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The madness of people: rational learning in feedback-evolving games
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Abstract—The replicator equation in evolutionary game
theory describes the change in a population’s behaviors over
time given suitable incentives. It arises when individuals make
decisions using a simple learning process — imitation. A re-
cent emerging framework builds upon this standard model
by incorporating game-environment feedback, in which the
population’s actions affect a shared environment, and in turn,
the changing environment shapes incentives for future behav-
iors. In this paper, we investigate game-environment feedback
when individuals instead use a boundedly rational learning
rule known as logit learning. We characterize the resulting
system’s complete set of fixed points and their local stability
properties, and how the level of rationality determines overall
environmental outcomes in comparison to imitative learning
rules. We identify a large parameter space for which logit
learning exhibits a wide range of dynamics as the rationality
parameter is increased from low to high. Notably, we identify
a bifurcation point at which the system exhibits stable limit
cycles. When the population is highly rational, the limit cycle
collapses and a tragedy of the commons becomes stable.

I. INTRODUCTION

The “Tragedy of the Commons” refers to a scenario in
which individuals acting according to their own self-interest
leads to the destruction of a shared common resource [1]. The
originating example describes a group of cattle herders that
share a common pasture land, which becomes overgrazed
as each herder allows more of their cows to use it. Indeed,
individual incentives are often mis-aligned with collective
benefits that could be realized through mutual cooperation.
It is relevant to many scenarios: there are economic and
personal costs in reducing emissions, quarantining during a
pandemic, and conserving resources such as water or gas [2].

Game theory is a powerful tool that can predict population-
level behaviors provided that individuals’ incentives can be
modeled. Classical formulations predict outcomes when the
incentives are static, i.e. they do not change over time. How-
ever, actions have consequences on the environment, and a
changing environment in turn affects individuals’ incentives.
For example, when the prevalence of an infectious disease
is high, people will tend to stay at home as it becomes more
likely to get infected. When the prevalence becomes lower,
people will start to resume normal activities — however,
this can encourage the spread of new infections [3], [4].
An emerging framework termed “feedback-evolving games”
incorporates a dynamic coupling between population-level
behaviors and its impact on environmental states [5].

Feedback-evolving games constitutes a flexible framework
capable of modeling the coupling between population be-
haviors and relevant environmental systems, such as so-
cial behaviors in epidemics, behaviors in climate change,
and consumption of common resources [6]-[9]. Extensive

Copyright ©2024 EUCA

research has characterized many possible dynamics that
can emerge [5], [9]-[12]. These feedback-evolving models
primarily consider population behaviors that are governed
by the replicator dynamics (notable exceptions are [13],
[14]). The replicator dynamic arises from simple imitative
learning rules at the individual level: an agent changes its
action if it observes another agent that is more successful
using a different action. The main assumptions underlying
imitative learning is that agents do not utilize sophisticated
cognitive abilities to make a decision [15]. However, people
sometimes make rational choices (i.e. payoff-maximizing),
and sometimes make irrational ones (suboptimal) due to
noise in their decision-making or available information [16].

In this paper, we depart from the usual replicator model
by considering a feedback-evolving game where agents make
boundedly rational choices. Instead of imitation, agents are
logit learners. The logit rule is parameterized by a rationality
parameter 5 > 0. When S = 0, agents blindly choose an
action uniformly at random. As [ becomes higher, agents
make a payoff-maximizing choice at higher rates, and a
suboptimal choice at lower rates. In the limit of large 3,
the logit rule converges to a best-response. Logit learning
is fundamentally different from imitation, as it requires
agents to have access to information about payoffs from
all strategies. The well-known algorithm called “log-linear
learning” in finite player settings has extensively been studied
in regards to its convergence properties in potential games
[17]-[19] and networked coordination games [20]-[22].

The primary contribution of this paper is the analysis of
the dynamics induced by logit learning for varying levels of
the rationality parameter. We focus our study on a parameter
regime in which imitative learning is known to lead to a
tragedy of the commons as the globally stable outcome—
all agents defect and the environment collapses. Thus, our
study is also aimed at determining the effectiveness of
rational learning in stabilizing more desirable environmental
outcomes. Interestingly, the logit system exhibits a variety of
dynamics that range from a tragedy of the commons to limit
cycles. A summary of our results is depicted in Figure 1.

