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Abstract— In this paper, we investigate the control of a cyber-
physical system (CPS) while accounting for its vulnerability
to external attacks. We formulate a constrained stochastic
problem with a robust constraint to ensure robust operation
against potential attacks. We seek to minimize the expected cost
subject to a constraint limiting the worst-case expected damage
an attacker can impose on the CPS. We present a dynamic
programming decomposition to compute the optimal control
strategy in this robust-constrained formulation and prove its
recursive feasibility. We also illustrate the utility of our results
by applying them to a numerical simulation.

I. INTRODUCTION

Cyber-physical systems (CPSs) have enabled highly ef-
ficient control of physical processes by tightly coupling
sensing, communication, and computational processing to
generate real-time decisions with classical [1] and nonclas-
sical information structures [2]. They span various important
applications including, but not limited to, connected and
automated vehicles [3], [4], Internet of Things [5], and social
media platforms [6]. However, in each of these applications,
the interplay between the cyber components and the physical
world can make the system vulnerable to various security
threats, e.g., control system malware [7] and staged attacks
[8]. This has led to many studies on controlling CPSs while
ensuring robustness and resilience to attacks [9], [10].

The common modeling framework for CPSs utilizes a
stochastic formulation to account for uncertainties in the
dynamics that arise within the evolution of the physical
process. In this formulation, an agent is assumed to have
access to a prior distribution for all uncertainties and must
compute a control strategy to generate real-time control
actions that minimize the total expected cost [11], [12]. In
stochastic formulations [13], constraints on the state and
actions are modeled as probabilistic constraints, which can
be imposed either in expectation or with some probabilities
[14]. Similarly, approaches like those reported in [15], [16]
consider probabilistic constraints on the cumulative reward.
However, the actual performance and constraint satisfaction
of an optimal control strategy are very sensitive to changes
in a mismatch between the assumed prior probability model
and the actual model [17], [18]. Such a mismatch is bound to
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occur when a CPS is under attack from an adversary. Thus,
it may not be appropriate to model safety-critical require-
ments on system behavior using probabilistic constraints in
a stochastic formulation.

To accommodate the needs of safety-critical systems, sev-
eral research efforts [19]–[22] have explored minimax formu-
lations. Similar approaches [23], [24] consider non-stochastic
formulations in which the agent does not have knowledge
about the distributions of uncertainties and uses only the
set of feasible values to compute optimal strategies that
minimize the maximum costs. Though such approaches are
suitable for applications under attack, such as cyber-security
[25], and power systems [26], during regular operation of
systems without attacks, they lead to outcomes that are overly
conservative [27]. Consequently, there remains a need for
alternative approaches to controlling vulnerable systems that
avoid overly conservative decision-making during regular
system operation and maintain a level of reliability when
the system is occasionally attacked.

In this paper, we combine the superior performance of
stochastic formulations in achieving an objective and the
safety guarantees of worst-case formulations in minimizing
vulnerabilities. To this end, we impose a distributionally
robust constraint on a secondary objective that accounts for
the vulnerabilities of a CPS to an attack. Concurrently, we
aim to minimize the expected value of a primary cost for
the best performance over a finite horizon. Our formulation
generalizes the previous work of [28], which addressed the
problem of minimizing an expected discounted cost subject
to either an expected or a minimax constraint. By considering
a distributionally robust constraint, our formulation allows
for greater control over the trade-off between conservative-
ness and optimality by appropriately adjusting the size of the
uncertainty set for probability distributions. In the extreme
case that the set of feasible distributions is a singleton,
we recover an expected value constraint. In contrast, if
we expand the set to allow every possible distribution on
the state space, we recover the non-stochastic worst-case
constraint as a special case. Thus, by changing the set
of feasible distributions, we can better select the level of
conservativeness of our formulation.

