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Abstract— The uniform quantization effects present in the
implementation of numeric regulators introduce undesired
tracking errors, even though their continuous-time counterparts
can ensure ideal steady-state response. Without perturbing the
transient response, the state realization of the regulator can
be scaled to reduce the influence of the steady-state artifacts.
A main theoretical contribution is thus proposed, based on
two complementary aspects. The starting point is given by an
analytical bound of the quantization error. On one hand, this
guaranteeable bound is minimized by the existence of an opti-
mally scaled similarity matrix for the Jordan form of the closed-
loop state matrix. On the other hand, a balancing scheme for the
numeric regulator further reduces the quantization effects for a
predefined hardware configuration. Mathematical guarantees to
enforce said properties are then presented, developing sufficient
conditions. Finally, the proposed method is illustrated on a case
study which demonstrates the non-conservative nature of the
optimized bound in comparison to the default value from the
characterization theorem.

I. INTRODUCTION

Numeric implementation of regulator models involves
several key steps which require an analysis regarding sam-
pling, discretization, quantization of system coefficients and
quantization of involved signals. The previously-mentioned
phenomena can affect both the transient and steady-state
responses of the desired continuous-time regulator dynamics.

The effects of a fixed sampling rate selection on the
transient response have been studied in a unified manner for
single and multi-loop linear control systems in [1], while
a time-variable sampling strategy for networked PID-based
control systems is studied in [2]. The discretization method
selection effects on the transient performance of resonant
controllers are described in [3], while for robust control sys-
tems, a joint optimization problem for the regulator sampling
rate and coefficients quantization step in order to maintain
robust stability and performance is proposed in [4].

There are several types of quantizer circuits, such as fixed-
point, floating-point, logarithmic, delta-sigma, to name a few.
Fixed-point quantization is widely used as it is fast, can
be implemented with low energy consumption, or it can
be harvested to increase the parallel processing capabilities
of high-performance graphics processing units. Apart from
embedded systems, a newly-established use-case for fixed-
point quantization, static or with dynamic scaling, is in
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deep neural network training and deployment. Using the
framework from [5], the main advantage is that the desired
network performance is maintained with minimal degrada-
tion, without supervised retraining on the labeled data. The
fundamental difference encountered in control is given by
the feedback connection which, due to quantized subsystems,
leads to highly-nonlinear behaviour, such as limit cycles [6].

Quantization effects are studied in digital signal processing
and control applications such as in the monograph [7],
providing a probabilistic approach, and for embedded robust
control system design in [8], where the authors present the
phenomena which occur in practice, but exemplified through
ad hoc studies for individual use cases. In [9] the stability
and stabilization problems for input and output quantized
feedback discrete systems have been addressed, while the
authors of [10] propose a solution for stabilizing discrete-
time linear systems considering a logarithmic quantizer for
both input and output channels. Steady-state deviations with
tight bounds in the context of DC-DC converters are mod-
elled in [11], followed by means to combat limit cycles in the
particular case of boost converters in [12], and an analytical
bound provided for linear control systems in [13].

Recent applications involving quantization analysis can be
found for the practical implementation of control barrier
functions in [14] or robust model predictive control to
maintain system stability during fixed-point encoding in [15].
By modelling output quantization and saturation, the paper
[16] uses model reference control to provide convergence
guarantees on the output tracking error without relying on
polynomial coprimeness or initial condition assumptions.
Similarly, using finite-and-quantized output feedback, the
authors of [17] provide a pole-placement-based control law
which guarantees that the tracking error converges to an
arbitrarily-small residual set. The distributed consensus prob-
lem involving both uniform and logarithmic quantizers has
been solved in a unified manner for the control of networked
general linear systems in [18].

This work is an extension of [13] by moving forward to a
design point of view. The purpose is to compute the discrete
regulator balancing least affected by quantization errors,
starting from a satisfactory design with a given input-output
behaviour. As such, without degrading the desired transient
response, a generalized tracking error bound is computed
depending on the regulator and process state-space models,
along with input and output converter specifications, and
internal computation hardware capabilities, assuming fixed-
point uniform numeric encoding leading to static (memo-
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ryless) quantizers. The contributions of the paper are to:
(i) propose three design problems to compute the least
conservative guaranteeable quantization error, (ii) provide
useful tools to characterize the resulting design problems,
through Lemmas 1, 2, and (iii) illustrate the tightness of the
optimized bound value on a numeric example.

