf(x) be the Lie derivative of h along

the trajectory f , and Lk
fh = LfL

k−1
f h, L0

fh = h. Let V{x}
be a neighborhood of a point x ∈ Rn.
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II. FEEDBACK LINEARIZATION BACKGROUND

For the purpose of this paper we consider a single-
input and single-output (SISO) input-affine nonlinear system
having the form:

(Σn) :

{
ẋ = f(x) + g(x)u;

y = h(x),
(1)

where x ∈ Rn is the state vector, while maps f, g : Rn → Rn

and h : Rn → R must be smooth in their arguments.
Definition 1: The system (Σn) has the relative degree r ≤

n at a point x if the following conditions hold:
(i) for all x ∈ V{x} and k < r−1 we have LgL

k
fh(x) = 0;

(ii) LgL
r−1
f h(x) ̸= 0.

We assume that the nominal system (Σn) has the relative
degree r = n for each x ∈ Dx. Then the following nonlinear
transformation:

Φ(x) =


ϕ1(x)
ϕ2(x)

...
ϕn(x)

 =


h(x)

Lfh(x)
...

Ln−1
f h(x)

 (2)

is a diffeomorphism [3]. In the new coordinates:

zi = Li−1
f h(x),

and the system can be written as:

ż1 = z2

ż2 = z3
...
żn−1 = zn

żn = Ln
fh
(
Φ−1(z)

)
+ LgL

n−1
f h

(
Φ−1(z)

)
u

y = z1

. (3)

Now, the remaining nonlinearities are stored in the last
state equation. To cancel this nonlinearity we consider the
following state feedback control law:

u =
1

LgL
n−1
f h (Φ−1(z))

(
v − Ln

fh
(
Φ−1(z)

))
. (4)

The resulting inner closed-loop system becomes a chain of
n integrators, and a good technique will be to consider
an integrated linear-quadratic regulator (LQR). The main
drawback of such a strategy is the requirement of having an
exact model of the system. This paper proposes a solution in
the presence of uncertainties which are assumed to not alter
the relative degree, and without including zero dynamics.

III. PROPOSED UNCERTAINTY MATCHING

In robust control, the process uncertainties can be classi-
fied in unstructured (used to describe residual dynamics) and
parametric (to model inaccurate component characteristics)
[12]. An arbitrary number of both types can be encompassed
into a single block-diagonal structured uncertainty:

∆ = {diag (δ1In1 , . . . , δsIns ,∆1, . . . ,∆f ) , (5)

δi ∈ C,∆j ∈ Cmj×mj , 1 ≤ i ≤ ns, 1 ≤ j ≤ nf

}
,

where blocks ∆i are used for unstructured uncertainties,
while blocks δiIni are used for lumped parametric uncer-
tainties. As further developed in Section IV-C, we desire to
encompass all uncertainties from the block ∆ into a single
uncertainty block, to obtain firm guarantees on the robust
controller’s performance.

One contribution of the current paper is to present a way to
deal with uncertainties modelled as descriptor systems. There
are only a few available solutions for such problems, so we
briefly present a non-convex optimization problem starting
from our recent paper [13], with a practical necessity for
this approach sourced from [14]. This leads to the problem
of finding a suitable uncertainty weighting function Wθ(s)
for SISO models such that the set ∆ will contain a single
full block, i.e. ns = 0 and nf = 1. As such, define:

Wθ(s) =
βmsm + βm−1s

m−1 + · · ·+ β1s+ β0

sn + αn−1sn−1 + · · ·+ α1s+ α0
=

β(s)

α(s)
,

(6)
with pair (n,m) as hyperparameters, with no assumptions
about the relationship between n and m. The vector of
unknown parameters is defined as:

θmn ≡ θ =
(
βm . . . β0 αn−1 . . . α0

)⊤ ∈ Rm+n+1.
(7)

Further denote M⋆ : Ω→R+, M⋆ (ω) as experimental lower
bound magnitude measurements, for a given set Ω ⊂ R+.

A least conservative fitting problem in an ℓ1-norm sense
can be defined based on the following minimization problem
with nonlinear constraints:

min
θ

L(θ) =
∑
ω∈Ω

∣∣∣|Wθ(jω)|2 −M⋆(ω)2
∣∣∣ (8)

subject to


|Wθ(jω)| ≥ M⋆(ω), ω ∈ Ω

α(s), β(s) Hurwitz
Wθ(jω) valid with respect to M⋆(ω)

.