Our main contributions in this paper are (1) the problem
formulation of controlling a vulnerable CPS using a stochas-
tic cost and distributionally robust constraint (Problem 1),
(2) a dynamic programming (DP) decomposition for this
problem, which computes the optimal strategy that ensures
recursive feasibility of the constraint (Theorem 1), and (3) the
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illustration of the utility of our results by comparing them
to both stochastic and worst-case approaches in numerical
simulation (Section IV).

The remainder of the paper proceeds as follows. In Section
II, we formulate the problem. In Section III, we present
the DP decomposition. In Section IV, we demonstrate our
results in a numerical example, and in Section V, we draw
concluding remarks.

II. MODEL

We consider a CPS whose evolution is described by a
finite Markov decision process (MDP), denoted by a tuple
(X ,U , n, P, c, cn), where X is a finite state space and U is
a finite set of feasible actions available to an agent seeking
to control the MDP. The system evolves over discrete time
steps denoted by t = 0, . . . , n, where n ∈ N is the finite
time horizon. The state of the system and the control action
of the agent at each t are denoted by the random variables
Xt and Ut, respectively. The transition function at each t
is denoted by Pt : X × U × X → ∆(X ), where ∆(X )
is the set of all probability distributions on the state space
X . Nominally, the transition function is given by Pt = P̄
for all t, where P̄ ∈ ∆(X ). For the realizations xt ∈ X
and ut ∈ U of the state Xt and the control action Ut,
the probability of transitioning to a state xt+1 ∈ X is
P(Xt+1 = xt+1 |xt, ut) = Pt(xt+1 |xt, ut). The agent
selects the action using a control law gt : X → U as Ut =
gt(Xt), where gt is chosen from the feasible set of control
laws at time t, denoted as Gt. The tuple of control laws
denotes the control strategy of the agent g := (g0, . . . , gn−1),
where g ∈ G and G =

∏n−1
t=0 Gt. After selecting the action

at each t = 0, . . . , n − 1, the agent incurs a cost c(Xt, Ut)
generated using the function c : X × U → R. Then, the
performance of a strategy g is measured by the total expected
cost beginning at an initial state x0 ∈ X :

J0(g;x0) = Eg

[
n−1∑
t=0

c(Xt, Ut) + cn(Xn)
∣∣∣x0

]
, (1)

where cn : X → R is the terminal cost, and Eg denotes the
expectation on all the random variables with respect to the
probability distributions generated by the choice of control
strategy g.

In the context of a CPS, the conventional approach of
selecting a control strategy g to minimize the total expected
cost (1) may not be adequate to ensure smooth operation,
particularly when the CPS is vulnerable to attacks by an
adversary. We consider that the presence or absence of an
adversary during the system’s operation is determined at the
onset; however, this information is unknown to the agent. The
adversary’s influence on the system’s dynamics results in a
change in the transition probability at each t = 0, . . . , n −
1 from a known set P ⊆ ∆(X ). Thus, an attack may be
reflected by the choice of the worst transition function from
P . We allow the adversary to attack the system with access
to the realization of the state xt ∈ X and action ut ∈ U .
Note that the nominal transition function P̄ belongs to the
set P to allow for the case of no attack.

An agent that observes the presence or absence of an
adversary can select either a purely robust or risk-neutral
formulation, depending on the current situation. However, a
risk-neutral formulation may involve an arbitrarily large risk
for the agent and leave the CPS vulnerable during an attack.
In contrast, a robust formulation may be too conservative for
the majority of situations where no attack occurs. Thus, we
impose a robust constraint to limit the worst-case damage
possible during an attack while minimizing the expected
total cost. To this end, the agent incurs a constraint penalty
d(Xt, Ut) ∈ R at each t = 0, . . . , n− 1. The total expected
worst-case penalty is given by

L0(g;x0) =

max
P0:n−1∈Pn

Eg
P0:n−1

[
n−1∑
t=0

d(Xt, Ut) + dn(Xn)
∣∣∣x0

]
, (2)

where dn : X → R is the terminal penalty, P0:n−1 is the
collection of transition functions for t = 0, . . . , n − 1, each
taking values in the set P . Note that this penalty has a
distributionally robust form where the attacker may select
the worst transition function Pt ∈ P at each t. Furthermore,
the choice of a particular function at any time t does not
limit the functions available to the adversary at time t + 1
in (2). The distributionally robust constraint is formulated
by defining an upper bound l0 ∈ R, on the worst-case total
expected penalty.

