
A distributed optimization approach for the adaptation of underwater
acoustic communication protocols

Behdad Aminian, Emil Wengle, Federico Iadarola, Damiano Varagnolo

Abstract— We propose a novel multi-agent approach for
auto-adjusting OFDM parameters for underwater acoustic
communication that utilizes distributed optimization to per-
form a collaborative choice. The algorithm enhances overall
communication performance among all agents, and makes
its decision based on environmental information that is first
actively collected from each agent at the beginning of their
mission, and then communicated via opportune statistics of
such sampled information. The proposed method does not rely
on link feedback from receivers; while based on distributed
optimization (and thus requiring data transmission among the
agents), the approach does not introduce any overhead during
data transmission and can be used as a separate process at
any preferred moment prior to the data transmission. We
present numerical comparisons based on simulation results
to demonstrate the dependence of the effectiveness of the
proposed approach with respect to different marine conditions
that may be encountered in field missions, and the dependence
of its efficiency on which optimization algorithm is chosen. The
overall results indicate that for a various set of conditions the
approach may lead to a more effective usage of the underwater
acoustic channel.

I. INTRODUCTION

Acoustic communication is the primary means of commu-
nication underwater; however, due to its specific characteris-
tics, such as limited communication bandwidth and time-
varying multipath propagation, underwater acoustic com-
munication can be quite challenging [1]. Considering the
mentioned limitations and challenges, it is important to
adjust the parameters of the used communication protocol
to maximize its performance for the desired application and
mission. One may then either adjust such parameters offline,
i.e., based on the sea condition forecasts, or adapt them
online, i.e., on the field and after having observed the sea
conditions directly. This dichotomy raises a natural question:
the online approach may take additional time, especially if
the decision is performed distributedly and autonomously by
the underwater agents themselves, and this additional time
could be critical for missions where timely decision-making
is crucial (e.g., a maritime mine countermeasures focused de-
ployment). The question is thus whether it is worth spending
time to sample the sea conditions, distributedly calculate a
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new set of communication parameters, and implement such
a decision.

Among different studies that focus on underwater commu-
nication enhancements, some target calculating and adjusting
the communication setting before the mission. This adjust-
ment can be primarily based on the information about the
mission environment and conditions, which can be provided
either by prediction based on historical data or by performing
several trials or simulating the experiments to achieve the
most efficient possible configuration. Similar work has been
presented in [2]. Although the mentioned method can be
helpful, it requires prior knowledge of the mission and its
environment, which might not be available in all scenarios.
Therefore different adaptation methods developed to improve
communication by readjusting the communication param-
eters considering different factors. One common approach
is to apply the parameter adjustment based on feedback
from the receiver. The effectiveness of these approaches
has been analyzed in different studies, both with simulated
data such as [3], [4], and experimental results [5]. Since
the mentioned methods mainly rely on feedback from the
receiver, they require overhead for transferring the feedback
data with the data transmission, which might not be the
best choice, considering the limited bandwidth underwater.
Also, this type of channel adaptation might not consider the
overall network performance, but rather the performance of
a specific link. On the other hand, many other studies uti-
lize other techniques to improve underwater communication
performance. For instance, [6] adjusts the power levels of
subcarriers using game theory in a multi-agent fashion. Some
other studies apply reinforcement learning [7] and machine
learning [8] for communication performance improvement.
A recent study uses the propagated geometrical data among
an underwater swarm of AUVs to optimize the number of
subcarriers and other communication parameters [9]. Or the
work in [10] assesses an adaptive physical layer technique
with spread-spectrum modulation. The packet used, which is
called GUWAL, has a field in the header that is reserved for
enabling adaptive modulation and coding. The information
in this field lets the receiving node change the level of
redundancy in the spread-spectrum modulation, which affects
the data rate.