To solve problem (8), MATLAB’s fmincon solver can be
employed using the interior-point or active-set
algorithms. The problem presents convergence guarantees
due to the qualities of the subgradient method, ensured
through an adequate definition of the sign function found
in the gradient of the objective function and first constraint.
The Hurwitz conditions for the polynomials α and β can be
algorithmically verified using the Hurwitz matrix formula-
tion, while the system validity condition in the sense of [15]
has been shown in [13] to be implied by the lower bound
conditions in the provided SISO case. As such, this approach
can be used to fit improper systems also.

IV. PROPOSED ROBUST FEEDBACK LINEARIZATION

In this section we present a set of theoretical results for
the possibility to use a diffeomorphism which linearizes the
nominal system (Σn) to also obtain a linearized uncertain
model for the following continuous-time input-affine uncer-
tain nonlinear system:

(Σ) :

{
ẋ = f(x) + ∆f(x) + (g(x) + ∆g(x))u;

y = h(x).
(9)
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Theorem 1: If the nominal system (Σn) has relative de-
gree n and ∆g ∈ Span{g}, then the relative degree of the
uncertain system (Σ) is equal to n.

Proof: If the nominal system (Σn) has relative degree
n, then:

LgL
k
fh(x) = 0, k < n− 1.

But, because ∆g ∈ Span{g}, we have

Lg+∆gL
k
fh(x) = 0, k < n− 1,

so the uncertain system also has relative degree n.
The assumption of having ∆g ∈ Span{g} encompasses a

relevant class of uncertain systems available in the literature.
Furthermore, it is less conservative than in [5], [6]. As stated
before, we want to use the same diffeomorphism as in the
case of the nominal system. The nominal system has the
relative degree n, so we consider the following n functions
as the coordinate change:

ϕi(x) = Li−1
f h(x), i = 1, n, (10)

the new coordinates being:
z = Φ(x) . (11)

Considering the same linearizable input (4), the uncertain
system (Σ) can be written as:

ż = Az+Bv + f̃(z) + g̃(z)v, (12)

where v is the command signal for the outer loop. We will
next show that the terms f̃ and g̃, which admit polytopic
approximations, can be included for two particular cases
(∆f,∆g∈Span{g} and ∆g∈Span{g}, respectively) into an
uncertainty expressed as an improper system. This approxi-
mation will then be used in robust synthesis, as in [16].

A. Case I: ∆f,∆g ∈ Span{g}
If ∆f,∆g ∈ Span{g}, according to Theorem 1, we can

ensure that the uncertain system has full relative degree if the
nominal system (Σn) has full relative degree. The following
lemma presents the state-space realization after considering
the coordinate transformation (11).

Lemma 1: The state-space realization of the uncertain
system (Σ) in the new coordinates z = Φ(x) is given by:

ż1 = z2

ż2 = z3
...
żn−1 = zn

żn = Ln
fh
(
Φ−1(z)

)
+ L∆fL

n−1
f h

(
Φ−1(z)

)
+

+
(
LgL

n−1
f h

(
Φ−1(z)

)
+ L∆gL

n−1
f h

(
Φ−1(z)

))
u.

(13)
Proof: For the first n− 1 states we have:

żi =
∂ϕi

∂x
· dx

dt
=

=
∂Li−1

f h(x)

∂x

f(x) + ∆f(x) + (g(x) + ∆g(x))u︸ ︷︷ ︸
∈Span{g}

 =

= Li
fh(x) = zi+1.

For the last state we have:

żn =
∂ϕn(x)

∂x
· dx

dt
=

=
∂Ln−1

f h(x)

∂x
(f(x) + ∆f(x) + (g(x) + ∆g(x))u) =

z=Φ(x)
= Ln

fh
(
Φ−1(z)

)
+ L∆fL

n−1
f h

(
Φ−1(z)

)
+

+
(
LgL

n−1
f h

(
Φ−1(z)

)
+ L∆gL

n−1
f h

(
Φ−1(z)

))
u.

The main idea underlined in Lemma 1 consists in the
possibility to write the system (Σ) in form (12) with:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 . . . 0

 ; B =


0
0
...
0
1

 ; (14a)

f̃(z) =


0
0
...
0

f̃n

 ; g̃(z) =



0
0
...
0

−L∆gL
n−1
f h(Φ−1(z))

LgL
n−1
f h(Φ−1(z))

 , (14b)

where:

f̃n = L∆fL
n−1
f h

(
Φ−1(z)

)
− (15)

− L∆gL
n−1
f h

(
Φ−1(z)

) Ln
fh
(
Φ−1(z)

)
LgL

n−1
f h (Φ−1(z))

.