Remark 1. During an attack, the agent may prioritize a
different property, e.g., safety, of the system rather than
the total expected cost used in (1). Hence, the constraint
penalty at each instance of time is considered to be distinct
from the cost. However, if we seek to limit the influence of
the adversary on the performance itself, the penalty in the
constraint can be set equal to the cost at each t.

Next, we define the agent’s constrained control problem.

Problem 1. The optimization problem is to compute the
optimal control strategy g∗ ∈ G, if one exists, subject to a
constraint on (2), i.e.,

min
g∈G

J0(g;x0), (3)

s.t. L0(g;x0) ≤ l0, (4)

for a given MDP (X ,U , n, P, c, cn), penalty functions
(d, dn), set of transition functions P , upper bound l0 ∈ R,
and initial state x0 ∈ X .

We impose the following assumptions on our formulation:

Assumption 1. The costs and penalties at each instance of
time are upper bounded by the finite maximum values cM ∈
R and dM ∈ R, respectively. They are also lower bounded by
the finite minimum values cm ∈ R and dm ∈ R, respectively.

Assumption 1 ensures that the expected total cost (1) and
robust total penalty (2) are finite for any value of n ∈ N.

Assumption 2. The bound l0 ∈ R is such that the set Gl0 :=
{g ∈ G |L0(g;x0) ≤ l0} is not empty.
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Assumption 2 ensures that Problem 1 has a feasible
solution and, thus, it is well-posed. Our goal is to efficiently
compute an optimal solution to Problem 1 without violating
the constraint. Next, we present a DP decomposition for the
problem.

III. DYNAMIC PROGRAMMING DECOMPOSITION

In this section, we present the value functions that con-
stitute a DP decomposition to compute the optimal control
strategy g∗ for Problem 1. To show that the computed
strategy satisfies the distributionally robust constraint (4), we
need to prove its recursive feasibility for all t = 1, . . . , n−1.
To achieve this, in Subsection III-A, we define the penalty-to-
go function to express the application of the constraint only
from any time t to the terminal time n. We then construct
a set of upper bounds on the penalty-to-go function at any
t = 0, . . . , n − 1, such that these bounds admit a feasible
solution, and present a methodology to compute these sets.
We also introduce the notion of bound functions, which will
be utilized it to ensure recursive feasibility. In Subsection
III-B, we use bound functions within the proposed DP
decomposition and prove its optimality.

A. Feasible bound for robust constraint

We begin by constructing the penalty-to-go function that
maps each realization of the state xt ∈ X at any t =
0, . . . , n − 1 to an expected worst-case penalty to reach
n using a sequence of control laws gt:n−1 ∈

∏n−1
ℓ=t Gℓ.

Specifically, this penalty-to-go at each t is

Lt(gt:n−1;xt) =

max
Pt:n−1∈Pn−t

Egt:n−1

Pt:n−1

[
n−1∑
ℓ=t

d(Xℓ, Uℓ) + dn(Xn)
∣∣∣xt

]
, (5)

where the expectation on all the random variables is with
respect to the distributions generated by the choice of control
laws gt:n−1 ∈

∏n−1
ℓ=t Gℓ. Importantly, the control laws

utilized prior to time t do not influence the penalty-to-go
from time t. Additionally, note that the penalty-to-go from
t = 0 is the total expected penalty in (2). Next, we construct
a set of feasible upper bounds on the penalty-to-go function.

