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Abstract— Control Barrier Functions (CBFs) that provide
formal safety guarantees have been widely used for safety-
critical systems. However, it is non-trivial to design a CBF.
Utilizing neural networks as CBFs has shown great success,
but it necessitates their certification as CBFs. In this work,
we leverage bound propagation techniques and the Branch-
and-Bound scheme to efficiently verify that a neural network
satisfies the conditions to be a CBF over the continuous state
space. To accelerate training, we further present a framework
that embeds the verification scheme into the training loop to
synthesize and verify a neural CBF simultaneously. In partic-
ular, we employ the verification scheme to identify partitions
of the state space that are not guaranteed to satisfy the CBF
conditions and expand the training dataset by incorporating
additional data from these partitions. The neural network is
then optimized using the augmented dataset to meet the CBF
conditions. We show that for a non-linear control-affine system,
our framework can efficiently certify a neural network as a CBF
and render a larger safe set than state-of-the-art neural CBF
works. We further employ our learned neural CBF to derive a
safe controller to illustrate the practical use of our framework.

I. INTRODUCTION

Safety is a critical element of autonomous systems, such as
self-driving cars and manipulators that interact with humans.
As autonomous systems grow more complex, determining
whether they operate safely becomes challenging.

Safety can be formulated via invariance, in the sense that
any trajectory originating within an invariant set will never
traverse beyond the boundaries of that set. Lately, the use
of Control Barrier Functions (CBFs) to derive a forward
invariant set has received significant attention in the control
and learning community [1]. However, there exists no general
and scalable technique for designing CBFs. Therefore, recent
works [2], [3] synthesize continuous CBFs using Neural
Networks (NNs) as a function template, which are referred
to as Neural Control Barrier Functions (nCBFs). Yet, these
works rely on an initial guess of the forward invariant set or
the function structure of the CBF to synthesize the nCBF.
An improper initial guess usually results in a suboptimal
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Fig. 1: A schematic overview of the presented Branch-and-
Bound Verification-in-the-Loop Training. The framework
comprises of two key components: the learner and the
verifier, which operate sequentially. The learner optimizes
the nCBF using a fixed dataset and a counterexample dataset.
The verifier leverages bound propagation techniques and the
Branch-and-Bound scheme to refine a partition of the state
space until the CBF conditions are satisfied or counterexam-
ples are generated.

nCBF. Constructing an optimal CBF that renders a maximum
forward invariant set is challenging. A recent work [4] in-
troduced the Control Barrier-Value Function (CBVF) which
is a safe value function and renders the maximum forward
invariant set for a chosen time span. In this work, we
synthesize a continuous nCBF that approximates the infinite-
horizon CBVF and renders a safe set that is close to the
maximum forward invariant set.

Although utilizing NNs as CBFs offers universal approxi-
mation capabilities, it necessitates their certification as CBFs
to provide safety guarantees. Verifying the NN as an nCBF in
the continuous state space presents a significant challenge.
Specifically, since the NN is trained using a finite set of
data points, it will only be verified on those points. Outside
the certified points, safety is no longer guaranteed. There are
works [5], [6] that use Satisfiability Modulo Theory (SMT) to
verify their NNs. However, they are restricted to very simple
NNs due to expensive computation. In this work, we leverage
bound propagation techniques [7] and the Branch-and-Bound
scheme (BBS) to efficiently verify nCBFs. In particular, we
partition the state space and utilize linear bound propagation
techniques to provide lower and upper bounds of the NN
and its Jacobian. These bounds are used to verify if the NN
satisfies the conditions to be a CBF. The BBS is applied
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to refine the partition to improve scalability and achieve
less conservative bounds. We refer to the above verification
scheme as Branch-and-Bound Verification scheme (BBV).
This approach is similar to [8], however, we verify CBFs
instead of barrier functions. To accelerate training, we embed
the BBV into the training loop to synthesize and verify
an nCBF simultaneously, which we refer to as Branch-and-
Bound Verification-in-the-Loop Training (BBVT), see Fig. 1.
We show the efficiency of our method and the practical use
of nCBFs on an inverted pendulum and a 2D navigation task
in a simulation environment.