We provide preliminary background on feedback-evolving
games in Section II. The proposed logit dynamics are pre-
sented in Section III. Here, we identify the complete set of
fixed points of this system and conditions for their stability
(Theorem 3.1). We note that the set of fixed points differ
from those in the original, imitative system. In Section IV,
we more closely analyze properties of an interior fixed point.
We identify the rationality level where it undergoes a Hopf
bifurcation, which gives rise to stable limit cycles (Theorem
4.1).
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Fig. 1: Contributions: summary of dynamics of logit learning in
feedback-evolving games. In increasing order of the population’s
rationality 3, the system exhibits: 1) a tragedy of the commons
(TOC), 2) an interior fixed point (sustained non-zero resource), 3)
a bifurcation into stable and growing limit cycles, and 4) again a
TOC. The system also exhibits bistability between a tragedy and
a limit cycle. When agents instead follow imitative protocols, the
dynamics always leads to a tragedy.

II. BACKGROUND: FEEDBACK-EVOLVING GAMES

A feedback-evolving game considers a population of
agents whose actions have consequences on the abundance of
an environmental state or shared resource, n € [0, 1] (Figure
2). At any given time, an agent chooses whether to cooperate
(C) or defect (D). The defect action degrades n (e.g. high
resource consumption), and the cooperate action contributes
to improving n (e.g. restrained consumption). The immediate
payoffs to each action are specified by the following 2 x 2

payoff matrix
} +(1-n) { }

where the first row (and column) corresponds to the C
action, and the second row (and column) corresponds to the
D action. The parameters Ry, Sy, 1o, Po specify the payoff
structure when the environment is in a depleted state (n = 0),
and R;,S7,T1, Py specify the payoff structure when the
environment is in a replete state (n = 1). Note that the payoff
matrix A,, is environment-dependent, and thus changes over
time. Denoting « € [0,1] as the fraction of cooperating
agents in the population, the payoff to a cooperating and
defecting agent is given by

R
T

S
Py

Ry
1o

So

A,=n { P (D

mp(z,n) = [An[z,1—2] ]2

2
respectively. We will denote the payoff difference between
cooperation and defection as:

me(z,n) = [Ap[z, 1 —x]T]l,

g(z,n) :=me(z,n) — mp(z,n)

€))
=azn+br+en+d
where we denote
a:=63po — OrT0 +dps1 — OTRr1
b:=drro — dspo
“4)
c:=—(0ps1 +dspro)
d:= (55130.

and 07r1 = 11 — Ry, dps1 = P1 —S1, 0rTo = Ro —Tp, and
dspo = So — Py. The § constants are referred to as payoff
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Fig. 2: The feedback-evolving games framework. Individuals’ ac-
tions affect a shared environment, which shapes incentives for future
actions. The agents’ decision-making process is specified by the
learning protocol p.

parameters.

Assumption 1. Defection is the dominant strategy in the
2 x 2 game that corresponds to the payoff matrix Ai. In
particular, d7r1 > 0 and dpsy > 0.

The above assumption is widely adopted in the feedback-
evolving games literature. It asserts that agents have more
incentives to consume resources when they are abundant
(n=1).

The agents dynamically update their decisions over time.
In the standard analyses of feedback-evolving games, agents
are assumed to follow a revision protocol that induces the
replicator dynamics. A revision protocol is a description of
the behavioral dynamics of agents in the population. It is
specified by a function p;;(z,n) that gives the rate at which
an agent currently adopting strategy i switches to strategy
j. For a given revision protocol p;;, the mean population
dynamics describing the change in cooperator fraction over
time is generically given by the rate equation

(&)

Imitative revision protocols induce the replicator dynamics
— one such example is the imitative pairwise comparison
protocol

&= (1—2a)ppc(z,n) — zpep(z,n).