Beyond the present introduction, Section II provides a
short background on quantized closed-loop systems, Section
III proposes a set of design problems to minimize the steady-
state quantization effects and their numeric solutions, while
Section IV illustrates the design problem on a numeric case
study, closing with some concluding remarks.

Notations: Denote by ρ(A) the spectral radius of a square
matrix A ∈ Cn×n. A transformation matrix P denotes the
similarity matrix used to bring A to its Jordan canonical
form, i.e. A = P ·JA·P−1. ∥·∥ will implicitly denote the
∞-norm. The integer part of x ∈ Rn is symbolized as
⌊x⌋, with its fractional part written as {x}, applied element-
wise. The square matrix with diagonal entries from a vector
x ∈ Rn is written Dx = diag (x1, . . . , xn). The symbol T∼
denotes matrix and system similarity transformations through
a matrix T . The general linear group of degree n is written
GLn(C).

II. BRIEF THEORETICAL BACKGROUND

The one-degree-of-freedom (1DOF) linear time-invariant
(LTI) numeric control structure with standard signal notations
is found in Figure 1. Assume that the continuous regulator
K(s) ensures asymptotic stability for the process G(s).
Based on the structure of the numeric regulator K(z) as
in Figure 2 and that the digital-to-analog converter of the
regulator implies the zero-order hold discretization method
for the plant model, denote state-space representations as:

(
K(0)(z)

)
:

{
xc[k+1] = A1xc[k] +B1e[k];

u[k] = C1xc[k] +D1e[k],
(1)

(G(z)) :

{
x[k+1] = A2x[k] +B2u[k];

y[k] = C2x[k] +D2u[k],
(2)

with dimensions e, y ∈ Rny , u ∈ Rnu , x ∈ Rn, xc ∈ Rnc .
To account for the quantization effects of the regulator

hardware, consider the definitions of the two classical fixed-
point encoding quantizers Q ∈ {Qt

δ, Q
r
δ}, namely midtread

(rounding): Qt
δ(x) = δ

⌊
x
δ + 1

2

⌋
, along with midriser (trun-

cation): Qr
δ(x) = δ

(⌊
x
δ

⌋
+ 1

2

)
, for a quantization step δ > 0

and arbitrary x ∈ R. Both quantizer functions can be written
in a unified manner as Qδ(x) = x + φ(x, δ) · δ, φ(x, δ) ∈[
− 1

2 ,
1
2

]
, where φt(x, δ) = 1

2 −
{

x
δ + 1

2

}
∈

[
− 1

2 ,
1
2

)
, for

midtread, and φr(x, δ) = 1
2−

{
x
δ

}
∈
(
− 1

2 ,
1
2

]
for midriser.

As such, irrespective of using rounding or truncation for
the input, state, output, the quantized regulator K(z), adapted
from the ideal case of (1), can be rewritten maintaining its

Fig. 1. One-degree-of-freedom control structure having a continuous-time
plant and numeric regulator.

Fig. 2. Numeric regulator with interfacing devices: sample and hold with
analog-to-digital converter (ADC), along with the digital-to-analog converter
(DAC) followed by a sample and hold circuit.

LTI form as:

(K(z)) :


e[k] = Qδe (e[k]) = e[k]+ηe[k];

xc[k+1] = A1xc[k]+B1 (e[k]+ηe[k]) +ηx,1[k];

u[k] = C1xc[k]+D1 (e[k]+ηe[k]) +ηx,2[k];

u[k] = Qδu (u[k]) = u[k]+ηu[k],
(3)

with additional disturbance inputs of corresponding sizes: ηe
for the ADC with step δe; ηu for the DAC with step δu;
ηx,1 and ηx,2 for the state and output computation errors
with steps δx. By definition, ∥ηe[k]∥ ≤ δe

2 , ∥ηu[k]∥ ≤ δu
2 ,

∥ηx,1[k], ηx,2[k]∥ ≤ δx
2 . Consider the ideal discretized plant

(2). Then, the open-loop system of order nℓ = nc + n, with
input e, output y, extended state vector xs =

(
x⊤
c x⊤)⊤

becomes:

(L(z)) :

 A1 O B1 I O O B1

B2C1 A2 B2D1 O B2 B2 B2D1

D2C1 C2 D2D1 O D2 D2 D2D1

 .