II. RELATED WORK

Many works use CBFs to ensure the safety of a sys-
tem [9]–[11]. However, it is non-trivial to construct CBFs.
In recent years, new techniques emerged to automatically
synthesize CBFs. For a system with polynomial dynamics,
a CBF can be obtained by solving a sum-of-squares (SOS)
optimization problem [12]. Unfortunately, SOS scales poorly
to higher dimensional systems [13]. To address this short-
coming, NNs have been employed to approximate CBFs.
They are trained by supervised learning [2], [3], [14] or
Reinforcement Learning (RL) with the Actor-Critic frame-
work [15], [16]. However, the quality of the nCBF in those
works depends on an initial guess of the forward invariant set,
CBF candidate, or exploration strategy. An improper initial
guess results in a conservative nCBF with a small forward
invariant set. To address the conservativity, in this work, we
learn a continuous nCBF that renders a safe set close to the
maximum forward invariant set. Furthermore, the training
does not require an initial guess.

Commonly, NNs are trained through backpropagation of
the empirical loss on a finite set of data points. Therefore,
it is important to note that even an empirical loss of zero
does not guarantee that the certificate is valid everywhere
in the state space. Only a few works have verified their
NNs, such as [5], [6], [17], which leverage SMT to provide
counterexamples (CEs) and guarantee the correctness of the
synthesis procedure. However, SMT is limited to simple NNs
with around 20 neurons in one or two hidden layers due
to the need for expensive computation. In contrast to using
SMT for exact verification, several efficient NN verification
methods using linear bound propagation techniques have
been developed [7], [18]. These bounding methods provide
a new direction to verify neural certificates. The work in [8]
partitions the state space with a BBS and verifies the property
of the discrete-time stochastic barrier function for each
partition leveraging the method in [7]. Our work extends
the BBS of [8] to CBFs for continuous-time deterministic
control-affine systems where the control input constraints
must be considered and uses the BBV scheme to verify the
learned continuous nCBF.

III. PROBLEM FORMULATION

Given the following continuous-time control-affine system

ẋ = f(x) + g(x)u, x(0) = x0, (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, f : Rn → Rn denotes
the autonomous dynamics, and g : Rn → Rn×m denotes
the input dynamics. We assume that f , g are Lipschitz
continuous and X,U are compact sets.

The safety requirement for the system in (1) is encoded via
a state admissible set Xa ⊆ X and a convex input admissible
set Ua ⊆ U. A safe system stays in the state admissible set
for all time. To formally define safety, we use xπ(t;x0) to
refer to a trajectory of the system in (1) at time t with initial
condition x0 and control policy u = π(x). Safety is then
defined as:

Definition 1 (Safety). The system in (1) is safe if xπ(t;x0) ∈
Xa and u = π(xπ(t;x0)) ∈ Ua, ∀t ∈ [0,∞].

However, it should be noted that Xa is not safe everywhere
as there may not exist a control input that transitions a state
close to the boundary towards the interior of Xa. A safe set
should have the property that if the system starts in the safe
set, it stays inside for all time. Towards formally defining
this property, let a set C be defined as the 0-superlevel set
of a continuously differentiable function h : Rn → R, i.e.,

C = {x ∈ X : h(x) ≥ 0},

∂C = {x ∈ X : h(x) = 0}.

Then forward invariance and a safe set are defined as follows.

Definition 2 (Foward invariance). The set C is forward
invariant if for every x0 ∈ C, there exists a control policy
u = π(x) ∈ Ua such that the trajectory of system in (1)
xπ(t;x0) ∈ C, ∀t ∈ [0,∞].

Definition 3 (Safe set). The set C is a Safe Set if C is forward
invariant and C ⊆ Xa.

A CBF renders a safe set and can be used to derive safe
control inputs. Before defining CBFs, we must introduce ex-
tended class K∞ functions. An extended class K∞ function
is a mapping α : R → R that is strictly increasing and for
which α(0) = 0 holds. We define a continuous CBF as:

Definition 4 (Control Barrier Function). Let C ⊆ Xa be
the 0-superlevel set of a continuously differentiable function
h : Rn → R, then h is a CBF in Xa for system in (1) if
there exists an extended class K∞ function α such that

sup
u∈Ua

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (2)

for all x ∈ Xa, where Lf , Lg represent Lie derivatives.

With the definition of a CBF, we may derive sufficient
conditions for a safe system. According to the main result
in [19], the following theorem holds:

Theorem 1 ( [19, Theorem 2]). If function h is a CBF for
the system in (1) and ∂h

∂x (x) ̸= 0 for all x ∈ ∂C, then any
Lipschitz continuous controller π(x) ∈ Kcbf (x) with

Kcbf (x) = {u ∈ Ua : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.
(3)
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renders the set C safe. Additionally, the set C is asymptoti-
cally stable in Xa.

With Theorem 1, we are able to ensure the safety of the
system in (1) as long as a CBF is found and its gradient does
not vanish on ∂C. We show in Section V-D how to obtain a
safe policy satisfying (3) using CBFs.