Statement of contributions: we here propose a dis-
tributed optimization approach that enables a set of un-
derwater agents to autonomously select the most suitable
Orthogonal Frequency-Division Multiplexing (OFDM) mod-
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ulation parameters upon their deployment or prior to start
of their mission. In the proposed approach, agents at the
beginning of their deployments, sample some environmen-
tal information about the sea conditions where they find
themselves. Utilizing the collected samples, in a distributed
optimization mechanism, agents reach an agreement regard-
ing the best communication channel parameters before they
start their mission or on noticing environmental changes
comparing to the last agreed conditions. We also analysed
the condition that the communication benefits of utilizing the
proposed method exceeding its computational costs. More
precisely, we: 1) analyze how these agents may distributedly
decide such OFDM parameters by means of a tunable-
communication-complexity distributed optimization protocol
that supports broadcast lossy asynchronous communications,
and 2) investigate in which sea conditions/mission length
/ network configuration performing this type of tuning is
beneficial (i.e., deciding the OFDM parameters online en-
ables the agents to exchange more bits during the whole
mission, than what they would if they were choosing such
parameters offline). Note that this will mean evaluating also
which complexity of the distributed optimization scheme
can be advantageous for improving the overall mission-long
communication throughput.

Structure of the manuscript: The paper is organized as
follows: Section II provides a brief overview of the basics
of underwater communication and distributed optimization.
Section III presents the objective function definition and
the rationale behind it. Section IV outlines the proposed
parameter adaptation mechanism using distributed optimiza-
tion. In section V, we compare the performance of different
optimization algorithms for tuning the OFDM protocol. In
section VI, we analyze the impact of communication proto-
cols on selecting the most efficient optimization method. Sec-
tion VII highlights the communication improvement achieved
during the simulation. Section VIII explains the insignificant
impact of some predictable environmental conditions on the
communication performance, underscoring the importance
of onsite parameter adaptation. Finally, in section IX, we
conclude this paper and propose directions for future work.

II. BACKGROUND

A. Background on underwater acoustic communication

The purpose of this section is to provide a) some back-
ground on the concepts that will be laddered in Section III
to create the local cost functions to be optimized, and b)
references for the interested reader.

Acoustic communication uses sound waves to transmit
information through a medium, such as water or air. The
information can be encoded in the sound wave using various
modulation techniques, such as pulse amplitude modulation
(PAM) or frequency shift keying (FSK), and the receiving
device decodes the information to recover the original mes-
sage. The quality and clarity of the information transmit-
ted depend on factors such as the strength and frequency

of the sound wave, the distance between the sender and
receiver, the properties of the medium through which the
sound travels, and the modulation scheme used to encode
/ decode information packets. In acoustic communication,
different modulation techniques can be utilized. Some of
the most popular ones include PAM [11], FSK [12], Phase
Shift Keying (PSK) [13], Quadrature Amplitude Modula-
tion (QAM) [13], and OFDM [13]. OFDM splits the data
into multiple subcarriers, each with its specific frequency.
Although subcarriers are transmitted simultaneously, they
typically do not interfere since they are orthogonal to each
other. This allows for more efficient use of the available
bandwidth and reduces the effects of multipath interference.
Therefore, this modulation is widely used in cellular or
underwater communication. Some key parameters for OFDM
modulation include the number of subcarriers N , trans-
mission power, symbols per packet m, modulation order
M , and many other parameters. In OFDM, the data are
modulated by QAM or PSK and assigned to one of many
orthogonal subcarriers. Subcarriers separate neighbors by a
given frequency, and some are null to reduce inter-carrier
interference (ICI). The symbols are transformed into samples
by passing them through Inverse Fast Fourier Transform
(IFFT). The OFDM performance (in the sense of number
of bits successfully transmitted per second) depends on both
these parameters and the actual environmental conditions
where the communicands are in. The two main purposes
of this manuscript are thus both proposing a distributedly
optimizable cost function for choosing suitable values for
these quantities and investigating when performing such a
choice online is meaningful from the standpoint of improving
the overall throughput during a multi-agent mission whose
time duration is fixed.