As such, the nominal system is represented by a chain of n
integrators. Now, starting from this nominal linearized sys-
tem around a given equilibrium point, we want to encompass
the residual nonlinear terms as an uncertainty.

Theorem 2: The uncertainty which encompasses the resid-
ual nonlinearities from f̃ and g̃ considering an inverse
additive uncertainty is modelled using an improper system
having the zeros excess equal to the order of the system.

Proof: Considering G∆ obtained as a linearized repre-
sentation around a given equilibrium point (x, u):(

A+
(
∇zf̃ +∇zg̃v

)∣∣∣
z=Φ(x)

, B + g̃(z), Cz, 0

)
,

where Cz =
(
1 0 . . . 0

)
, and the nominal system

Gn(s) =
1
sn , we have:

G∆(s) =
1 + β

sn + αn−1sn−1 + · · ·+ α0
,

so the inverse additive model is given by:

W (s)∆ =
1

G∆(s)
− 1

Gn(s)
=

=
sn + αn−1s

n−1 + · · ·+ α0

1 + β
− sn =

= − β

1 + β
sn +

αn−1s
n−1 + · · ·+ α0

1 + β
,
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where ∥∆∥ ≤ 1 and W (s) is the uncertainty model, therefore
the conclusion follows.

B. Case II: ∆g ∈ Span{g}
We now proceed to analyze the more general case of

having ∆g ∈ Span{g} which, according to Theorem 1,
ensures that the uncertain system has the full relative de-
gree in the context of having a nominal system with full
relative degree. After the coordinate transformation (11) is
performed, the state-space realization has the form presented
in the following lemma.

Lemma 2: The state-space realization of the uncertain
system (Σ) in the new coordinates z = Φ(x) is given by:

ż1 = z2 + L∆fh
(
Φ−1(z)

)
ż2 = z3 + L∆fLfh

(
Φ−1(z)

)
...
żn−1 = zn + L∆fL

n−1
f h

(
Φ−1(z)

)
żn = Ln

fh
(
Φ−1(z)

)
+ L∆fL

n−1
f h

(
Φ−1(z)

)
+

+
(
LgL

n−1
f h

(
Φ−1(z)

)
+ L∆gL

n−1
f h

(
Φ−1(z)

))
u.

(16)
Proof: For the first n− 1 states we have:

żi =
∂ϕi

∂x
· dx

dt
=

=
∂Li−1

f h(x)

∂x

f(x) + ∆f(x) + (g(x) + ∆g(x))︸ ︷︷ ︸
∈Span{g}

u

 =

= Li
fh(x) + L∆fL

i−1
f h (x) = zi+1 + L∆fL

i−1
f h

(
Φ−1(z)

)
,

while for the last state we have:

żn =
∂ϕn(x)

∂x
· dx

dt
=

=
∂Ln−1

f h(x)

∂x
(f(x) + ∆f(x) + (g(x) + ∆g(x))u) =

z=Φ(x)
= Ln

fh
(
Φ−1(z)

)
+ L∆fL

n−1
f h

(
Φ−1(z)

)
+

+
(
LgL

n−1
f h

(
Φ−1(z)

)
+ L∆gL

n−1
f h

(
Φ−1(z)

))
u.

The main idea underlined by Lemma 2 consists in the
possibility to write the system (Σ) in form (12) with the
same A and B matrices as in (14a):

f̃(z) =


f̃1
f̃2
...

f̃n−1

f̃n

 g̃(z) =



0
0
...
0

−L∆gL
n−1
f h(Φ−1(z))

LgL
n−1
f h(Φ−1(z))

 (17)

where f̃n is the term (15), while:

f̃i = L∆fL
i−1
f h

(
Φ−1(z)

)
, i = 1, n− 1. (18)

As such, the nominal system is represented by a chain of
n integrators. Now, starting from this nominal linearized

system around a given equilibrium point, we want to include
the residual nonlinear terms as an uncertainty.

Theorem 3: The uncertainty which encompasses the resid-
ual nonlinearities from f̃ and g̃, considering an inverse
additive uncertainty, is modelled using an improper system
having the zeros excess equal to the order of the system.