The objective of this work is to automatically synthesize
an nCBF and verify it for the continuous state space. The
problem is defined as follows.

Problem 1. Given the system in (1), state admissible set Xa,
convex input admissible set Ua and α(x) = γx where γ is
a positive constant, synthesize an nCBF that is denoted by
ĥw(x), where w are the parameters of the NN, and renders
set C safe for the system in (1). This is equivalent to

Ĉ ⊆ Xa, (4a)
inequality (2) holds in Xa, (4b)

where Ĉ = {x ∈ X : ĥw(x) ≥ 0} is the 0-superlevel set of
the nCBF.

Remark 1. The condition ∂h
∂x (x) ̸= 0 for all x ∈ ∂C is omit-

ted since it generally holds in our setting as we a consider
Tanh-based Fully-Connected Neural Network (FCNN). More
specifically, since ∂tanh

∂x (x) ∈ (0, 1] for all x, the condition
is only violated if either w = 0 or catastrophic cancellation
occurs in the linear layers, which will almost surely never
happen.

IV. NEURAL CONTROL BARRIER FUNCTION TRAINING
AND VERIFICATION

In this work, we design a new empirical loss to synthesize
an nCBF, which is introduced in Section IV-A. As the
training set only contains a finite set of data points, the
CBF conditions may not hold in the continuous state space.
Therefore, in Section IV-B, we present the BBV to verify
nCBFs. Nevertheless, it is often necessary to iterate through
multiple training and verification cycles before successfully
learning an nCBF. Thus, we introduce BBVT in Section IV-
C, which embeds BBV in the training loop to accelerate
training for certifiability.

A. Learning a Neural Control Barrier Function

The primary goal of this work is to train an NN ĥw(x)
until it satisfies conditions (4a) and (4b) and render a large
forward invariant set. Towards this end, we leverage the main
result in [4, Theorem 3], where a CBVF is shown to recover
the maximum safe set subject to safety constraints. Con-
trary to [4], we are interested in infinite-horizon properties.
Thus we extend the time-dependent Control Barrier-Value
Function Variational Inequality (CBVF-VI) to the infinite-
horizon. Let h(x) denote the infinite-horizon CBVF and
ρ(x) : X → R denote the signed-distance function for the
set Xa, which is defined as ρ(x) = infy∈X/Xa

∥y − x∥ if
x ∈ Xa and ρ(x) = − infy∈Xa∥y − x∥ if x ∈ X/Xa. The
infinite-horizon CBVF-VI is defined as

0 = min{ρ(x)− h(x),

max
u∈Ua

Lfh(x) + Lgh(x)u+ γh(x)}. (5)

We use an NN ĥw(x) to approximate the infinite-horizon
CBVF h(x). Then, the empirical loss is defined as follows:

L =
1

N1

∑
x∈Xa

∥min{ρ(x)− ĥw(x),

sup
u∈Ua

Lf ĥw(x) + Lgĥw(x)u+ γĥw(x)− λ}∥ (6a)

+
1

N2

∑
x∈X/Xa

max{ĥw(x) + λ, 0}, (6b)

where λ is a small positive constant to encourage the strict
satisfaction of the conditions. The loss term (6a) shapes
the NN to be the solution of the infinite-horizon CBVF-
VI introduced in (5), which encourages the satisfaction of
condition (4b). The loss term (6b) encourages that the nCBF
is negative in the inadmissible area X/Xa, which is equiv-
alent to condition (4a). Since the system is control-affine,
the optimal solution u∗ for supu∈Ua

[Lf ĥw(x)+Lgĥw(x)u]
must be one of the vertices of Ua. Let UV

a denote the
vertices of the input admissible set, we choose control input
u⋆ = argmaxu∈UV

a
Lgĥw(x)u. However, the Lie derivative

of ĥw(x) in the early training stage may not align with the
Lie derivative of the true CBVF h(x). This results in an
undesirable optimization path and the NN can get stuck at a
deadlock. The occurrence of a deadlock situation signifies
that improvements at certain data points cause constraint
violations at other data points, as noted in [20]. To facilitate
the training process and avoid deadlocks, we borrow ideas
from [2], [6], which use a nominal controller to guide the
training. Here, we train another neural network ĥϕ with the
same structure as ĥw based on the loss of [21] and choose
u∗ = argmaxu∈UV

a
ĥϕ(x+(f(x)+g(x)u)∆t) by simulating

one step ahead to guide the training of the nCBF ĥw. To
further guide the training, we may integrate the verification
procedure with a so-called Counterexample Guided Inductive
Synthesis (CEGIS) approach, as described in Section IV-C.