B. Background on distributed optimization

Distributed optimization means generally taking a col-
laborative approach to optimizing a distributable objective
function (typically the sum of local costs). Various tech-
niques have been developed in the years, the most famous
ones likely being Distributed Stochastic Gradient Descent
(DSGD) [14] and Alternating Direction Method of Mul-
tipliers (ADMM) [15]. We consider Robust Asynchronous
Newton-Raphson Consensus (ra-NRC) [16], whose features
enable us to test different communication topologies using
virtually the same optimization structure. The algorithm
on which ra-NRC is based, Distributed Newton-Raphson
Consensus (DNRC) [17], is a second-order optimization
method where agents exchange opportunely constructed Hes-
sian matrices. In its original form, each local step towards the
global optimum comes with a communication cost that scales
with O(n2), where n is the number of variables involved in
the local costs. This matrix may though be approximated in
different ways, so that each local step may be made less
costly from a communication perspective (typically sacrific-
ing though convergence rates, i.e., the number of local steps
required to achieve convergence). ra-NRC enables exploring
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convergence rates vs. bandwidth usage per packet; since it
is robust against packet losses, and can be used off-the-shelf
in asynchronous broadcast-based communication protocols,
this optimization scheme is natural for investigating OFDM
tuning in underwater communication scenarios.

III. OBJECTIVE FUNCTION

To optimize the utilization of the communication channel,
one shall define an opportune cost function. We propose
one in this contribution that captures the impact of various
communication parameters on performance. We note that
quantifying accurately the effects of the individual parame-
ters on the actual bit rates given the environmental conditions
is of paramount importance to the final purpose of selecting
effectively the desired channel properties.

Therefore our goal is first to create a model that is
parameterized on both the sea conditions s and the OFDM
parameters σ (number of blocks – OFDM symbols – per
packet m, number of orthogonal frequencies per OFDM
symbol N , and how many bits each data carrier contains
log2M , where M is the modulation order), so that it returns
the expected data exchange rates per packet given those
conditions. We use that model to formulate an optimization
problem for which we choose the σ, given s, that induces
the most effective communication between agents. For the
sake of mathematical precision, we let s be the multi-
dimensional and global vector field of the sea conditions in
the area of interest. We assume that the agents can sample,
at the beginning of their mission, the random field s and
thus measure the local sea conditions si. In other words,
letting N be the set of agents, the set {si}i∈N will indicate
the sampled sea conditions around the various agents. Each
vector si, will be for simplicity assumed time-constant, that
cannot be adjusted at will, and whose value depends on the
geographical location of agent i.

Given this formalism, we assume that communication per-
formance of agent i with its out-neighbor j may be modeled
as a function Rij(s, σ). Note that underwater acoustic com-
munication channels typically are asymmetric; this means
that in general Rij(s, σ) ̸= Rji(s, σ). Given this, we let the
network-wise objective function be the sum of the various
Rij’s. So, letting N be the set of agents and Ni be the out-
neighbors of i, maximizing the network performance means
minimizing the negative sum of the per-agent performances.
Given though that estimating the whole s distributedly would
introduce an additional round of computations (and thus
delay before deciding the OFDM parameters that shall be
used), we actually take the approach for which agents solve

arg min
σ∈X

∑
i∈N

∑
j∈Ni

(
−Rij(si, σ)

)
, (1)

i.e., when building the local costs they consider just the sea
conditions that they can directly sample. We moreover note
that considering the cost function above means implicitly
promoting OFDM parameters viable for a fully connected
network. If full connectivity is not required, one may though

easily modify (1) so to give more weight to more important
links.

In any case, the decision variable σ, representing the set
of OFDM parameters the agents should reach consensus on,
is constrained (motivating the σ ∈ X in (1)). Indeed, the
cyclic prefix fraction pc must be large enough to absorb
inter-symbol interference (ISI); at the same time it typically
does not exceed one. Increasing pc may mitigate ISI-induced
performance losses due to delay spread in the channel. We
assume that τ , the delay spread, spans all the paths that are
at least as strong as L dB relative to the strongest path,
implying that the cyclic prefix fraction pc should satisfy the
constraint

τ∆f ≤ pc ≤ 1 , (2)

where ∆f is the carrier spacing, which also determines
the prefix-less OFDM symbol duration as 1/∆f . As for
the number of symbols per packet m and data carriers per
symbol RNN , they must both be positive, giving m ≥ 1 and
RNN ≥ 1. If the carriers are closely spaced in frequency,
the OFDM symbol becomes more sensitive to inter-carrier
interference (ICI). To mitigate ICI, a minimum frequency
spacing constraint must be enforced. Specifically, we must
ensure that the frequency spacing between any two adjacent
carriers is at least equal to k times the maximum Doppler
shift, where k is a design parameter. Higher k means better
robustness to Doppler spread - a condition that may be
expressed as ∆f ≥ kν or, equivalently, B/N ≥ kν where
B is the system bandwidth and N is the number of carriers
in one symbol.