(4)
The following auxiliary notations are now considered:

Ds=D2D1; D̂=(I +Ds)
−1

; Ĉ=
(
D2C1 C2

)
; H=D2;

B̂=

(
B1

B2D1

)
; F=

(
I
O

)
; V=

(
O
B2

)
; M=− B̂D̂;

Φ=

(
A1 O

B2C1 A2

)
−B̂D̂Ĉ = Â−B̂D̂Ĉ; R=V−B̂D̂H,

where Φ thus becomes the closed-loop state matrix.
Recall Theorem 6 from [13] which computes a worst-

case bound for the steady-state limit cycles arising in LTI
processes driven by fixed-point LTI regulators, assuming a
diagonalizable closed-loop state matrix Φ.

Theorem 1: For an open-loop system L(z) consisting of
a quantized stabilizing numeric controller K(z), with steps
δe, δx, δu > 0, in series with an ideal discretized process
G(z), then the guaranteeable worst-case deviation of y[k]
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from the ideal closed-loop steady-state measurement y(0)[k]
achievable by K(0)(z) without quantization errors is:

sup
k>kε

∥∥∥y[k]− y(0)[k]
∥∥∥ ≤ (5)∥∥∥D̂ĈP

∥∥∥ 1

1− ρ(Φ)

∥∥P−1R
∥∥(δx

2
+

δu
2

)
+∥∥∥D̂ĈP

∥∥∥ 1

1−ρ(Φ)

(∥∥P−1F
∥∥ δx

2
+
∥∥P−1M

∥∥ δu
2

)
+∥∥∥D̂H

∥∥∥(δx
2

+
δu
2

)
+
∥∥∥D̂Ds

∥∥∥ δe
2

≡ εG (K,P, F ) ,

where the matrix P diagonalizes Φ, i.e. Φ = P · JΦ · P−1,
Jϕ = diag (λ1, . . . , λnℓ

) , in the complex number field.

III. PROPOSED DESIGN PROBLEM

A. Formulation

There are several available degrees-of-freedom in the
quantization error bound εG (K,P, F ) from (5), such as the
selection of discretization method for regulator K(0), the
possibility to apply a similarity transformation to its state-
space representation, and a coordinate change P for the
Jordan canonical form of Φ. The term ε· (·, ·, F ) is separately
emphasized, as it does not depend on the regulator matrices
in the same sense as R and M , as will be further exploited
in Lemma 2 and Remark 2.

In case of the discretization method, its selection is usually
preferable for the provided transient response of the regulator
(see e.g. [3], [4]) and, as such, will not be the main focus
of this section. Therefore, we assume that K provides the
desired transient response and we will focus on the steady-
state performance only.

The remainder of the design necessity is to propose an
adequate scaling of the regulator matrices (A1, B1, C1, D1)
and find the similarity matrix P to guarantee a least conser-
vative bound to (5).

We start from a fixed quantized regulator K from (3).
Denote its similarity transformation through a matrix T ∈
GLnc(C) as a new regulator KT with invariant input-output
response:

K =

(
A1 B1

C1 D1

)
T∼
(

T−1A1T T−1B1

C1T D1

)
≡ KT .

(6)
As such, the following optimization problem arises in terms
of possible similarity matrices for the Jordan form of Φ,
forming the set P , and of possible controller coordinate
transformations, forming the set T .

Problem 1: Given a discrete-time controller K, the least
conservative upper bound of the closed-loop quantization
error is the solution of the following optimization problem:

Q = min
T∈T

min
P∈P

εG(Kq,T , P, F ). (7)

While the first set is given by T = GLnc
(C), the second

set should be properly characterized. For the diagonalizable
case, the following result will be considered.