Definition 1. For all t = 1, . . . , n − 1, the set of feasible
upper bounds for a state xt ∈ X is

Λt(xt):=
{
lt ∈ R | ∃ gt:n−1∈

n−1∏
ℓ=t

Gℓ, s.t. Lt(gt:n−1, xt)≤ lt

}
,

(6)

with Λn(xn) := [dn(xn), d
M ] at t = n for each xn ∈ X and

Λ0(x0) := {l0} identically for all x0 ∈ X .

In Definition 1, the bound lt acts only upon the penalty-
to-go Lt(gt:n−1;xt). Thus, each bound lt ∈ Λt(xt) ensures
feasibility of only the control laws gt:n−1 ∈

∏n−1
ℓ=t Gℓ for

each xt ∈ X and t = 0, . . . , n− 1.
Next, to ensure recursive feasibility in our solution ap-

proach, our goal is to select a feasible bound on the penalty-
to-go for all t = 0, . . . , n − 1. These bounds should ensure

that, starting with l0 at t = 0, there exists at least one feasible
sequence of control laws gt:n−1 ∈

∏n−1
ℓ=t Gℓ. We note that

based on Assumption 2, such a sequence exists at t = 0.
To this end, we establish the notion of bound functions

λt : X → R at each t = 0, . . . , n. The output of the bound
function λt(xt) is a feasible bound from Definition 1 for all
xt ∈ X and all t. Then, for any bound lt ∈ Λt(xt) and a
control action ut ∈ U , the set of recursively consistent bound
functions at time t+ 1 is

Ft(xt, ut, lt) =
{
λt+1

∣∣∣λt+1(xt+1) ∈ Λt+1(xt+1),

∀xt+1 ∈ X and

max
Pt∈P

EPt
[λt+1(Xt+1) |xt, ut] ≤ lt − d(xt, ut)

}
. (7)

The inequality in the conditioning of the set in (7) yields
the allowable bound at time t+1 after considering the “con-
sumption” of the bound lt by the penalty d(xt, ut) incurred
at time t. This inequality is imposed upon the maximum
expected value of λt+1(Xt+1) given the state xt and action
ut to ensure recursive constraint satisfaction. Note that this
maximization captures the distributionally robust form of
transition functions in (5) and, thus, accounts for the possible
influence of the attacker. Thus, given lt ∈ Λt(xt) at time t,
restricting attention to λt+1 ∈ Ft(xt, ut, lt) ensures that any
selected bound at time t + 1 is feasible. Beginning with l0
at t = 0 and applying this property for the set Ft(x0, u0, l0)
for all x0 ∈ X and u0 ∈ U ensures recursive feasibility
and constraint satisfaction for all t = 0, . . . , n. Due to
the importance of the sets Λt(xt) in (7), it is essential to
efficiently compute them before deriving an optimal strategy.

To begin, we observe that for any feasible lt ∈ Λt(xt),
there exists a sequence of control laws gt:n−1 that satisfies
the constraint Lt(gt:n−1;xt) ≤ l̂t for all lt ≤ l̂t ∈ R and
all xt ∈ X . Hence, it is sufficient to compute the smallest
feasible bound λm

t (xt) for each xt ∈ X and note that the
set Λt(xt) ⊆ [λm

t (xt),∞). At the other extreme, without
loss of generality, we can restrict the maxima of Λt(xt) to
lMt = min

{
l0,

∑n
i=t d

M
i

}
. This is because including bounds

larger than lMt does not increase the set of feasible sequences
of control laws g0:t−1. Thus, the structural form of the set
of feasible upper bounds is Λt(xt) = [λm

t (xt), l
M
t ] for all

t = 0, . . . , n− 1.
Next, we present a recursive approach to compute λm

t (xt)
for all t and complete the construction of Λt(xt).

