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Abstract— This paper addresses the problem of estimating air
velocity and gravity direction for small autonomous fixed-wing
drones in GNSS1-denied environments. The proposed solution
uses a minimal sensor suite, relying on Pitot tube measurements
and Inertial Measurement Unit (IMU) signals, including only
gyrometers and accelerometers. The approach combines the
Riccati observer and Equivariant Filter designs, using an over-
parametrization technique to design an observer on SO(3) ×
R3 and subsequently re-project to S2 × R3 to estimate the
gravity direction. The system’s observability is analyzed, and
local exponential stability of the origin of the observer error
is demonstrated as long as the aircraft attitude is persistently
exciting. The observer was evaluated using real flight data from
an indoor experiment to showcase the estimator’s performance.

I. INTRODUCTION

Airspeed-aided air velocity and attitude estimation is crit-
ical for the control of fixed-wing aerial vehicles.

Good performance and safety often rely on accurate
estimation of the gravitational direction and estimation (or
measurement) quality of the air-velocity vector relative to
the body fixed-frame. Large aircraft are equipped with so-
phisticated and well-calibrated air data systems that measure
the aircraft’s air velocity relative to the body-fixed frame.
However, the standard air sensors that are available on
most scale-model fixed-wing aircraft provide only a partial
measurement of the air velocity vector. The most common
of these is the Pitot tube, which is typically aligned with the
aircraft’s longitudinal axis and provides a component of the
air velocity in that vector.

There is abundant literature on attitude and air velocity
filtering techniques. Popular approaches to attitude estima-
tion from the last 20 years rely on IMU signals, includ-
ing gyroscope, accelerometer, and sometimes magnetometer
measurements (see [1], [2], [3], [4]). They typically assume
that the accelerometer signal is dominated by the gravity
vector. While this assumption has proven useful in many
practical situations, it is unreliable for a fixed-wing air-
craft experiencing large accelerations when sharply changing
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1Global Navigation Satellite Systems

direction or making turns at high speeds. To overcome
this problem, several authors have incorporated body-fixed
velocity measurements provided by an onboard Doppler
radar or inertial-frame measurements of the vehicle’s velocity
provided by a GNSS receiver. Estimating the attitude of
a vehicle using velocity measurements is referred to as
the velocity-aided attitude (VAA) problem. Velocity-aided
attitude estimation algorithms typically include an estimator
for the vehicle velocity which acts as an auxiliary state and
provides additional information for the primary estimate of
the vehicle attitude [5], [6], [7], [8], [9].

As for the air velocity estimation, most early work exploits
IMU, GNSS inertial velocity, Pitot tube measurements, and
vehicle dynamics models to estimate the airspeed and the air
velocity direction in the body-fixed frame [10], [11]. This
model-based approach requires accurate dynamic models of
fixed-wing aircraft and, hence, a good description of the
aerodynamic forces and moments, which are very difficult
to obtain in practice for small UAVs. The lack of accurate
information on the control inputs poses another difficulty, as
highlighted in [10]. Several authors propose model-free solu-
tions for attitude and air velocity estimation. These solutions
rely only on measurements from a GNSS receiver, an IMU,
and a Pitot tube and assume that the ambient wind is constant
(gusts are considered as disturbances) [12], [13]. The key
idea in these papers is to design a velocity-aided attitude
estimator using an extended Kalman filter followed by a
Kalman filter for wind estimation. The system’s observability
is analyzed in both papers, and solutions were validated using
experimental data.

Solutions considering air velocity and attitude estimation
from only IMU and Pitot tube data are few. In [14], a
nonlinear complementary filter is proposed. It implicitly
assumes that the acceleration in the aircraft body-fixed frame
is negligible and the side-slip angle is zero.

The present paper considers the airspeed-aided attitude
estimation without magnetometer and GNSS measurements.
The design procedure is based on the deterministic Ric-
cati observer design framework proposed in [15] and the
Equivariant filter proposed in [16]. Observability conditions
under which local exponential stability is guaranteed have
been identified. Finally, experimental results demonstrate the
efficiency of the proposed solution within a large attraction
domain.

The paper is structured into six sections, including the
introduction and conclusion. Section II briefly describes the
notation and math related to the design of the proposed
observers. Section III describes the Airspeed-aided attitude
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problem and observability issues. In Section IV a nonlinear
Riccati observer design is proposed and analyzed. Section
V presents some results supporting the proposed approach
using a real-world flight data set.

II. PRELIMINARY MATERIAL

• I = {O, e1, e2, e3} denotes a North-East-Down (NED)
right-handed inertial frame with a fixed origin O and the
canonical basis of R3 with e3 pointing downwards. B =
{G, eB1 , e

B
2 , e

B
3 } is the body-fixed frame with the origin

G placed at the vehicle center of mass, and the vector
eB1 aligned with the vehicle longitudinal axis, pointing
forward.