Lemma 1: For a diagonalizable matrix Φ, the set of sim-
ilarity matrices P ∈ GLnℓ

(C) can be obtained starting from

a given similarity matrix P0 left multiplied by an arbitrary
nonsingular diagonal matrix.

Proof: Let Λ(Φ) = {λ1, λ2, . . . , λnℓ
} be the spectrum

of the matrix Φ. Because the state matrix Φ is diagonalizable,
the algebraic multiplicity for each eigenvalue is 1, which
implies that for each eigenspace we have dimVλi

= 1.
Therefore we have:

Vλi
= Span{pi}, i = 1, nℓ,

which can be used to construct the initial matrix P0:

P0 =
[
p1 | p2 | . . . | pnℓ

]
.

Moreover, all bases of Vλi can be characterized as {α · pi},
where α ∈ C⋆ is a non-zero complex number, and the
conclusion follows.

Corollary 1: For the particular case of having the closed-
loop state matrix Φ ∈ Rnℓ×nℓ with all eigenvalues distinct
complex numbers, the similarity matrices can be character-
ized as a product between an arbitrary diagonal matrix Dα,
α ∈ Rnℓ

+ , and a similarity matrix P0.
According to Corollary 1, the diagonal matrices Dα are

a good choice for considering the additional scaling factor
set P for minimizing the upper bound εG(K,P0, F ) from
Theorem 1, α ∈ Rnℓ

+ representing nℓ degrees-of-freedom for
the optimization problem. We will further use the shorthand
notation for the similarity matrix Pα = DαP0, α ∈ Rnℓ

+ ,
where P0 = Pα|α=1.

Considering the set T = GLnc
(C) will present a major

issue due to its lack of connectivity. Therefore, in a similar
manner with the case of set P , a diagonal transformation
Dξ, ξ ∈ Rnc

+ of the initial regulator K will be considered,
resulting the set of regulators KDξ

≡ Kξ, its initial form
being K(0) = Kξ|ξ=1.

To consider the worst-case steady-state guaranteeable
bound (5) in the context of an optimization problem with
vector variables, define the objective function:

J : Rnc
+ × Rnℓ

+ →R+, J (ξ, α) = εG (Kξ, Pα, F ) .

The hypothesis is that a change in K implies a change in
the state matrix Φ which, in turn, leads to the search of a
different similarity matrix P . This sequentiality assumption
to select a regulator K, based upon which the matrix P will
be further computed, leads to the following minimization
problem derived from Problem 1.

Problem 2: Given a discrete quantized controller K and a
similarity matrix P0, a least conservative upper bound of the
closed-loop quantization error is the solution of the following
optimization problem:

Q = min
ξ∈Rnc

+

min
α∈Rnℓ

+

J (ξ, α) = εG (Kξ, Pα, F ) . (8)

The main improvement of Problem 2 consists in formu-
lating the optimization problem in terms of vector variables
instead of nonsingular matrices while still maintaining low
conservativeness: (i) the set P is properly characterized, and
(ii) each state of the controller is individually scaled in the
balancing scheme.
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Next, we present a mechanism to properly characterize the
term εG (Kξ, Pα, F ). First, starting from a diagonal matrix
Dξ ∈ Rnc×nc , an extended diagonal matrix Dξ will also be
defined as:

Dξ =

(
Dξ O
O I

)
∈ Rnℓ×nℓ . (9)

Lemma 2: The diagonal scalings applied to the controller
K and its similarity matrix P0 can be formulated as a joint
diagonal scaling applied to P0 and an auxiliary diagonal
scaling of the non-symmetric term F :

εG (Kξ, Pα, F ) = εG

(
K,

(
D

2

ξDα

)
P0, DξF

)
. (10)

Proof: The coordinate transformation Dξ applied to K
has the following effect on the closed-loop state matrix Φ:

Φ
Dξ∼

(
D−1

ξ A1Dξ O

B2C1Dξ A2

)
−
(
D−1

ξ B1

B2D1

)
D̂

(
D2C1Dξ C2

)
=

= D
−1

ξ ΦDξ,

while, considering the diagonal scaling Dα of P0, we have:

Φ =
(
DξDαP0

)
JΦ

(
P−1
0 D−1

α D
−1

ξ

)
. (11)

Additionally, the scaling through Dξ can be represented
in a similar manner as a left multiplication by D

−1

ξ for the
terms R and M , and a right multiplication by Dξ for the term
Ĉ in (5). As such, considering the structure of εG(K,P, F ),
one can easily obtain that:

εG (Kξ, Pα, F ) = εG

(
K,

(
D

2

ξDα

)
P0, DξF

)
, (12)

which concludes the proof.