pep(w,n) = (1=z)[—g(z,n)]+

(6)
where [a]+ = max{0,a}. A defecting agent will switch to
cooperate only if g(z,n) > 0, and a cooperating agent will
switch to defection only if g(z,n) < 0. The overall coupled
game-environment system dynamics considered in [5] is then
given by

poc(x,n) = z(g(z,n)l,

& =uz(l —z)g(z,n)

n=en(l —n)(lz—(1-21)) D)

The form of the environmental dynamics F,, (z,n) is referred
to as the tipping point dynamics, and has been extensively
studied in the literature [5], [9]-[11], [13]. The environment
does not improve unless a sufficient fraction of the population
cooperates. The parameter ¢ > 0 is a time-scale separation
constant. We note that the choice of € can be arbitrary, as
it does not affect any of the stability analysis in this work.



The cooperators help restore the environment at the rate 6,
and defectors degrade n at a unit rate. The state z = (z,n)
evolves over the state space I' := [0, 1]%. By inspection, one
can verify that I' is forward-invariant with respect to the
dynamics (ID).

We will classify two types of fixed points of the feedback-
evolving system (ID). A tragedy of the commons (TOC)
is a fixed point of the form z, = (x,0). Such an out-
come indicates that the environmental resource has totally
collapsed. A prosperity fixed point is of the form (zx,1).
An interior fixed point is one such that z* € int(T'), i.e.
z*,n* € (0,1). The imitative system (ID) has four corner
fixed points (0,0),(0,1),(1,0),(1,1), and under some pa-
rameter regimes, a unique interior fixed point.

The goal of this paper is to characterize how the above
system dynamics qualitatively differ when agents follow an
alternate revision protocol known as logit learning, which
endows agents with some degree of rationality. Our com-
parative analysis will focus on a parameter regime in which
the standard imitative dynamics (ID) is known to lead to a
tragedy of the commons. Thus, we will make the following
assumptions.

Assumption 2. The replenishment rate 6 < 1.

In words, defection degrades the resource faster than co-
operation restores it. Consequently, an irrational population
will cause a tragedy of the commons. Moreover, we consider
the following condition on payoff parameters in the collapsed
state:

Assumption 3. We will consider payoff parameters dspg <
0 and drTo > —0d5PO.

Under Assumptions 2 and 3, it is established in [5] that
the tragedy fixed point (0, 0) is globally attracting, and there
exists a unique and unstable interior fixed point

g L — drro + 05po

e "~ Ogro+0rR1 +0(dsp0 + dpst) '(7)
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III. MODEL: LOGIT LEARNING

Suppose agents follow a perturbed best-response dynamic
called the logit protocol [15]. This is a departure from usual
considerations that the agents are imitative learners. The logit
revision protocol is given by

eBme(z.n)

Pc (.’E, n) = eBme(z,n) + eBmo(z,n) (8)
eBmo(z,n)

PD (xa n) =

Brc(@n) 1 eBro(@n)

where 0 < 8 < oo is the rationality parameter of an agent.
The logit protocol is fundamentally different from imitative
protocols. The protocol p¢ (resp. pp) describes the switch
rate to strategy C (D) for any agent in the population. For
low values of 3, agents choose their actions uniformly at
random, and for high values of f3, they select the payoft-
maximizing action with a probability close to 1. From (5),

the logit protocol induces the mean dynamics
i = (1= 2)pe(w,n) — 2pp(@,n)
= (1 = x)pc(x,n) — (1 = pe(x,n)) ©)
=pelx,n) —x

and overall, the coupled game-environment system dynamics
are:

) eB9(@.n)
&= Fi(z,n) = T chatem) x

n=Fy(x,n) :=en(l —n)(fz— (1 —x))

(LD)

The system (LD) will be the main focus of this paper. One
can verify that the state space I' is forward-invariant through
an application of Nagumo’s Theorem: whenever z = 0 or
r=1,2 >0 or x <0, respectively. Moreover, when n = 0
or n = 1, it holds that n = 0.