• |x| denotes the Euclidean norm of x ∈ Rn, and xi

denotes its ith component.
• For any vector z := (z1, z2, z3) ∈ R3, z× denotes

the skew-symmetric matrix associated with the cross
product given by

z× =

 0 −z3 z2
z3 0 −z1
−z2 z1 0

 .

• S2 := {v ∈ R3 | |v| = 1} denotes the unit 2-sphere.
• SO(3) denotes the special orthogonal group and is the

Lie group of 3D rotations, defined as

SO(3) := {R ∈ R3×3 | R⊤R = I3, det(R) = 1}.

The Lie algebra of this group is denoted

so(3) := {Ω× ∈ R3×3 | Ω ∈ R3}.

• sγ and cγ represent the trigonometric functions sin(γ)
and cos(γ), respectively.

• The set of symmetric positive-definite matrices of di-
mension n is denoted S+(n).

• With f denoting a vector-valued function depending on
the two variables x and y, and on the time variable t, we
write f = O(|x|k1 |y|k2) with k1 ≥ 0 and k2 ≥ 0 if ∀t :
|f(x, y, t)|/(|x|k1 |y|k2) ≤ γ < ∞ in the neighbourhood
of (x = 0, y = 0). If f depends only on x and t then we
write f(x, t) = O(|x|k) if ∀t : |f(x, t)|/|x|k ≤ γ < ∞
in the neighbourhood of x = 0.

A. Definitions and Conditions of Observability

Consider the following generic linear time-varying (LTV)
system2 {

ẋ = A(t)x+B(t)u

y = C(t)x
(1)

where x ∈ Rn is the state, u ∈ Rs is the input and
y ∈ Rm is the output of the system. A(t), B(t), C(t)
are finite-dimensional continuous and bounded matrix-valued
functions. The following definitions and properties of observ-
ability of an LTV system are recalled from [17], [15].

2The time dependence has been omitted from the state variables for
brevity, while deliberately retained for matrices A, B, and C to highlight
the system’s time-varying nature.

Definition 1 (Uniform Observability): The system (1) is
called uniformly observable if there exist δ, µ > 0 such that,
for all t ≥ 0,

W (t, t+ δ) ≥ µIn > 0 (2)

with

W (t, t+ δ) ≜
1

δ

∫ t+δ

t

Φ⊤(s, t)C⊤(s)C(s)Φ(s, t)ds,

where Φ(s, t) is the transition matrix associated with A(t):

d

dt
Φ(s, t) = A(t)Φ(s, t) Φ(t, t) = In.

The matrix-valued function W (t, t + δ) is called the
observability Gramian of System (1). When (2) is satisfied,
one also says that the pair (A(t), C(t)) is uniformly ob-
servable. Checking the uniform observability directly from
the Gramian is tedious and typically very challenging. The
following valuable and lesser-known lemma highlights a
sufficient condition for uniform observability that will be
instrumental in this paper.

Lemma 1 ([15]): If
1) C(t) = Π(t)C̄ with C̄ a constant matrix,
2) A is constant and such that the pair (A, C̄) is Kalman

observable,
3) all eigenvalues of A are real,
4) Π(t) is persistently exciting, that is, there exists

δ̄, µ̄ > 0 such that, ∀t ≥ 0:

M(t, t+ δ̄) ≜
1

δ̄

∫ t+δ̄

t

Π⊤(s)Π(s)ds ≥ µ̄I > 0 (3)

then the observability Gramian of System (1) satisfies the
condition (2).

III. PROBLEM DESCRIPTION

Consider the aircraft with body-fixed frame B. Let the
matrix R ∈ SO(3) encode the vehicle attitude with respect
to the inertial frame I. Let v, V ∈ R3 denote the vector of
coordinates of the vehicle’s inertial and body-fixed velocities,
respectively. That is, v denotes the velocity of the origin of
B with respect to I expressed in I, and V = R⊤v denotes
this expression in B.

Let vw ∈ R3 denote the vector of coordinates of the ambi-
ent wind velocity expressed in I. The vector of coordinates
of the aircraft air-velocity expressed in the frame I is given
by va = v− vw. Its expression in the body-fixed frame B is
denoted Va = R⊤va. Suppose that the vehicle is equipped
with an IMU, providing 3-axis measurements of the vehicle’s
specific acceleration a ∈ R3 and angular velocity Ω ∈ R3,
both expressed in coordinates of the body-fixed frame B. The
kinematic equations expressing the motion of the vehicle in
Earth’s gravitational field are thus given by

Ṙ = RΩ×,

v̇ = ge3 +Ra.

Assuming that vw is constant or slowly time-varying and
bounded (v̇w ≈ 0), one verifies the va inherits the same
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dynamics of v, and hence

Ṙ = RΩ×,

v̇a = ge3 +Ra.