The main problem of optimizing the controller coordinate
transformations through ξ ∈ Rnc

+ consists in the possibility
of obtaining arbitrarily small or large scaling matrices, i.e.
∥Dξ∥ → {0,∞}, to minimize the upper bound of the
steady-state quantization error. Let Nxc = ∥(A1, B1, I, O)∥
and Nu = ∥(A1, B1, C1, D1)∥ denote the H∞ norms of
the regulator K state and output dynamics, respectively,
assumed finite. However, considering Lemma 4 from [13],
a maximum admissible regulator state signal norm N xc

,
also depending on the ADCs’ and DACs’ dynamic range
should be imposed. Given that Nu is invariant to similarity
transformations Dξ, an upper bound N xc = 2⌈log2 Nu⌉ can
be considered as a nonredundant starting point. Here, ⌈·⌉
signifies the ceiling function of a real number. This ensures
the already necessary bound of the output signal and does
not require any additional bits for state computations.

As such, enhancing Problem 2 according to Lemma 2 and
the extra constraint on the state norm, a novel formulation
of the tracking error (5) minimization problem occurs:

Problem 3: Given a discrete quantized controller K, with
a maximum allowed H∞-norm N xc for its state signal, and
a similarity matrix P0, a least conservative upper bound of

the closed-loop steady-state quantization error is the solution
of the optimization problem:

Q = min
(ξ,α)∈Rnc

+ ×Rnℓ
+

J (ξ, α) = εG

(
K,

(
D

2

ξDα

)
P0, DξF

)
s.t.

∥∥∥(D−1
ξ A1Dξ, D

−1
ξ B1, I, O

)∥∥∥ < N xc
. (13)

As an overview, the domain of the objective function
reduces from GLnc

(R) × GLnℓ
(R) < Rn2

c × Rn2
ℓ in the

case of Problem 1 (which is non-connected) to Rnc
+ × Rnℓ

+

in Problem 2, and concluding with Rnc+nℓ
+ with a single

optimization variable (ξ, α) instead of a sequence of two
minimization steps.

Remark 1: In a similar light to the pole-placement algo-
rithm of [19], with the technical limitation that the mul-
tiplicity of the closed-loop poles cannot exceed the rank
of the input matrix B2, it may become desirable in this
case to design the control system such that the closed-loop
state matrix Φ is diagonalizable (which is not equivalent to
forcing poles to have multiplicity one) in order to apply the
framework of Theorem 1, which will lead to a simplified
optimization problem as demonstrated through Problem 3.

B. Numeric Implementation Aspects

The resulting optimization Problems 1–3 are not convex by
nature. With the following convention for the sign function:

sign (x) =

{
−1, x < 0;

1, x ≥ 0,
(14)

the partial derivative of the matrix ∞-norm ∥ · ∥ is:

∂ ∥X∥
∂xij

= sign (xij)δkj , X ∈ Rn×n = [xij ]i,j=1,n , (15)

where δkj is the Kronecker delta function, with k being
the row for which the maximum is achieved. As such, the
functional J (ξ, α) is differentiable, but its Jacobian is not
continuous, being right-continuous only. As described in [20]
and [21], such a minimization problem converges if the
subgradient method is applied.

The experiments have been performed using the fmincon
routine from MATLAB®, version R2022a, using several hy-
perparameter configurations and algorithms. From our find-
ings, the sequential quadratic programming (sqp) algorithm
works best, followed by the interior-point method,
with its inherent advantage that it works for large-scale prob-
lems, but it halts at solutions with coarser tolerances and also
tends to move away from the best found value in order to sat-
isfy the first-order optimality conditions, and followed by the
active-set algorithm which stalls prematurely for identi-
cal hyperparameters. The trust-region-reflective
algorithm does not cover the constraint specified in (13).