B. Verifying the learned Neural Control Barrier Function

Since the NN is trained on finite data points, one must note
that the NN may not satisfy the CBF conditions everywhere
in the state space, even if the empirical loss decreases to zero.
In fact, condition (4b) may be violated almost everywhere,
which means the NN may fail to render a forward invariant
set and the safety guarantee no longer exists. In this section,
we propose to use the BBV to verify the learned nCBF in
the continuous state space. Specifically, our primary goal is
to verify the satisfaction of conditions (4a) and (4b).

Before we explain our verification scheme in detail, we
introduce some notations first. Let the partition of the state
space be denoted as hyperrectangles B(xi, ϵi) = {x : |
x− xi |≤ ϵi} centered at point xi ∈ X with radius ϵi ∈ Rn,
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Fig. 2: An example of the BBV in a 2D state space. The
scheme starts with a coarse partition B(x0, ϵ0) and refines it
using the Branch-and-Bound scheme. For each hyperrectan-
gle B(xi, ϵi), i = 0, 1, 2, . . ., upper bounds for the neural
network are computed. In this case, the hyperrectangles
B(x0, ϵ0) and B(x2, ϵ2) are refined as ĥu0 > 0, ĥu2 > 0.

see Fig. 2. Initially, all hyperrectangles have the same radius
ϵi = ϵinit. Let B = {B(x0, ϵ0), . . . ,B(xN , ϵN )} denote the
set of all hyperrectangles, BX/Xa

⊂ B denote the set of
hyperrectangles that covers the inadmissible area X/Xa, and
BXa

⊂ B denote the set of hyperrectangles that covers the
admissible area.

To verify condition (4a), which is equivalent to ĥw(x) <
0,∀x ∈ X/Xa, we rely on the linear bounds of the NN
computed using CROWN [7]. The linear bounds are defined
as follows:

ĥli ≤ ĥw(x) ≤ ĥui, x ∈ B(xi, ϵi). (7)

We use these linear bounds to certify the satisfaction of
condition (4a). In particular, the upper bound ĥui can be used
to check for non-positivity

ĥw(x) ≤ ĥui < 0, x ∈ B(xi, ϵi),B(xi, ϵi) ∈ BX/Xa
. (8)

However, this upper bound tends to be conservative when
B(xi, ϵi) covers a large area. Therefore, we leverage the
BBS that starts from the coarse partition and refines each
hyperrectangle when ĥui > 0 until ĥui ≤ 0 or ϵi ≤ tgap
where tgap > 0 is the minimum partition size, see Fig. 2.
If condition (8) holds for all hyperrectangles in BX/Xa

, then
the condition (4a) holds in the continuous state space.

Although verifying condition (4a) is simple, verify-
ing condition (4b) supu∈Ua

[Lf ĥw(x) + Lgĥw(x)u] ≥
−γĥw(x), ∀x ∈ Xa is challenging. For improved readability,
we denote q(x) = supu∈Ua

[Lf ĥw(x)+Lgĥw(x)u+γĥw(x)].
Hence, verifying condition (4b) is equivalent to verifying
q(x) ≥ 0,∀x ∈ Xa. Let qli define a lower bound of q(x) for
x ∈ B(xi, ϵi). Then the following condition has to hold:

q(x) ≥ qli ≥ 0, x ∈ B(xi, ϵi),B(xi, ϵi) ∈ BXa
. (9)

Similarly to condition (4a), the BBS starts from a coarse
partition and refines each hyperrectangle when qli < 0
until qli ≥ 0 or ϵi ≤ tgap. If condition (9) holds for all
hyperrectangles in BXa

, then condition (4b) holds in the
continuous state space.

However, the challenge arises in the computation of qli.
The computation of qli can be reframed as an optimization
problem within the hyperrectangle B(xi, ϵi)

qli = min
x

q(x) (10a)

s.t. x ∈ B(xi, ϵi). (10b)

The term q(x) is a complex function containing nonlinear
dynamic functions f , g, the NN ĥw as well as its Jaco-
bian, which renders a constrained Nonlinear Program (NLP)
in (10a). The state-of-the-art NLP solver [22] requires gra-
dients of the objective function, which involves computation
of the Hessian of the NN. The expensive computation makes
it impractical to solve (10a) directly.