A. Characterization of fixed points

We will classify a logit interior fixed point as a fixed point
of system (LD) that satisfies z; = (z*,n*) € int(I"). We
observe that when 8 = 0, every agent chooses an action
uniformly at random, and thus in equilibrium, x = 1/2.
The equilibrium environmental state is then determined by
the value of #: under the assumption # < 1, a completely
irrational population causes a tragedy n = 0.

It is important to note that the logit system does not share
any of the fixed points as the imitative system (ID). However,
we may still classify fixed points as either TOC or interior.
The complete set of fixed points of (LD) is characterized in
the result below.

Theorem 3.1. The fixed points of system (LD) are charac-

terized as follows.

1) Suppose B = 0. If 0 # 1, then there are two fixed points
(3,0) and (3,1). If = 1, then a line of equilibria (3,n)
for all n € [0, 1] exists.

2) Suppose [ > 0. A unique interior fixed point z
(Zine, ing) exists if and only if

(1+0)logh~!

*
int T

> int 1= 10
B2 P drTo + 0dspo (1%
where x;,; was given in (7) and nj, is given by
SrT0 4+ 005p0 — 8711+ 6)log &
oy = 0 F B0sp0 =B (L ¥ B0y 4y

drro + 00spo + 6rr1 + 0ps1

If B < Bin, no interior fixed points exist.
3) Suppose B > 0. There exists a 5 > 4/b such that:

a) For all g € (0,0), there is a unique TOC fixed point
x3(B). It holds that it is strictly increasing in J3,
23(8) > 3, 23 (Bine) = Tine, and limp_,o0 x3(8) = 1.

b) For all 8 > B, there are three TOC fixed points 1,1 <
T < % < x3, where the equality holds if and only
if 8= /3’ It holds that x. is strictly decreasing with
limg_ oo 1 (B) = 0, and xz is strictly increasing with

. )
limg_ 00 z2(B) = %.



4) Suppose B > 0. There exists a unique fixed point of the
form (z*,1), where x* < L is strictly decreasing in

2
and limg_, o, *(8) = 0.

The proof is omitted for brevity, but is available in an
online version [23]. The environmental level at the interior
fixed point n;,, is monotonically increasing in the rationality
B > [Bin. At the threshold 8 = B, nine = 0, and as
B — oo, the level nj, approaches 71, the interior fixed point
from the imitative system (7). For identifying TOC fixed
points, the fixed point equation (LD) is transcendental, and
thus its solutions cannot be expressed generally in closed
form. Consequently, the precise value of # in item 3) cannot
be analytically derived.

B. Stability properties of fixed points

To conclude this section, we establish the stability proper-
ties of all fixed points except the interior FP, which we will
closely investigate in the next section. When 3 = 0, the only
two fixed points are (1/2,0) and (1/2,1). From Assumption
2, we immediately deduce that (1/2,0) is stable and (1/2,1)
is unstable. Since no interior fixed point exists at § = 0,
we may also conclude that (1/2,0) is globally attractive by
invoking Poincare-Bendixson Theorem (there cannot be any
orbits in int I').

The following result details the stability properties of TOC
and prosperity fixed points when 3 > 0.

Proposition 3.1. Suppose 5 > 0.
1) A TOC fixed point (x,,0) is locally stable if and only if

X < T and Bbr (1 — z,) < 1. (12)

For B > Bin, T3 is unstable. For sufficiently large 5 > B
T is stable and x; is unstable.
2) The fixed point of the form (x*,1) is unstable.

The proof is omitted for brevity, but is provided in the
online version [23]. It is interesting to note that item 1 above
suggests that for sufficiently high rationality, a TOC is a
locally asymptotically stable outcome (z;). Moreover, this
result implies that only TOC and interior fixed points can be
stable. We will see in the next section that for intermediate
values of 3, the system exhibits bifurcations of the interior
fixed point njy.