Proof: Considering G∆ obtained as a linearized repre-
sentation around a given equilibrium point (x, u):(

A+
(
∇zf̃ +∇zg̃v

)∣∣∣
z=Φ(x)

, B + g̃(z), Cz, 0

)
,

where Cz =
(
1 0 . . . 0

)
, and the nominal system

Gn(s) =
1
sn , we have:

G∆(s) =
(1 + β)(sn−2 + γn−3s

n−3 + · · ·+ γ0)

sn + αn−1sn−1 + · · ·+ α0
,

so the inverse additive model is given by:

W (s)∆ =
1

G∆(s)
− 1

Gn(s)
=

=
sn + αn−1s

n−1 + · · ·+ α0

(1 + β)(sn−2 + γn−3sn−3 + · · ·+ γ0)
− sn,

where ∥∆∥ ≤ 1 and W (s) is the uncertainty model, therefore
the conclusion follows.

C. Robust Component

According to Theorems 2 and 3, the residual nonlinear
dynamics resulting after the inner state feedback linearization
command (4) can be encompassed into an inverse additive
uncertainty whose model is an improper system having the
excess of zeros equal to n. As such, we want to include a
second robust component which manages to find a (possibly
fixed-structure) controller which ensures RS and RP.

Therefore, the inner closed-loop system can be viewed as
an upper linear fractional transform interconnection (ULFT)
between the plant M , constructed based on the nominal
system Gn(s) = 1

sn and the uncertainty model W (s), and
the uncertainty block ∆, where:

M(s) =

(
−Gn(s)W (s) Gn(s)W (s)

−Gn(s) Gn(s)

)
.

At this step, the uncertain system G∆ = ULFT(M,∆)
presents an input u ∈ R and an output y ∈ R representing the
controller’s interface. To impose the desired performances,
an augmentation step should be performed, resulting an addi-
tional set of performance inputs uw ∈ Rnw and performance
outputs yz ∈ Rnz , obtaining an augmented plant P (s), as in
[12]. The most common augmentation technique is the so-
called mixed-sensitivity loop-shaping, where three weighting
functions are considered for the sensitivity, complementary
sensitivity, and control effort, namely WS(s), WT (s), and
WKS(s). The plant P (s) becomes:(

WS(s) 0 0 I
−WS(s)G∆(s) WKS(s) WT (s)G∆(s) −G∆(s)

)⊤

.

(19)

3831



The plant P presents a lower linear fractional transform
interconnection (LLFT) with the controller K, the resulting
closed-loop system being:

yz = LLFT(P,K)uw. (20)

For the nominal case (i.e. ∆ = O), there are several solu-
tions, such as H2 or H∞ synthesis, while for the uncertain
system the most common method to encompass them is
to consider the structured singular value µ∆(LLFT(P,K))
framework [17]. Moreover, if the controller K should have
a fixed structure, described by a family K, the resulting
optimization problem can be written as:

inf
K∈K

µ∆(LLFT(P,K)), (21)

whose sub-optimal solution K⋆ should fulfill the condition
µ∆(LLFT(P,K⋆)) < 1 to ensure robust stability (RS)
and robust performance (RP). There are several approaches
available in the literature to solve this problem, the most
common being based on a D/G–K iteration using non-
smooth optimization techniques [17]. However, these so-
lutions manage to solve the (fixed-structure) µ-synthesis
optimization problem (21) if the plant P is a proper or a
strictly proper system. According to Theorems 2 and 3, the
excess of poles against zeros is −n for W (s) and n for
Gn, leading to a proper system M(s), so the robust control
techniques could thus be applied.

V. NUMERIC EXAMPLE

The numerical example considered in the current paper is
a nonlinear mass-spring system with a hardening spring and
without friction, the state-space model being:

(Σms) :


ẋ1 = x2

ẋ2 = −k1x1 − k2x
3
1 +m · u

y = x1

, (22)

where parameters have their nominal values: k
(n)
1 = 1,

k
(n)
2 = 0.1, m(n) = 1, along with a tolerance of ±10%

for each. The state-space model can be written as:

ẋ =

(
x2

−k
(n)
1 x1 − k

(n)
2 x3

1

)
︸ ︷︷ ︸

f

+

(
0

−δk1x1 − δk2x
3
1

)
︸ ︷︷ ︸

∆f

+

+


(

0
−m

)
︸ ︷︷ ︸

g

+

(
0

−δm

)
︸ ︷︷ ︸

∆g

u, (23)

so ∆f,∆g ∈ Span{g}. The relative degree of the system is
r = 2 for each x ∈ R2, so the diffeomorphism:

z = Φ(x) =

(
h(x)