Instead, as for the link performance Rij(si, σ), the depen-
dence on the water body conditions si intuitively is motivated
by the fact that agents communicating in an isolated lake with
no boats nor big fish in it will likely have an easier life than
agents in an heavily trafficked and noisy harbor. We also
note that the effect of s (and thus the sampled versions si)
is mostly on the speed of sound c, which can be effectively
modeled by the Medwin equation [18], simplified in this
work with

c(T,D, S) =1449.2 + 4.6T − 0.055T 2 + 0.00029T 3

+ (1.34− 0.01T )(S − 35) + 0.16D (3)

where
• T is the local water temperature in ◦C;
• S is the local salinity in parts per thousand;
• D is the local depth in meters.
Considering then the OFDM modulation mechanisms de-

scribed in Section II-A, we note that the number of uncoded
bits that can be transmitted over one symbol duration ts can
be modelled as

RcRNN log2M, (4)

where Rc represents the coding rate and indicates the number
of uncoded bits that can fit coded bits, and RN , represents the
ratio of carriers that carry data and clarifies what percentage
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of carriers are data carriers. Additionally, N represents the
number of carriers, and M represents the modulation order,
where log2M indicates the number of bits in one carrier.
Furthermore, if we denote pc as the cyclic prefix fraction, the
data rate (excluding the overhead time toh) can be calculated
using the expression

RcRNN log2M

(1 + pc)N/B
=
BRcRNN log2M

(1 + pc)N
. (5)

In (5), the numerator represents the number of data bits that
can be transmitted in one symbol, while the denominator rep-
resents the symbol duration, i.e., the time required to transmit
one symbol. Equation (5) is thus our model expressing the
expected data rate for a single, isolated OFDM symbol. To
calculate the data rate for a packet, we shall then take into
account the number of symbols per packet m, the overhead
time toh and the transmission delay td = r/c, where r is the
range. Considering these factors leads to the data rate for the
packets model

Rp =
mBRcRNN log2M

m(1 + pc)N +B(toh + td)
, (6)

where the numerator represents the number of data bits that
can be transmitted in one packet. The denominator in (6) rep-
resents the packet duration, i.e., the time required to transmit
one packet in addition to overhead time and propagation time
which are both required to data transmission for each packet.
We note that both sea conditions and distance among the
agents affect the transmission delay td = r/c. r above is the
distance between the two specific agents implicitly involved
in (6), and c(T, S,D) is the speed of sound underwater,
which can be calculated using formula (3).

TABLE I: Glossary of parameters used in our underwater
communication modeling.

Variable Meaning Type
σ OFDM parameters Optimized
m Symbols per packet
N Subcarriers
M Modulation order
s Sea condition Estimated
T Temperature
D Depth
S Salinity
τ Delay spread
ν Doppler spread
Pn Noise power
r Range
pc Cyclic prefix fraction Design
Ptx Transmit power
toh Overhead per packet
B Bandwidth
L Energy spread threshold
k Relative Doppler margin
ptl Target packet loss
RN Fraction of data carriers
Rc Coding rate
ts Symbol duration Derived as

(1 + pc)/∆f
∆f Carrier spacing Derived as B/N

Our aim is to maximize the sum of the per-link outputs
predicted by model (6). Considering that maximizing log(f)
is equivalent to minimizing −f , the proposed reward func-
tion is reworded to a cost function to be minimized as

J0 = − logRp = − logm− logRc − logB

− log(RNN)− log(log2M)

+ log
(
m(1 + pc)N +B(toh + td)

)
(7)

with respect to (m,N,M, pc) ∈ X .
Equation (7) can be shown to be non-convex everywhere in
X , because the determinant of its Hessian, and therefore the
product of its eigenvalues, is negative. Noticing that J0 is
concave in the cyclic prefix fraction pc, pc was then held
fixed, changing the constraints to

N − τ B
pc
≥ 0 N − B

kν
≤ 0 . (8)