IV. BIFURCATIONS FROM LOGIT LEARNING

In this section, we take the rationality level 5 > 0
as a bifurcation parameter of the logit system (LD). We
study the stability properties of the interior fixed point as (8
increases. Notably, we establish a critical value (;, at which
it undergoes a Hopf bifurcation. That is, for a neighborhood
of values 3 > [}, the system exhibits a stable limit cycle
around the fixed point (Zin, Nin) Whose amplitude grows in
B. A summary of the system’s behavior is illustrated as a
bifurcation plot in Figure 3.
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Fig. 3: Bifurcation plot of the logit system (LD). Fixed parameters
are: ¢ = 0.5, dtr1 = 0.5, dps1 0.25, dspo —0.5,
drTo = 1.5, § = 0.8. Thresholds are: i,y = 0.3651, Br, = 5.6767.
The green lines indicate stable, isolated fixed points. The red lines
indicate unstable isolated fixed points. The blue lines are stable
limit cycles. They exist only in the interval 3 € (B, B.), where
Bu =~ 7.84. For 8 > B4, The TOC fixed point z; appears globally
stable.

A. Bifurcation of limit cycles

We first state the Hopf bifurcation theorem below.

Theorem 4.1 (Hopf Bifurcation Theorem (Ch. 3 [24])).
Consider a dynamical system ? = F(z; 3), where z € R? is
the state and 3 € R is a bifurcation parameter. Suppose the
system has an equilibrium (z*; 8*) (where z* may depend
on ) at which the following properties hold:

1) The Jacobian evaluated at (2*; 8*) has a pair of pure
imaginary eigenvlaues \(8*) = twi, where i := /—1
and w € R.

2) dRe(d)b(B)) 4 £ 0.

Then the dynamics undergo a Hopf bifurcation at (z*; %),

which induces a family of periodic solutions in a sufficiently
small neighborhood of (z*; 5*).

The properties of the interior fixed point (11) is summa-
rized in the following main result.

Theorem 4.2. The interior fixed point 2z, (5)
(Tin(B), nins(B)) is locally stable for B € [Biu, Br), where

a(1+9) log 9—1) (13)

D

and 7. was defined in (7). At the value 8 = [y, it undergoes a
Hopf bifurcation where its eigenvalues are purely imaginary,
and it becomes an unstable focus in a vicinity 5 > [p.

By = (an+b)~" (0(1 +07H% +

Proof. The Jacobian of (LD) evaluated at the interior fixed
point is

Jim = [

where for compactness, we write

g *
arreme 1
Gnint(l — nin[)(l + 0)

9g *

an
o(110-1)2

1 (14)

dg *

and 99" to represent
ox on P
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Fig. 4: This figure shows how the system undergoes fundamental changes in its stability properties. To best illustrate this, phase portraits
are shown for the selected rationality parameters 8 = 6, 7.75, 8. The solid blue lines correspond to the logit dynamics (LD). The dashed
blue lines correspond to the standard imitative dynamics (ID). The two asterisks indicate initial conditions. The filled circles are fixed
points of the logit system, where red indicates it is unstable and green indicates it is locally stable. The open green circle at (0,0) is the
TOC fixed point from imitative dynamics. Here, we use the same parameter setup as in Figure 3, where the bifurcation value is 85 = 5.67.
(Left) We see the trajectory converges to a stable limit cycle when 3 = 6. (Center) The system exhibits bistability when 5 = 7.75 — some
initial conditions are attracted to x1, while others are attracted to a stable limit cycle. (Right) For 5 = 8, the limit cycle has collapsed

and the only stable fixed point of the system is x;.

the partial derivatives evaluated at z;,(3). The trace is

@*
trfi = 28— — 1 15
Ve = G g1y (15
and the determinant is
dg ™ 1+6
det Jipe = —eﬁ% nim(l — nim)m. (16)

The fixed point is stable if the real parts of its eigenvalues are
negative, which is equivalent to the condition that trJi,; < 0
and det Ji, > 0. We have

trJi <0 <= Blaniy +b) < O(1+6071)?

(17)

— B <P
where the second line follows by re-writing nj,, = n —
0 10g 0~ with D := Sgro +0rr1 +0(6spo +6ps1) > 0,

and observing that an+b = 52 (5prodps1 — dspodrr1) >

0. Additionally,

8 *
det Jiyy > 0 <— —a—fL = —(a%ip+¢) >0
— —c>a(l+0)7" (18)
<~ D >0.