Although computing the lower bound of q(x) is quite
complex, computing the bound of the components of q(x)
separately is much simpler. We can compute the bound of the
NN using CROWN [7] and its Jacobian leveraging a recent
result in [23] or [24]:

ĥli ≤ ĥw(x) ≤ ĥui,∀x ∈ B(xi, ϵi), (11)

Jli ≤ ∇ĥw(x) ≤ Jui,∀x ∈ B(xi, ϵi). (12)

Furthermore, we can approximate the nonlinear dynamic
functions f and g using Taylor Models as done in [25] or
sampling:

xli ≤ f(x) + g(x)u⋆ ≤ xui,∀x ∈ B(xi, ϵi). (13)

In (10a), the objective function depends on the variable x
and is constrained within the feasible region for x. We
simplify (10a) by considering three independent variables
subject to independent constraints. This results in

q′li = min
h,J,x

q′(h, J, x) = ⟨J, x⟩+ γh (14a)

s.t. ĥli ≤ h ≤ ĥui, (14b)
Jli ≤ J ≤ Jui, (14c)
xli ≤ x ≤ xui, (14d)

where x denotes the value of f(x) + g(x)u, h denotes the
value of ĥw(x) and J denotes the value of ∇ĥw(x). When
(11), (12), and (13) are over-approximations of the true
intervals, it is clear that the optimal solution q′li from (14a) is
an over-approximation of the optimal solution qli from (10a),
which means q′li ≤ qli. To efficiently solve (14a), we may
compute the optimal solution independently for each term,
taking the minimum over the set of vertices.

Although the theoretical complexity of the BBV is still
exponential in the dimension of the state space, it improves
the scalability in practice. One must note that our method
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is a sound verification method instead of a complete one,
which means the failure to obtain BX/Xa

and BXa that satisfy
condition (8), (9) does not imply the invalidation of the
nCBF, as we over-approximate the conditions. We want
to emphasize that the chosen over-approximation method,
CROWN, has been the winning strategy at the Verification
of Neural Networks Competition for multiple years [26].

C. Branch and Bound Verification-in-the-Loop Training

Although the BBV provides a practical way to certify the
NN as nCBF, it requires several training and verification
processes until an nCBF is obtained. Therefore, leveraging
the information from the verification and ensuring the sat-
isfaction of conditions (4a) and (4b) becomes the task of
BBVT. This type of method is also known as CEGIS [27].
See Fig. 1 for an overview of the framework.

We start with the initial fixed training dataset D that con-
tains a number of uniformly sampled points. During the train-
ing procedure, we optimize the NN to decrease the loss in (6)
using D. After k epochs, the verifier starts with a coarse par-
tition of the state space. The upper bound ĥui, ∀B(xi, ϵi) ∈
BX/Xa

and lower bound q′li, ∀B(xi, ϵi) ∈ BXa
are computed.

The hyperrectangles, whose ĥui ≥ 0 or q′li ≤ 0, are split until
ϵi ≤ tgap. After reaching the minimum partition size tgap,
the hyperrectangles whose ĥui ≥ 0 or q′li ≤ 0 are treated
as the violation areas. The center points are added to the
CE dataset and the training procedure is repeated until the
verifier returns satisfaction or the maximum number
of iterations nmax is reached.

Note that although the universal approximation theorem
in [28] guarantees the existence of ĥw(x) to be an nCBF
that renders maximum forward invariant set, this is under the
assumption that the NN has a sufficient number of neurons.
The training procedure is not guaranteed to converge to an
nCBF, but if the verifier returns satisfaction, the NN is
an nCBF for the given system in the continuous state space.
It is possible to introduce adversarial training, i.e. training
on the worst-case state in a region around each sample x, to
improve the convergence to a verifiable nCBF [8].

V. RESULTS

In this section, we evaluate our proposed framework on
two systems: an inverted pendulum and a 2D navigation
task. The experimental setup is introduced in Section V-A. In
Section V-B and Section V-C, we provide a comprehensive
assessment on the inverted pendulum, addressing the verifi-
cation efficiency and the size of the safe set, respectively.
In Section V-D, we consider a 2D navigation task with
nonconvex constraints to display the practical use of our
framework and combine the nCBF with RL to achieve safe
policy learning. Our code is available on GitHub1.

We consider the following baseline methods:
• LST: The Level Set Toolbox (LST) [29] generates a safe

value function by Hamilton-Jacobian-Issac Reachability
Analysis (HJI-RA) over a discrete grid.

1https://github.com/tud-amr/
ncbf-simultaneous-synthesis-and-verification

• NeuralCLBF: Neural Control Lyapunov Barrier Func-
tion (NeuralCLBF) [2] parametrizes the CBF as an NN
and optimizes it according to their empirical loss based
on (2) and a nominal safe set.

• SMT: [6] trains a neural Lyapunov function with SMT
generating CEs and ensures the validation of the result.
The constraints considered by SMT are conditions (4a)
and (4b). To have a fair comparison, the training loss is
chosen to be the same as in (6).