Then, with q = tohB
1+pc

, the Hessian of J0 with pc fixed is
given by

H(J0)=


1

m2 − 1

(m+ q
N )

2
q

(mN+q)2
0

q
(mN+q)2

1
N2 − 1

(N+ q
m )

2 0

0 0 logM+1
(M logM)2

.
(9)

Note that the Hessian in (9) is block diagonal, where m
and N form one block, and M is alone in its block and
positive for M > 1. Then, convexity depends on whether
the (m,N) block is positive definite. With a little algebra,
the corresponding characteristic equation can be written as

0 = λ2 −
(

1

m2
− 1

(m+ q/N)2
+

1

N2
− 1

(N + q/m)2

)
λ

+

(
1

m2N2
+

m2N2

(mN + q)4
− 2

(mN + q)2
− q2

(mN + q)4

)
.

Because m+ q/N > m and N + q/m > N , the coefficient
of λ is necessarily negative, which in turn is necessary
for the existence of only positive roots. It can then be
shown that the constant term is nonnegative for all positive
values of the variables in question. Summarizing, given the
models and assumptions above, the proposed final distributed
optimization can be formulated as

arg min
m,N,M

∑
i∈N

(
− J0,i(mi,Mi, Ni)

)
subject to mi ≥ 1

Mi ≥ 2

Mi ≤ 64,

Ni − τ
B

pc
≥ 0,

Ni −
B

kν
≤ 0

pl,i ≤ ptl ,

(10)
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where pl,i, the packet loss ratio for node i, should not exceed
a given target packet loss ratio ptl .

Finally, the model in (10) can be reformulated as in

arg min
m,N,M

∑
i∈N

(
−J0,i +

1

t

4∑
κ=1

ψκ(si, σ)

)
(11)

with
• ψ1(si, σ) = − log(−(1−mi))
• ψ2(si, σ) = − log(−(τ B

pc
−Ni))− log(−(Ni − B

kν ))
• ψ3(si, σ) = − log(−(2−Mi))− log(−(Mi − 64))

• ψ4(si, σ) = − log
(
− 0.2miRNNi log2(Mi) ·

· exp
(
− 3

2(Mi−1)
Prx

LPrx+Pn

) 1
Rc − ptl

)
.

We note that the nonincreasing factor t−1 in (11) controls
the weight of the constraints, which are represented as
barrier functions [19]. The barrier function ψ4 represents the
constraint on the packet loss ratio, which is based on the
BER model used in [20]. When the optimization algorithm
terminates, the obtained {m,N,M} are rounded to the
nearest feasible point associated with the lowest cost. We
also note that after completing the optimization process, the
agents round the found m,M,N variables to the closest
feasible values. This, together with the fact of using only one
Lagrangian multiplier for coping with all the ψk’s instead of
one per ψk, constitute a simplification whose consequences
we plan to study in our future works.

For the sake of completion, we present then in Table I
all the parameters used in our underwater communication
model. The optimized type indicates an optimization vari-
able, the estimated type denotes an unknown variable that
must be estimated or measured, the design type designates a
user specified variable, and the derived type indicates that the
variable is calculated from at least one optimization variable.
Derived variables have their formula given.

IV. ADAPTING THE COMMUNICATION PARAMETERS VIA
A MULTI-AGENT APPROACH

Problem (11) models the expected global data rate ob-
tainable when choosing a given set of OFDM parame-
ters σ(m,N,M) given a set of environmental conditions
c(T, S,D). To solve it in a distributed fashion we take an
asynchronous distributed Newton-Raphson Consensus (ra-
NRC) approach, since it enables lossy asynchronous broad-
cast updates [16] and, more importantly, it enables inspecting
the effect of varying communication complexity on the
overall suitability of the proposed approach.

Underwater acoustic communication has high latency, so
we want to investigate not how many local optimization steps
are required to arrive at the optimum, but rather how much
time in minutes it takes to find it. Informally, 10 optimization
steps involving communicating 10000 bits per step, may
take more time than 100 steps each requiring 100 bits to
communicate (only in first approximation, though) the final
assessment requires taking in consideration which protocol

is used for performing this optimization. Thus the picture is
more sophisticated than just verifying which optimization
strategy has the lowest ”number of iterations” · ”number
of bits per iteration” product. More details will follow in
Sections V and VI.