The nonconvexity of the optimization problem can lead to
a premature stopping of the algorithm into a local minimum
point. A possible trick which can be used to reduce the
possibility of early stopping is given in the next remark.

Remark 2: Starting from a given similarity matrix P0,
each permutation matrix Π leads to a new similarity matrix

3620



ΠP0 which can locally generate a new subset of similarity
matrices of the set P and, considering that:

εG (Kξ, Pα, F ) = εG

(
K,

(
D

2

ξDαΠ
)
· P0, DξF

)
, (16)

a maximum prescribed number of function evaluations can
be used to find the best possible local decreasing direction.

An alternative approach regarding the reformulation of
Problem 1 in order to reduce the conservativeness would
be to consider T = GLnc

(R). As such, the optimization
problem (13) could be written as:

Q = min
(T,α)∈Rnc×nc×Rnℓ

+

J (T, α) = εG

(
K,

(
T

2
Dα

)
P0, TF

)
s.t.

∥∥(T−1A1T, T
−1B1, I, O

)∥∥ < N xc (17)
rank(T ) = nc,

where T = diag (T, I) ∈ Rnℓ×nℓ . The main disadvantage of
such a formulation is the non-differentiability of the rank-
based equality constraint.

IV. NUMERIC EXAMPLE

To illustrate the practical implications of the proposed
results, we consider an academic example characterized by
an underdamped system with a pair of complex poles and
a left half-plane zero to be controlled, with the desire to
compute the least conservative quantization error bound
given an arbitrary hardware configuration. The continuous-
time model is:

(G(s)) :

(
A B
C D

)
=

 −0.2 −0.5 1
0.5 0 0
0.1 1 0

 , (18)

with singularities ŝ1,2 = −0.1 ± 0.4899j and s̊1 = −5.
The process is further discretized using the zero-order hold
method and a sampling rate T = 0.1[s], leading to an
ideal numeric representation G(z) = (A2, B2, C2, D2), as
specified in (2).

The regulator has been obtained through a H∞ syn-
thesis, tuned using loop-shaping for an overdamped re-
sponse, with resulting state-space representation K(0)(z) =
(A1, B1, C1, D1):

0.9999017 −0.000633 0.0004463 0.107559
−0.000633 −0.773041 −0.162164 0.345551
−0.000446 0.1621641 0.8841128 0.243469
0.1075598 0.3455512 −0.243469 0.531996

 .

(19)
The default H∞ norms of the input-state and input-

output dynamics of K(0)(z) are Nxc
= ∥(A1, B1, I, O)∥ =

1085.3 and Nu = ∥(A1, B1, C1, D1)∥ = 117.7, respectively.
Keeping in mind that Nu is invariant to similarity transfor-
mations (6), it adds no benefit to constrain Nxc < 27 =
128. Considering N xc

=512, then the minimum number of
bits in the signal word length becomes Lxc

= log2 (512) +
max {LADC , LDAC}. Consider a standard configuration of
LADC = 12, LDAC = 13, in the supported range
e[k], u[k] ∈ [−5, 5] [V ], leading to Lxc = 22, without in-
cluding the sign bit. As such, the working resolutions become

δe = 2.441× 10−3, δx = 1.192× 10−6, δu = 1.22× 10−3.
The default tracking error bound computed using (5) and the
eig routine from MATLAB, without solving Problem 3, is
Q0 = 12.685×10−3, with a corresponding similarity matrix:

P0 =


0.0003 0.6448 0.6448 −0.8051 −0.0674
0.9949 p22 p22 −0.0100 −0.0808

−0.0987 p32 p32 0.5404 0.9687
−0.0210 p42 p42 0.1184 0.2076
0.0001 p52 p52 −0.2135 −0.0868

 ,

(20)
with p22 = −0.0224 + 0.0001j, p32 = 0.1037 + 0.6244j,
p42 = 0.2890 + 0.0926j, p52 = 0.0355− 0.2996j.