A. Experimental Setup

1) Inverted Pendulum: Let s = [θ, θ̇] ∈ X ⊂ R2 be the
state variable and u ∈ U ⊂ R be the control input. We
consider the state space X = {s : θ ∈ [−π, π], θ̇ ∈ [−5, 5]}
and the input space U = {u : u ∈ [−12, 12]}. The dynamics
of the inverted pendulum are given by:

θ̇ = θ̇,

θ̈ =
3g

2l
sin(θ)− 3β

ml2
θ̇ +

3

ml2
u,

(15)

where m = 1, b = 0.1, g = 9.81, and l = 1. The state
admissible set is Xa = {s : θ ∈ [− 5π

6 , 5π
6 ], θ̇ ∈ [−4, 4]} and

the input admissible set is Ua = U, see Fig. 3.
2) 2D navigation task: We consider a 2D navigation task

in which a point robot should reach a goal position while
avoiding obstacles, see Fig. 6a. Let s = [x, y, ẋ, ẏ] ∈ X ⊂ R4

be the state variable and u = [ax, ay] ∈ U ⊂ R2 be the
control input representing the acceleration along the x-axis
and y-axis. The dynamics of the point robot are:

ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 sT +


0 0
0 0
1 0
0 1

[
ax
ay

]
(16)

We consider the admissible position set X1 = {s :
x ∈ [0, 4], y ∈ [0, 4]} except the obstacle set X2 = {s :
x ∈ [1.5, 2.5], y ∈ [0, 2]}, together with velocity constraints
X3 = {s : ẋ ∈ [−1, 1], ẏ ∈ [−1, 1]}. Thus, the state
admissible set is Xa = X1 ∪ (X2)C ∪ X3, where (·)C
represents the complement of a set. See Fig. 6 for a pictorial
representation of the set. The input admissible set is Ua =
{u : ax ∈ [−1, 1], ay ∈ [−1, 1]}.

Fig. 3: The workspace of the considered inverted pendulum.
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(a) Training without verification-in-the-loop (b) Distribution of counterexamples (c) Training with verification-in-the-loop

Fig. 4: Shapes of 0-superlevel sets of NNs trained with and without BBVT for the inverted pendulum. In Fig. 4a the NN is
trained with a fixed dataset and evaluated on a denser testing dataset to showcase that condition (4b) is not satisfied for the
continuous state space. Figure 4b shows the CEs added to the dataset according to BBVT. Figure 4c showcases that, after
training the NN with BBVT, no validations are detected since the NN is an nCBF.

TABLE I: Hyper-parameter for nCBF Training.

γ 0.5 λ 0.05

learning rate r 10−3 learning rate
decay β

0.995

verify after
every k epochs 20 minimum partition

gap tgap
0.005

initial radius ϵinit

(inverted pendulum) [0.2, 0.2] initial radius ϵinit

(2D navigation)
[0.2, 0.2,
0.2, 0.2]

Num. fixed points
(inverted pendulum) 105

Num. fixed points
(2D navigation) 106

nmax 100

3) Training Configuration: For both systems, we train
the nCBF using Pytorch on NVIDIA A40, and Stochastic
Gradient Descent is used as the optimizer to avoid local
minima. The used hyper-parameters can be found in Table I.
For the inverted pendulum, we choose a Tanh-based FCNN
with one hidden layer which consists of 36 neurons. For the
2D navigation task, a larger Tanh-based FCNN is required
since the shape of the environment is more complex. Here
we choose a Tanh-based FCNN with two hidden layers, each
of which consists of 256 neurons.

B. Verification and Efficiency

In this section, we use the inverted pendulum to discuss
the certification of the trained NN as a CBF. To showcase
the disadvantage of training without verification, we train
the nCBF with a fixed data set and stop training after 200
epochs. We then examine the satisfaction of condition (4b)
with a denser testing dataset. The 0-superlevel set of the
trained NN is shown in blue in Fig. 4a. The orange area
indicates the testing data points that violate condition (4b).

We resume the training with the same dataset and use
BBVT to augment the training dataset with CEs every k
epochs until the verifier returns satisfaction. Figure 4b
shows the distribution of the CEs after the first verifica-
tion loop. As we augment the dataset, the verifier returns
satisfaction after 240 epochs, see Fig. 4c.