We thus summarize in Algorithm 1 the pseudo-code of
such a ra-NRC approach. There, xi = σi is the vector of to-
be-optimized OFDM variables on node i, and fi is J0 of (7)
at node i. A more thorough explanation of the algorithm can
be found in [16].

Algorithm 1 ra-NRC

Require: x0, ϵ, c
1: Initialization (atomic)
2: xi ← x0

3: yi ← 0,gi ← 0,gold
i ← 0,

4: zi ← In,hi ← In,h
old
i ← In,

5: σi,y ← 0,σi,z ← 0

6: ρ
(j)
i,y ← 0,ρi, z(j) ← 0

7: flagreception,i ← 0,flagupdate,i ← 0
8: flagtramsmission,i ← 1
9: Data Transmission (atomic)

10: if flagtransmission,i=1 then
11: transmitter node ID ← i
12: yi ← 1

|NOUT
i |+1

yi

13: zi ← 1
|NOUT

i |+1
zi

14: σi,y ← σi,y + yi
15: σi,z ← σi,z + zi
16: Broadcast: transmit node ID, σi,y, σi,z
17: flagtransmission,i ← 0
18: end if
19: Data Reception (atomic)
20: if flagreception,i=1 then
21: j ← transmitter node ID, (j ∈ N IN

i )

22: yi ← yi + σj,y − ρ(j)i,y

23: zi ← zi + σj,z − ρ(j)i,z

24: ρ
(j)
i,y ← σi,y, ∀j ∈ Ni

25: ρ
(j)
i,z ← σi,z, ∀j ∈ Ni

26: flagreception,i ← 0
27: flagupdate,i ← 1 (optional)
28: end if
29: Estimate Update (atomic)
30: if flagupdate,i=1 then
31: xi ← (1− ϵ)xi + ϵz−1

i yi
32: goldi ← gi , holdi ← hi
33: hi ← ∇2fi(xi)
34: gi ← hixi −∇fi(xi)
35: yi ← yi + gi − gold

i

36: zi ← zi + hi − hold
i

37: flagupdate,i ← 0
38: flagtransmission,i ← 1 (optional)
39: end if

When Algorithm 1 converges for a given factor t used in
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the barrier function of (11), and t is below a threshold, the
algorithm is restarted, using the point to which it converged
as x0, and multiplying t by a constant µ. Such a procedure
implements the outer Newton step of the barrier method as
described in [19].

Algorithm 1 can be modified opportunely to implement ei-
ther a Jacobi approach (by letting hi ← tr

(
∇2fi(xi)

)
, which

requires only n parameters for the Newton direction) or even
a Gradient descent (basically by ignoring all the part of the
code relative to the local Hessians hi). Summarizing, the
same NRC algorithm may be implemented so to have higher
or lower communication requirements, and consequently a
faster or slower per-step convergence rate.

V. COMPARING THE DIFFERENT VERSIONS OF THE
OPTIMIZATION ALGORITHM

We investigate which version of the ra-NRC can arrive
at the same final OFDM performance in the shortest time.
As the proposed OFDM parameter selection approach must
be executed before the actual mission begins, minimizing its
duration is an important performance metric.

To compare the NR, Jacobi and GD versions of the
original ra-NRC algorithm above we consider the network
in Figure 1.

Fig. 1: Network topology for performing numerical per-
formance comparison between original ra-NRC, two other
modified varieties using Jacobi and Gradient descent

We also consider the same null initial conditions for all
the agents, and the cost function defined by the specified
conditions in Table IV. Reaching a 10−2-ball around the
global optimum took then 2100 iterations for the NR, 2500
for the Jacobi, and 4000 for the GD. Correspondingly, the
required time for these three versions of the optimization
algorithm took 1363, 1742, and 2788 seconds respectively
(the time calculation for such OFDM data transmissions
being explained in the appendix). This makes ra-NRC with
Newton-Raphson the best option for OFDM parameter ad-
justment, and shows the impact of the choice of optimization
algorithm on the performance of the proposed tuning process.