Lemma 1. The lower bound λm
t (xt) of the set Λt(xt) for

all xt ∈ X and t = 1, . . . , n−1 is obtained by the following
minimization problem

λm
t (xt) = min

ut∈U

{
d(xt, ut)

+ max
Pt∈P

EPt

[
λm
t+1(Xt+1)

∣∣xt, ut

]}
. (8)

Proof. The smallest feasible bound λm
t (xt) belongs to the

set Λt(xt). From Definition 1, we can see that there exists a
sequence gt:n−1 for which the penalty-to-go is exactly equal
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to λm
t (xt) and any bound smaller than λm

t (xt) is infeasible.
Thus we can compute λm

t (xt) as

λm
t (xt) = min

gt:n−1∈
∏n−1

ℓ=t Gℓ

Lt(gt:n−1;xt), (9)

which becomes an instance of the standard distributionally
robust DP problem. The objective is to minimize the penalty-
to-go while being distributionally robust against the uncer-
tainty in the transition function. Using the arguments pre-
sented in [20, Theorem 2.1] for deriving the optimal objective
in such a problem, we can see how Lemma 1 computes the
minimum value of Lt(gt:n−1;xt) at each t. This shows that,
Lemma 1 can be used to recursively compute the smallest
feasible bound λm

t (xt) for each xt ∈ X and all t.

B. Dynamic program for Problem 1

In this subsection, before presenting the DP decompo-
sition, we begin by defining the cost-to-go in a manner
similar to the penalty-to-go in Subsection III-A. For all
t = 0, . . . , n− 1, the cost-to-go from any xt ∈ X is

Jt(gt:n−1;xt) = Egt:n−1

[
n−1∑
ℓ=t

c(Xℓ, Uℓ) + cn(Xn)
∣∣∣xt

]
,

(10)

where Egt:n−1 denotes the expectation on all the random
variables with respect to the distributions generated by the
nominal transition function P̄ and the choice of control laws
gt:n−1 ∈

∏n−1
ℓ=t Gℓ. Note that the cost-to-go at time t is

affected only by the sequence of control laws gt:n−1 and the
cost-to-go at t = 0 is equivalent to the performance measure
(1) for any strategy g.

Before we can construct a DP decomposition, we recall
that Problem 1 also restricts the set of feasible strategies
by constraining the penalty-to-go L0(g;x0) with an upper
bound l0. Thus, as derived in Subsection III-A, we need
to impose a constraint using the bound function λt ∈
Ft−1(xt−1, ut−1, lt−1) for all t = 1, . . . , n to ensure recur-
sive feasibility in our solution approach. To this end, at each
t = 0, . . . , n−1, we expand our state-space X by appending
a set of possible bounds, R. Thus, the value functions of our
DP decomposition are functions of (Xt, Lt) ∈ X ×R, where
the random variable Lt = λt(Xt). The realizations of the
random variable Lt are denoted by lt. Furthermore, at each
xt ∈ X , the control law gt ∈ Gt at each t = 0, . . . , n − 1
selects a control action Ut ∈ U using the expanded state
space as Ut = gt(Xt, Lt).

Remark 2. We note that expanding the state space from Xt

to (Xt, Lt) expands the domain of control laws compared
to the standard Markovian control law for regular MDPs.
However, the result in Subsection III-A is still valid for
control laws with this larger domain because the functions
introduced in III-A depend only on the realization xt ∈ X
of Xt and are independent of the realization lt = λt(xt) of
Lt.

For all t = 0, . . . , n−1, the value function for all xt ∈ X
and lt ∈ Λ(xt) corresponding to the sequence of control laws

gt:n−1 is given by

V
gt:n−1

t (xt, lt) =

{
Jt(gt:n−1;xt) if Lt(gt:n−1;xt) ≤ lt,

κ otherwise,
(11)

where κ ∈ R is a large constant that satisfies κ > n · cM and
indicates constraint violation by gt:n−1. Eventually, when
we minimize over the set of strategies, the presence κ will
help us exclude infeasible solutions. At the terminal time n,
where no actions are allowed, the value function is simply
Vn(xn, ln) = c(xn). Then, the optimal value functions for
all xt ∈ X , lt = λt(xt) and all t = 0, . . . , n− 1 are