(4a)
(4b)

Assume that the aircraft is equipped with a calibrated single
or multiprobe Pitot tube placed at G, which provides (via
pressure sensing) the component ya,i of Va along the body-
fixed direction bi ∈ S2, of each probe, where i = 1, . . . ,m:

ya =

 ya,1
...

ya,m

 =

b⊤1
...
b⊤m

R⊤va = B⊤R⊤va. (5)

Note that in the standard setup for small fixed-wing UAVs,
a single Pitot tube (m = 1) is installed along the forward
axis, resulting in the relationship B = e1 ∈ R3×1.

A. Non-observability of (4)- (5)

To show that the system state (R, va) of (4) and (5) is not
observable, we will exploit the following invariance notion.

Definition 2 (Invariance and output indistinguishability):
Let the state space M and the output spaces Ni for
i = 1, . . . ,m be finite-dimensional smooth manifolds. Let
the velocity space L be a finite-dimensional real vector
space. Consider the nonlinear system

ξ̇ = f(ξ, u),

yi = hi(ξ),

(6a)
(6b)

with ξ ∈ M, u ∈ L, and yi ∈ Ni. The system dynamics (6)
is said to be invariant to a closed family of invertible and
differentiable functions αS : M → M if

∀S ∈ G,
d

dt
αS(ξ) = f(αS(ξ), u), (7)

with G the parameter space indexing αS . It is further said
output indistinguishable if:

∀S ∈ G, hi(αS(ξ)) = hi(ξ). (8)
The satisfaction of definitions (7)-(8) implies that any tra-
jectory ξ(t) of a system is indistinguishable from ξ′(t) =
αS(ξ(t)) for any S ∈ G. This means that, at best, one can
determine a system trajectory ξ(t) up to an equivalence class
of trajectories [ξ(t)] = {ξ′(t) = αS(ξ(t)) | S ∈ G}.

Theorem 1: Consider the system dynamics (4) along with
(5). Let ξ := (R, va) ∈ SO(3)×R3, u := (Ω, a) ∈ R3×R3,
yi := ya,i ∈ R, and

f((R, va), (Ω, a)) := (RΩ×, ge3 +Ra)

hi(R, va) := b⊤i R
⊤va

(9a)

(9b)

Define αSe3
: SO(3)× R3 → SO(3)× R3 as

αSe3
(R, va) := (Se3R,Se3va),

with Se3 = Se3(θ) ∈ SO(3) any rotation of an angle θ about
the axis e3 (i.e. Se3e3 = e3). Then the system (9) is invariant
and output indistinguishable to every αSe3

.

Proof: To verify the invariance of the dynamics (7),
one computes

d

dt
αSe3

(R, va) = (Se3RΩ×, Se3(ge3 +Ra))

= ((Se3R)Ω×, ge3 + (Se3R)a)

= f((Se3R,Se3va), (Ω, a)) = f(αSe3
(R, va), (Ω, a)).

Likewise, to verify the measure equation is output indistin-
guishable in the sense of (8), one computes

hi(αSe3
(R, va)) = hi(Se3R,Se3va),

= b⊤i (Se3R)⊤(Se3va) = hi(R, va).

This completes the proof.
Recognizing that the complete state representation of

(R, va) is not observable, we reframe the problem by fo-
cusing solely on observable state components. This entails
designing an observer for the vehicle’s gravitational direc-
tion, denoted as η := R⊤e3 (involving the pitch and roll
angles of the aircraft), and the air velocity Va = R⊤va in
the body-fixed reference frame:

η̇ = −Ω× η,

V̇a = −Ω× Va + gη + a,

ya = B⊤Va.

(10a)

(10b)

(10c)

It is important to note that with a multiprobe Pitot tube,
having m ≥ 3 probes arranged so that rank(B) = 3
simplifies the process. In such cases, one directly obtains
measurements of Va using the pseudo-inverse of B, enabling
the application of velocity-aided attitude observers found in
the existing literature, which are often based on Extended
Kalman filtering techniques [13] or on constructive observer
design approaches [6], [7]. However, the challenge is when
dealing with either a single Pitot tube or a multiprobe Pitot
tube with just two probes, as this leads to a rank(B) of 1
or 2.