VI. IMPACT OF THE USED COMMUNICATION PROTOCOL
OVER THE SELECTION OF THE OPTIMIZATION ALGORITHM

We note that which communication protocol is used has
also an impact on selecting the best optimization algorithm.
To explain this concept, consider that the estimates of the
time taken (in seconds) by the optimization algorithm above
were made assuming to use again an OFDM scheme (in
other words, agents initially use OFDM with a pre-fixed set

TABLE II: Time required to execute the optimization algo-
rithm. Comparison between the OFDM vs. JANUS cases.

Modulation Iterations Time/iteration (s) Total runtime (s)
OFDM

GD 4000 0.697 2788
J 2500 0.697 1742

NR 2100 0.697 1463
JANUS

GD 4000 2.9 11600
J 2500 2.9 7250

NR 2100 4.1 8610

of parameters to select a novel set, and then switch to the new
set of parameters when converging to a consensus). We may
though implement such a first optimization round via other
protocols, e.g., JANUS [21]. Using another protocol will lead
to a different time (in seconds) for performing the same
optimization process. Performing the identical explained sce-
nario in V assuming JANUS as the communication protocol,
would lead us to spend 8610, 7250, and 11600 seconds for
performing optimization using NR, Jacobi, and GD (again
the time calculation for the specific case of JANUS data
transmissions is in the appendix).

Comparing the required times of OFDM vs. JANUS (a
summary of these results being in Table II) highlights how
a NR approach seems best for the first, and Jacobi for the
second. The key issue here is that different communication
protocols have different payloads per packet. For example,
every time an agent sends a JANUS packet, it sends also a
preamble and postamble (information that serves the purpose
of explaining which packet type the packet is, which type
of information it contains, etc.). This difference in such
overheads among different communication protocols may
then distort the results as above. In short, thus, the indication
from Section V that NR seems to be the best suitable strategy
for our purposes should be considered as limited to the case
of using OFDM for the initial optimization process.

VII. ASSESSING THE IMPROVEMENTS BROUGHT BY THE
SCHEME

We then assess the improvements that running the pro-
posed optimization algorithm may bring to the performance
of the final communication scheme. Although a thorough
evaluating the impact of real-life conditions would require
several field experiments, a numerical comparison can still
offer valuable insights into the potential benefits of the
proposed feedback approach. For the purpose we randomly
selected a scenario with 6 agents, and initial conditions &
parameters as in Tables III and IV. Initially, as per (4)
the chosen OFDM parameters allowed for the transmission
of approximately 2255 uncoded bits per packet. However,
the OFDM parameters chosen after the optimization round
enable exchanging 6205 bits per packet.
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TABLE III: Summary of the environmental conditions con-
sidered for the assessments in Section VII.

agent1 agent2 agent3 agent4 agent5 agent6
Temperature (C) 13 11 10 10 11 9

Salinity (ppt) 35 40 37 41 39 40
Depth (m) 20 40 30 35 15 25

TABLE IV: Summary of the initial OFDM parameters con-
sidered for the assessments in Section VII.

variables values variables values
RN 1 τ (s) 0.025

B (Hz) 4000 Rc 0.5
k 2 ν (Hz) 1
pc 0.25 step-size 0.005

toh [s] 10−3 ptl 0.1

VIII. ON THE AID THAT WEATHER FORECASTS MAY
PROVIDE

One may expect that the improvement shown in the
previous section may be mitigated by the availability of
accurate weather predictions. Indeed one may think that hav-
ing accurate predictions of water temperature, the locations
of where the agents will be (and thus their inter-ranges),
and the depth of the water column where they are located,
may enable choosing near-optimal OFDM parameters al-
ready before running the optimization algorithm. Intuition
would then say that in this case the proposed online OFDM
parameters selection approach is worthless. However, these
environmental parameters - the unique ones that one may
forecast accurately - have a negligible (for our purposes)
influence on communication performance. This can be seen
via the following Monte Carlo experiment: generate a series
of random networks and associated sea conditions s, for
each of such a scenario find the global optimum defined by
Problem (11), and estimate the communication efficiency of
the so-identified optimum via (4).