Performing the optimization (13) with the observations
from Section III-B, the least guaranteeable tracking error
becomes Q⋆ = 0.924×10−3 for a solution (ξ⋆, α⋆) ∈
Rnc+nℓ

+ :

ξ⋆⊤ =
(
12.1729 8.6178 7.6911

)
; (21a)

α⋆⊤ =
(
7.5078 8.6092 7.7229 8.3333 3.3261

)
,

(21b)

which provides an improvement factor of Q0/Q⋆ = 13.99
beyond the default value as deduced strictly by the theory
developed in [13]. The admissible range for the state signal
becomes N ⋆

xc
= 89.15 < N xc , denoting a feasible solution.

Thus, the regulator representation which guarantees this
bound is Kξ⋆ , with a corresponding coordinate matrix Pα⋆ ,
up to a permutation Π of its columns. Its corresponding
scaled state realization Kξ⋆(z) becomes:

0.9999017 −0.0004485 0.0002819 0.008836
−0.000895 −0.773042 −0.144725 0.040097
−0.0007064 0.1817046 0.8841128 0.031656
1.3093134 2.9779049 −1.8725425 0.531996

 .

(22)
To further assess the tightness of Q⋆, consider a series of

experiments using N = 500 Monte Carlo simulations, with
step reference signals varying in the range r ∈ [0.5, 1.5],
midriser quantizers for the ADC and DAC blocks, and
midtread for the internal computations, respectively, along
with a simulation time tsim large enough for the system
output to stabilize under the prescribed Q⋆ deviation. The
computed closed-loop settling time is ts = 15.6[s], consid-
ering the ±2% convention. Assuming a dominant closed-
loop pole with real part Re {ŝ0} = − 4

ts
, the necessary time

frame for simulation such that the output signal’s dominant
oscillating mode is attenuated in the range of the quantization
error is computed:

tsim >
ts
4
ln

(
1

Q⋆

)
= 27.32[s]. (23)

Considering tsim = 120[s], the Monte Carlo simulations lead
to a coverage [0, 13.43] [%] for Q0, with maximum at r =
1.0128 and [0, 99.82] [%] for Q⋆, with maximum achieved
for a reference r = 1.2323, respectively. Additionally, the
reference signal values for which the maximum coverage is
attained are not unique. The results described in this section
can be summarized through the illustration of Figure 3. This

3621



Fig. 3. Closed-loop simulations of the quantized control system, where
the first column involves output signals y, yq ,∆y = y−yq and the second
column involves input signals u, uq ,∆u = u−uq . The first row shows the
closed-loop step response for an arbitrary step reference, the second row
illustrates the default application of Theorem 6 from [13] with a conservative
bound Q0 and best achieved tightness of 13.43[%], while the third row
shows the obtained improvements by solving Problem 3, with the bound
Q⋆ covered up to 99.82[%].

shows that the refined bound can become significantly lower
than the default value and is also achievable in practice, so
it cannot be further decreased. The command signal u[k] is
initially stochastic, but after a specific index k > kε ∈ N+,
it converges either to a constant value or to a limit cycle
trajectory.

V. CONCLUSIONS AND FUTURE WORKS

Obtained results can be summarized in the formulation
of a low-dimensionality scaling problem to minimize the
tracking error materialized through steady-state deviations
or limit cycles and the guarantee of local convergence for
its solution. The presented framework can be used as a
design specification for the numeric controller to maintain the
closed-loop poles far from the unit circle, as the term 1

1−ρ(Φ)
is the main degree-of-freedom of the fixed-point quantization
error bound, given a specific hardware configuration. An
adjacent design problem can be employed in rapid control
prototyping to deduce the coarsest resolutions, equivalent to
the least expensive hardware configuration, to guarantee the
control system precision under a prescribed tolerance.

Research directions spanning from this work can be distin-
guished on three fronts: (i) generalizations to several classes
of nonlinear systems, with focus on input-affine systems,
frequently-arising in the field of robotics, (ii) different quan-
tizer functions, such as logarithmic or floating-point and
(iii) sensitivity analysis with mathematical guarantees for
the application of output feedback linearization techniques
through Lie derivatives or the Koopman operator.
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