To highlight the efficacy of BBVT, we evaluate the
training time, verification time, and the ratio of violation
areas for our framework and the baseline methods. The
results are shown in Table II. We first compare our method
with LST [29]. The table shows the results of LST for two

different grid gaps, which are 0.2 and 0.05, respectively. It
is evident that an increased grid density leads to improved
accuracy at the cost of longer computation time. However,
a dense grid map is not always possible, since the memory
space of LST grows exponentially, which is referred to as
the Curse of Dimensionality. With a grid gap of 0.05, LST
requires 24.41kB memory space, while we only need to
store the parameters of the nCBF, which is 1.2kB. This is
important for embedded devices such as the control unit on
drones.

Then, we compare our method with NeuralCLBF. Due to
the lack of a verification process and CE data set, the fixed
data set for NeuralCLBF contains 106 data points in order to
have a fair comparison with our method. Since NeuralCLBF
learns an nCBF based on a nominal safe set, the training
process is assisted by prior knowledge and results in less
training time, see Table II. However, there are sparse areas
that violate the conditions as discussed in [2] and how these
sparse areas grow with the complexity of the system has not
been studied yet.

We also compare our method with SMT. However, SMT
did not return satisfaction until the maximum number
of iterations nmax was reached, see Table II. Although there
exist some works [5], [6] that use SMT to verify a neural
controller, they only use a very simple FCNN with around
9 neurons. In our case, the computation time of SMT grows
dramatically since the NN is more complex. Also, SMT can
only generate several CEs at each iteration, while BBVT
generates all the CEs in state space X, which is more efficient
than SMT.

C. Size of Safe Set

We will compare the size of the forward invariant set
derived using our framework and the baseline methods in
this section. Since SMT failed to verify the nCBF and
LST with a grid gap of 0.2 has a large violation area, we
compare our framework only against LST with a grid gap
of 0.05 and NeuralCLBF with the nominal safe set being
Xn = {s : ∥s∥ < 3π

4 }).
The forward invariant sets derived by the different methods

are illustrated in Fig. 5. We see that the size of the forward
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TABLE II: Verification and Efficiency Comparison for the inverted pendulum. BBVT is compared against LST, NeuralCLBF,
and SMT to synthesize an nCBF. LST and NeuralCLBF do not verify their safe value function, which is represented by
’-’ in columns 3 and 4. To validate the verification process, we calculate the ratio of points that violate condition (4b) on a
uniform grid with a size of 103 × 103 within the state space X.

Stop criteria Total computation time
(s)

Average verification time
(s/epoch)

Average generation time
(s/per counterexample)

Violation points/test points
(%)

LST(0.2) value converges 5.34 - - 1.9
LST(0.05) value converges 104.48 - - 0.0064

NeuralCLBF loss converges 584.6 - - 0.0013
SMT max # iter reached 5311.68 14.73 1.34 0.7742

BBVT(ours) verified 1214.15 16.20 0.004 0.0

Fig. 5: The forward invariant set of safe value functions
obtained by different methods for the inverted pendulum.

invariant set from NeuralCLBF is conservative, while our
method approximates CBVF and renders a safe set that
is close to the maximum forward invariant set. Since the
forward invariant set of the CBF is always a subset of that
from HJI-RA, which is discussed in [4], it is not surprising
that LST renders a larger safe set than ours. We note that
λ > 0 in (6a) encourages the satisfaction of the CBF
conditions at the expense of rendering a smaller safe set.

D. Application of Neural Control Barrier Functions to Safe
Policy Learning

In this section, we use RL to address the 2D navigation
task introduced in Section V-A.2. Let sg = [xg, yg, 0, 0]
be the goal state. The step reward is defined as rt =
−0.01 · ∥s−sg∥, the terminal reward is rcollision = −5 when
the robot collides with the obstacles and rgoal = 10 when
the robot reaches the goal area Xg = {s : ∥s − sg∥ < ϵ}
where ϵ = 0.1 is the goal tolerance. We use Proximal Policy
Optimization [30] to train the agent and solve

usafe =arg min
u∈Ua

∥u− uRL∥2

s.t. Lf ĥw(x) + Lgĥw(x)u+ α(ĥw(x)) ≥ 0
(17)

to project the action uRL of the RL policy to the safe
action usafe with the least modification.

We note that, theoretically, this controller guarantees safety
with infinite control frequency. However, a continuous con-
troller is not possible to implement on discrete control units.
This limits the safety guarantees we may provide. How to
address the gap between continuous controllers and their
discrete implementations remains an open question.