Lfh(x)

)
=

(
x1

x2

)
(24)

is a global diffeomorphism for the nominal system. The inner
feedback which linearizes the nominal system is:

u =
v + k

(n)
1 x1 + k

(n)
2 x3

1

m(n)
, (25)

while the resulting uncertain system in z coordinates can be
described as follows:

ż =

(
0 1
0 0

)
z+Bv +

(
0
δm

m(n)

)
︸ ︷︷ ︸

g̃(z)

v+ (26)

+

(
0

δm
m(n) ·

(
k
(n)
1 z1 + k

(n)
2 z31

)
− δk2

z31 − δk1
z1

)
︸ ︷︷ ︸

f̃(z)

.

Considering the forced equilibrium point (x, u) =
((0, 0)⊤, 0), the residual nonlinear terms f̃ , g̃ could be en-
compassed as an inverse additive uncertainty. Considering
the raw frequency data (cyan) from Figure 1, with the upper
bound M⋆ (red), the improper transfer function model having
the degα = 1 and degβ = 3 obtained with the solution
proposed in Section III is:

W (s) =
0.1080s3 + 0.3072s2 + 0.3204s+ 0.2527

s+ 1.1770
. (27)

For the augmentation we consider the following filters for
the sensitivity and the complementary sensitivity:

WS(s) =
0.625s+ 0.6

s+ 0.006
, WT (s) =

s+ 12

0.01s+ 24
, (28)

while for the control effort we considered WKS(s) = 1
20 .

Using the musyn routine from MATLAB, after 10 D/G–
K iterations we obtain the following PID controller as the
solution of the fixed-structure mixed-sensitivity loop shaping
µ-synthesis control problem:

K(s) = 1.1119 +
0.1712

s
+

1.7543s

0.1239s+ 1
, (29)

with an upper bound of the structured singular value:

µ∆(LLFT(P,K)) ≤ 0.9968 < 1, (30)

so robustness is ensured by the linear controller.
For the simulation discussion, we consider a set of 10

Monte Carlo simulations in which both initial conditions and
model parameters vary. For the initial conditions we imposed

Fig. 1. The raw frequency data of the inverse additive uncertainty
resulting from the nonlinear residual terms from (12) after the inner state
feedback linearization (cyan), along with their maximum values (red) and
the frequency response of the solution of the problem described in Section
III (blue).
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Fig. 2. First row: robust reference tracking of the resulting closed-loop
system when the model’s parameters and the initial conditions vary in a
given range. Second row: the command signal which fulfills the imposed
maximum value via the loop shaping augmentation step.

Fig. 3. Closed-loop trajectories starting from various initial conditions and
considering different model parameter configurations.

|x1(0)| ≤ 1 and |x2(0)| ≤ 0.1, with the scope of following
a sinusoidal trajectory, according to the idea of Duffing’s
equation [1]. The reference frequency is 0.1[rad/s], with
the magnitude 0.1. Figure 2 illustrates the robustness of the
proposed method against parameters variations and various
initial conditions, having a consistent convergence rate of
10[s], while the command signal presented in the second
row does not exceed the imposed bound limitations via the
loop shaping procedure. In terms of the convergence to the
equilibrium point, the phase portrait from Figure 3 shows
that all trajectories manage to reach the equilibrium point
irrespective of the given initial condition and the parameter
configuration in the given range. Additionally, the rightmost
pair of blue and green trajectories start from the same initial
conditions, but the model parameters are different, with the
finding that the convergence speeds remain invariant.

VI. CONCLUSIONS AND FUTURE WORKS

The paper provided a mechanism to extend the state feed-
back linearization technique for uncertain nonlinear systems

which preserves the full relative degree by including the
residual nonlinearities into an uncertainty described using
descriptor systems, even if the polytopic approximation can
be conservative. Additionally, a first iteration of a fitting
mechanism for descriptor systems has been introduced. The
main advantage against other relevant papers which deal with
the same problem (e.g. [5], [6], [7]) consist in removing one
control layer by considering only the feedback linearization
law and the robust component.

As further research directions, we want to extend the
proposed mechanism for systems with zero dynamics and
variable relative degree by keeping the same structure of the
controller. Additionally, a convex mechanism for the linear
differential-algebraic systems of equations (DAEs) fitting
problem will later replace the non-convex solution presented
in Section III.
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