Vt(xt, lt) = min
gt:n−1∈

∏n−1
ℓ=t Gℓ

V
gt:n−1

t (xt, lt). (12)

Theorem 1. At each t = 0, . . . , n − 1, for all xt ∈ X and
lt = λt(xt), the optimal value function can be recursively
computed using the following DP decomposition:

Vt(xt, lt) = min
ut∈U,

λt+1∈Ft(xt,ut,lt)

{
c(xt, ut)+

E
[
Vt+1(Xt+1, λt+1(Xt+1)) |xt, ut

]}
, (13)

where, at the terminal time t = n, the optimal value function
is simply given by Vn(xn, ln) = c(xn).

Proof. We prove that the DP decomposition presented in
Theorem 1 computes the optimal value function recursively
using mathematical induction. At the terminal time, the value
function is given by Vn(xn, ln) = c(xn). Suppose that the
optimal value function Vt+1 at time t+ 1 can be computed
according to (13). It is enough to show that (13) can be used
to compute Vt(xt, lt) at time t. We need first to show that the
left-hand side in (13) is lower bounded by the right-hand side
and vice-versa. As a result, the left-hand side of (13) will be
both upper and lower bounded by the expression on the right-
hand side. Hence, we conclude that in (13), the left-hand side
is equal to the right-hand side. Details of the mathematical
arguments are provided in Appendix A of [29].

Remark 3. We showed that the DP decomposition presented
in (13) computes the optimal value function at each t =
0, . . . , n−1. Using Theorem 1, we can compute the sequence
of optimal control laws g∗0:n−1 ∈

∏n−1
ℓ=0 Gℓ which yields the

optimal value function V0(x0, l0) at time t = 0.

Remark 4. At any t = 0, . . . , n− 1, and for all xt ∈ X and
a feasible bound lt, Theorem 1 states that the optimal control
action is u∗

t = g∗t (xt, lt), i.e., the minimizing argument in
(13). Subsequently, the optimal bound function λ∗

t+1(·) is
computed as a function of the state xt, bound lt, and optimal
action u∗

t . Since the optimal bound function is computed
at the preceding time step, during implementation, λ∗

t is
available at the onset of time t and the agent ensures that
lt = λ∗

t (xt). Hence, to solve Problem 1, the control action
at all t is selected as u∗

t = g∗t (xt, λ
∗
t (xt)). This shows that

the optimal control strategy can be selected using xt ∈ X
during implementation.
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IV. NUMERICAL EXAMPLE

In this Section, we illustrate the efficiency of the effec-
tiveness of our approach using a numerical example. We
consider a reach-avoid problem where an agent seeks to
navigate to a designated cell in a 4 × 4 grid world while
avoiding a different cell in the grid. At each t = 0, . . . , n, the
agent’s position Xt takes values in the set of grid cells X ={
(0, 0), (0, 1), . . . , (3, 2), (3, 3)

}
. The action Ut denotes the

agent’s direction of movement and takes values in the set
U = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)}. Under normal
system operation, the agent has a small chance of movement
failure by “slipping.” This nominal transition function is
modeled by considering that at each t, the agent moves in the
direction selected by the action Ut with probability 0.8 and
may slip by moving in either the clockwise or anticlockwise
direction to Ut with probabilities of 0.1 each. The agent does
not slip when selecting the action (0, 0), i.e., when deciding
not to move. Thus, starting at a randomly selected initial state
x0 ∈ X , the agent’s dynamics for all for all t = 0, . . . , n−1
are

P (xt+1 | xt, ut) =


0.8 if xt+1 = xt + ut,

0.1 if xt+1 = xt + ucl
t ,

0.1 if xt+1 = xt − ucl
t ,

(14)

where if ut = (u1
t , u

2
t ), then ucl

t = (−u2
t , u

1
t ) is the clockwise

rotation of ut. If the agent’s position Xt is at one of the four
corners of the grid or along the edge of the grid, then the
agent may only slip in the available directions and not move
off the grid. Thus, if only one direction is available, they
move in the direction of the selected action with a probability
of 0.8 and move in the available direction with a probability
of 0.2.