The sign of det Ji is determined only from the payoff
parameters, and does not depend on S. Thus, det Ji,, > 0
follows from Assumption 3. This establishes the range of 3
for which zj, is stable. Its eigenvalues are given by

trJiy trJiy 2
M(B) = r2 lJr\/< r2 l> — det Jiy

trJ; tr T\
A2(B) = r2mt - \/( r2mt> — det Jiy

At the bifurcation point 5 = (3, Jiy has a conjugate pair of
purely imaginary eigenvalues +iw with w = +/det Jip > 0.

19)

Moreover, the rate of change of the eigenvalues’ real part is

1 9(trJin) an+b

> op a0 toie

Indeed, trJy, is linearly increasing in (3. Therefore, the

interior fixed point is an unstable focus (positive real and

non-zero imaginary parts) for all values 5 > [ that satisfy

(%)2 det J; n
5 < det JSiye.

The Hopf bifurcation at 3;, asserts that a family of periodic
cycles are guaranteed to appear for a neighborhood of values
B > Bp. Whether these periodic cycles are stable depends
on the sign of the first Lyapunov coefficient ¢; evaluated at
(Zini; Br) (Ch. 3 [24]). If ¢; < 0, then the bifurcated cycles
are stable. The derivation of stability conditions for these
cycles will be left for future work. However, we observe
through extensive simulations that the bifurcated cycles are
stable under the assumed parameter values.

So far, we have established that for 8 € [0, 5iy), the TOC
fixed point z3 is the only stable fixed point (Proposition
3.1). For 8 € [Bint, Br), the interior fixed point zi, is the
only stable fixed point (Proposition 3.1 and Theorem 4.1). At
B = By, it bifurcates into an unstable focus and for a vicinity
of values 8 > [y, a limit cycle encircles zi, (Theorem 4.1).
A full bifurcation diagram that summarizes these findings is
provided in Figure 3.

(20)

B. Simulations: the high rationality regime

Under the parameter regime specified by Assumptions 1,
3, and 2, numerical simulations suggest there is another
critical value (8, > (5 for which the limit cycle collapses,
and the TOC fixed point x;; becomes globally attractive.
Indeed, Proposition 3.1 has established that xy; is stable for
sufficiently high 5, and it is the only stable fixed point in
the system.

Simulations of system trajectories in the phase space are
depicted in Figure 4. In particular, we note that the system
can exhibit bistability (center portrait) between the limit
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cycle and xy; : initial conditions close to (zy1,0) will converge
to the TOC, and other conditions will converge to the stable
limit cycle. Since the interior fixed point does not disappear
for high 3, we conjecture that the limit cycle collapses at
some value 3, for which its w-limit set touches the basin of
attraction of (1, 0). In the example of Figure 4, (3,, belongs
to the interval (7.75,8). Such an analysis is left for future
work.

V. CONCLUSION AND FUTURE WORK

In this paper, we formulated a feedback-evolving system
where agents in a population follow a logit revision protocol,
which is a fundamentally different learning rule to the usual
imitation dynamics. We analyzed the resulting dynamical
outcomes as a function of the rationality parameter 5 > 0.
In increasing order of 3, we identified interval ranges for
which the system exhibits 1) a tragedy of the commons
(low rationality), 2) a stable interior fixed point, 3) stable
limit cycles, and 4) again, a tragedy of the commons (high
rationality). Counter-intuitively, high rationality leads to a
collapsed environment, whereas moderate levels of rational-
ity can lead to sustainable outcomes. Our analysis of the logit
system holds in a parameter regime where imitative learning
leads to a tragedy of the commons. These results demonstrate
that boundedly rational behaviors can induce a wide variety
of environmental outcomes.

Future work will involve analyzing global stability prop-
erties of the system. Additionally, a complete analysis of the
Lyapunov coefficient is needed to establish stability of the
observed limit cycles, and the precise value of 3 at which
the limit cycle dissipates into the TOC outcome is yet to
be established. The application of control strategies, e.g.
incentivization of cooperation, to control global outcomes
will also be studied.
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