Each dot in Figure 2 represents one of the so-identified
optima: each panel is a scatter plot showing how the decision
variables depend on the inputs. Interestingly, the optimal
parameters tend to be independent of temperature, range, and
depth. For example, while temperature and salinity affect
sound speed, they will not significantly impact underwater
communication performance. This observation is particularly
significant given that the physical properties of water are
among the parameters that are more easily predicted based
on historical data. In other words, the optima (and thus the
communication performance) are mainly unaffected by that
parameters that are easily predictable, and are thus mainly
affected by the unpredictable ones. This makes the on-site
tuning of the parameters a valuable step.

IX. CONCLUSIONS

We introduced a novel multi-agent approach for au-
tonomously adjusting OFDM parameters in underwater
acoustic communication. Our approach utilizes distributed
optimization over environmental information that is collected

Fig. 2: Highlighting how temperature, range, and depth (in
order from top to bottom) tend to do not influence the results
from the optimization process (from left to right: Symbols
m, number of sub-carrier N , and modulation order M ).

from different agents and used in a collaborative fashion
to enhance overall communication performance among all
agents. Since this method can be utilized prior to start of the
agents’ missions or can be repeated after a radical change
in the environment conditions, the communication channel
optimization will not add any communication overhead to
the main mission.

To achieve this, we developed an objective function that
projects the effect of environmental parameters on com-
munication performance, and proposed to optimize it in a
distributed fashion via an off-the-shelf optimization method
that is resilient to packet loss and supports asynchronous
broadcast communication. We then checked, using the pos-
sibility of varying the communication requirements of the
algorithm, which variant best serves our purpose of tuning
OFDM parameters online.

Furthermore, we analyzed the fact that different commu-
nication protocols may actually associate with different best
optimization methods – in other words, we found that each
protocol has its optimal optimization algorithm.

We then examined how much the most easily predictable
environmental parameters affect the sought optimal OFDM
parameters, and found that they have little impact on the
communication performance. This analysis led us to con-
clude that on-site environmental evaluation (i.e., optimizing
the parameters after the mission started) is likely to lead to
benefits. Since the proposed feedback approach can adjust
communication parameters automatically without requiring
human intervention, it can be suitable for autonomous un-
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derwater systems requiring acoustic communication.
In future work, we seek to develop improved objective

functions that consider other environmental parameters, and
lead to more accurate estimates. Additionally, developing
methods for performing step-size selection during the op-
timization process and improving the optimization perfor-
mance could enhance the proposed approach in this contri-
bution and many other applications.

APPENDIX
OFDM AND JANUS DATA TRANSMISSION TIME

CALCULATION

Communicating an OFDM packet requires time for send-
ing and decoding the information, time that may be estimated
to be equal to

t = td + pt + crc16, (12)

where td is the propagation delay, pt is the packet dura-
tion, and crc16 is the additional duration due to a cyclic
redundancy check, which is used to detect errors in received
packets. We assume that we can fit sufficiently many bits
in a single OFDM symbol to accommodate six 32-bit floats
and any other necessary data, such as a sender identifier.
Similarly, the time it takes to communicate a JANUS packet
may be estimated as

t = td + pt + cargo + crc16, (13)

with the parameters above having been measured in one of
our experimental campaigns as

• propagation delay td = r/c (ex. 300 m
1500 m/s = 0.2 s)

• packet time pt = toh + time per bit · nobits
• cargo = 80 bits/s
• Cyclic redundancy check, crc16: 0.2 s
• single precision: 32 bits
• time per coded bit: 12.5 ms.

We note that exchanging a JANUS packet requires exchang-
ing the following data:

• ID → 8 bits;
• σy,i 3 single floats → 96 bits;
• σz,i 6 single floats → 192 bits for hessian. Symmetry

allows transmitting only the lower triangular part.
All the mentioned information can be summarized in

Table V.

TABLE V: Time required for exchanging packets enough to
execute a local optimization step using OFDM and JANUS.

OFDM alg time/iteration
(second)

GD td + pt + crc16 0.697
J td + pt(diag) + crc16 0.697

NR td + pt(matrix) + crc16 0.697
JANUS

GD td + pt + cargo + crc16 2.9
J td + pt + cargo + crc16 2.9

NR td + pt + 2 · cargo + crc16 4.1
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