The goal of the agent is to reach the destination cell (3, 2)
marked by D, while avoiding a “trap” cell (2, 1), marked
by X in Fig. 1 and Fig. 2. Thus, after a time horizon
of n = 10 time steps, the agent incurs a terminal cost
given by the distance from the position X10 and the target
(3, 2), i.e., cn(Xn) = η

(
Xn, (3, 2)

)
where η(·, ·) denotes

the Manhattan distance. The agent incurs no interim costs,
i.e., c(Xt, Ut) := 0 for all t = 0, . . . , n − 1. Furthermore,
the agent incurs a penalty of 1 unit at any instance of
time if their position coincides with the trap (2, 1), i.e.,
d(Xt, Ut) = I

[
Xt = (2, 1)

]
for all t = 0, . . . , n. An

adversary, if present, attacks the reliability of the agent’s
actuator. Thus, under an attack, the probability of slipping
may increase. We incorporate vulnerability to attacks by
defining, on the tuple of actual movements (ut, u

cl
t ,−ucl

t )
for a given action ut ∈ U , the set of possible probability
distributions:

P :=
{
(0.7, 0.3, 0), (0.7, 0.2, 0.1), . . . , (0.7, 0, 0.3),

(0.8, 0.2, 0), (0.8, 0.1, 0.1), (0.8, 0, 0.2)
}
. (15)

We run 5000 simulations for two initial positions, (1, 0) and
(0, 1) with an upper bound l0 = 2.5, for which the heat map
of the path selected by the agent is given in Fig. 1 and Fig.
2 respectively. In each simulation, the system is vulnerable

to attack, and the transition probability is randomly picked
from the set P as given in (15) to emulate the attack. For
the purpose of demonstration, the computed optimal control
strategy is implemented in a receding horizon manner for
200 time steps. For each initial condition, we compare three
cases to show how our approach provides more control over
the trade-off between conservativeness and optimality. In the
first case, while we compute the control strategy, we consider
the set of probability distributions P as given in (15), which
yields the distributionally robust control strategy. In this case,
the agent visits the ”trap” cell 497 and 250 times, as shown in
Fig. 1a and Fig. 2a, respectively. For the second case, during
the computation of the control strategy, we expand the set
P to include every possible distribution in ∆(X ) to yield a
conservative strategy. As a result, in Fig. 1b and Fig. 2b, the
number of times the agent moves into the ”trap” cell are 35
and 10, respectively. Lastly, we compute a stochastic strategy
by considering that the set of probability distributions P
is a singleton, with only the nominal transition function.
Accordingly, in Fig. 1c and Fig. 2c, the agent moves 764
and 363 times into the ”trap” cell, respectively. We observe
that when the agent utilizes the distributionally robust control
strategy, it visits the trap cell more often than the conservative
strategy. However, it reaches the target cell in fewer moves
than the conservative strategy. On the other hand, it reaches
the destination as quickly as the stochastic strategy, with
fewer visits to the ”trap,” essentially being more robust.

V. CONCLUSION

In this paper, we proposed the problem of controlling a
CPS, which is vulnerable to attack as a distributionally robust
stochastic cost minimization problem. For this problem,
we presented DP decomposition to compute the optimal
control strategy, which ensures the recursive feasibility of the
distributionally robust constraint. Finally, we illustrated the
utility of our solution approach using a numerical example.
Future work should consider using these results in tandem
with fast computation techniques for applications with large
state space like human-robot collaboration tasks, power grids,
and connected and automated vehicles. In such applications,
it is essential to avoid over-conservatism while maintaining
resilience against any vulnerabilities.
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