Figure 6a shows all trajectories performed during the
training, and we can see that several trajectories collide with
the obstacles, while there are no unsafe trajectories in Fig. 6b
with nCBF as a safety filter. However, we observe that the
average reward with nCBF is larger than for nominal RL
without nCBF in the very early stage but has a slower growth
rate and converges to a lower reward level compared with
nominal RL, see Fig. 6c. The reason is that nCBF provides
prior knowledge about the environment and the agent could
avoid exploring unsafe regions in the early stage and gain a
higher reward than nominal RL. However, the forward invari-
ant set is still suboptimal as discussed in Section V-C, which
means only a suboptimal policy is learned and exploration
is restricted. Nevertheless, we believe that provided safety
guarantees are beneficial in safety-critical applications.

VI. CONCLUSION

In this work, we presented a framework that simultane-
ously synthesizes and verifies continuous Neural Control
Barrier Functions (nCBFs). To this end, we leveraged bound
propagation techniques and the Branch-and-Bound scheme
to efficiently verify neural networks as Control Barrier
Functions in the continuous state space. In experiments, we
showed that our framework efficiently synthesizes an nCBF
which renders a larger safe set than state-of-the-art methods
without requiring an initial guess.

Since the memory requirements and computation time of
the Branch-and-Bound Verification scheme increase expo-
nentially with the system dimension, in future work, we may
address the scalability of our framework.
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[7] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel,
“Efficient neural network robustness certification with general acti-
vation functions,” Advances in neural information processing systems,
vol. 31, 2018.

[8] F. B. Mathiesen, S. C. Calvert, and L. Laurenti, “Safety certification for
stochastic systems via neural barrier functions,” IEEE Control Systems
Letters, vol. 7, 2022.

[9] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016.

[10] X. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada,
J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping
and adaptive speed regulation on accessible mobile robot testbeds,”
in 2017 IEEE Conference on Control Technology and Applications
(CCTA), pp. 1769–1775, IEEE, 2017.

[11] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, no. 8, 2016.

[12] A. A. Ahmadi and A. Majumdar, “Some Applications of Polynomial
Optimization in Operations Research and Real-Time Decision Mak-
ing,” arXiv e-prints, p. arXiv:1504.06002, Apr. 2015.

[13] M. Srinivasan, M. Abate, G. Nilsson, and S. Coogan, “Extent-
compatible control barrier functions,” Systems & Control Letters, 2021.

[14] M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela, “Synthesis
of control barrier functions using a supervised machine learning
approach,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2020.

[15] D. Du, S. Han, N. Qi, H. B. Ammar, J. Wang, and W. Pan, “Re-
inforcement learning for safe robot control using control lyapunov
barrier functions,” arXiv preprint arXiv:2305.09793, 2023.

[16] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li, “Model-free
safe reinforcement learning through neural barrier certificate,” IEEE
Robotics and Automation Letters, vol. 8, no. 3, pp. 1295–1302, 2023.

[17] N. Boffi, S. Tu, N. Matni, J.-J. Slotine, and V. Sindhwani, “Learning
stability certificates from data,” in Conference on Robot Learning,
pp. 1341–1350, PMLR, 2021.

[18] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel,
D. Boning, and I. Dhillon, “Towards fast computation of certified

robustness for relu networks,” in International Conference on Machine
Learning, pp. 5276–5285, PMLR, 2018.

[19] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), 2019.

[20] S. Liu, C. Liu, and J. Dolan, “Safe control under input limits with
neural control barrier functions,” in Conference on Robot Learning,
pp. 1970–1980, PMLR, 2023.

[21] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging hamilton-jacobi safety analysis and reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA),
pp. 8550–8556, IEEE, 2019.

[22] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming.
Cham, Switzerland: Springer International Publishing, Nov. 2021.

[23] Z. Shi, Y. Wang, H. Zhang, J. Z. Kolter, and C.-J. Hsieh, “Efficiently
computing local lipschitz constants of neural networks via bound
propagation,” Advances in Neural Information Processing Systems,
vol. 35, pp. 2350–2364, 2022.

[24] J. Laurel, R. Yang, G. Singh, and S. Misailovic, “A dual number
abstraction for static analysis of clarke jacobians,” Proceedings of the
ACM on Programming Languages, vol. 6, no. POPL, pp. 1–30, 2022.

[25] M. Streeter and J. V. Dillon, “Automatically bounding the taylor
remainder series: Tighter bounds and new applications,” arXiv preprint
arXiv:2212.11429, 2022.

[26] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu, “First three
years of the international verification of neural networks competition
(vnn-comp),” 2023.

[27] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen,
“Counterexample guided inductive synthesis modulo theories,” in
International Conference on Computer Aided Verification, pp. 270–
288, Springer, 2018.

[28] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, no. 5, 1989.

[29] I. M. Mitchell et al., “A toolbox of level set methods,” UBC Depart-
ment of Computer Science Technical Report TR-2007-11, 2007.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

578