IV. OBSERVER DESIGN

By exploiting the fact that η = R⊤e3 ∈ S2, we introduce
a concept akin to the one proposed in [18] by defining
η̂ = R̂⊤e3 ∈ S2, with R̂ ∈ SO(3) the estimate of R. This
approach entails an over-parametrization of the estimation for
η̂ and requires an observer design on SO(3), subsequently
followed by a projection onto S2 to get the estimate η̂.
This over-parametrization brings forth several distinct advan-
tages, effectively circumventing potential challenges such as
minimal parametrizations for the normal direction η (e.g.,
spherical coordinates) and artificial singularities that may
arise when designing the estimator η̂ directly in S2 space.
Let us now consider the following observer dynamics:{

˙̂
R = R̂Ω× −∆×R̂
˙̂
Va = −Ω× V̂a + gR̂⊤e3 + a+ δv

(11)

where ∆, δv ∈ R3 are the innovation terms. The steps to-
wards developing these terms will follow the Riccati observer
framework described in [19].
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Define the attitude and velocity errors as

R̃ := RR̂⊤, ṽa := R(Va − V̂a). (12)

Combining (4), (10) and (11), yields

˙̃Re3 = R̃∆×e3,

˙̃va = (I − R̃)ge3 − R̃R̂δv.

(13a)

(13b)

Consider now the first order approximation of (13). From
Rodrigues’ formula relating R̃ ∈ SO(3) to its corresponding
unit quaternion q̃ := (q̃0, q̃):

R̃ = I3 + 2q̃×(q̃0I3 + q̃×), (14)

one gets:

R̃ = I3 + λ̃× +O(|λ̃|2), (15)

with λ̃ := 2 sign(q̃0)q̃. From there, one can express the first-
order approximation of (13) as follows:

˙̃
λ = ∆+O(|λ̃||∆|),
˙̃va = ge×3 λ̃− R̂δv +O(|λ̃||δv|) +O(|λ̃|2).

(16a)

(16b)

The above system indicates that the first order dynamics of ṽa
and λ̃1,2 (the first two components of λ̃) are independent of
λ̃3. Using the fact that R̂ evolves on the compact manifold
SO(3), the observer (11) is well-posed and leads to well-
posed observer error dynamics (16), independently of the
choice of ∆3. Since ∆3 only affects λ̃3 at the first-order
approximation, we set (without affecting the observer error
dynamics) this correction term to zero (∆3 := 0).

˙̃
λ1,2 = [∆1,∆2]

⊤ +O(|λ̃||∆|),
˙̃va = ge×3

[
λ̃1,2

0

]
− R̂δv +O(|λ̃||δv|) +O(|λ̃|2).

(17)

As for the output equation (5), the output error is the
standard one: ỹa := B⊤Va − B⊤V̂a that we rewrite, using
(15), as follows:

ỹa = B⊤R⊤ṽa = B⊤R̂⊤R̃⊤ṽa

= B⊤R̂⊤ṽa +O(|λ̃||ṽa|). (18)

By setting y = ỹa ∈ Rm, x = [x⊤
1 , x

⊤
2 ]

⊤ = [λ̃⊤
1,2, ṽ

⊤
a ]

⊤,
with x1 ∈ B2

2 (closed ball of R2 of radius 2) and x2 = ṽa ∈
R3, and u = [∆⊤

1,2,−(R̂δv)
⊤]⊤, one can rewrite (16)-(18)

as follows:{
ẋ = Ax+ u+O(|x1||u|) +O(|x1|2)
y = C⋆(t)x

(19a)
(19b)

with A =

[
02×3 02×2

ge×3 03×2

]
, C⋆(t) = Π⋆(t)C̄, with Π⋆(t) =

B⊤R⊤, C̄ = [03×2 I3]. Setting C(t) = Π(t)C̄ with Π(t) =
B⊤R̂⊤ then yields

y = C(t)x+O(|x1||x2|). (20)

Proposition 1: Consider the system dynamics (10) along
with the observer dynamics (11). Assume that va is continu-
ous and bounded and the signal inputs Ω, a are also bounded.
Choose the innovation:

u = −PC⊤(t)Qy, (21)

with P ∈ S+(5) the symmetric positive definite matrix
solution to the following Continuous Riccati (CRE) Equation

Ṗ = AP + PA⊤ − PC⊤(t)QC(t)P + S,

P (0) = P0 ∈ S+(5)
(22)

with Q ∈ S+(m) and S ∈ S+(5) constant symmetric
positive definite matrices. If the measurement collection is
persistently exciting, i.e., if Π⋆(t) satisfies (3), then the origin
of observer error (19a),(20) is locally exponentially stable.

Proof: Consider the following candidate Lyapunov
function:

L :=
1

2
x⊤P−1x.

From (19)-(22), one deduces:

L̇ =− 1

2
x⊤(C⊤(t)QC(t) + P−1SP−1

)
x

+
1

2
x⊤P−1(O(|x1||u|) +O(|x|2))

+
1

2
(O(|x1||u|) +O(|x|2))⊤P−1x.

It is straightforward to see that the right hand side is
locally negative definite as long as P is positive definite
and well-conditioned. Since A is a real nilpotent matrix, one
concludes that all its eigenvalues are zero. Using the fact
that C⋆(t) = Π⋆(t)C̄, one deduces that the pair (A, C̄) is
Kalman observable. This implies, using Lemma 1, that the
equilibrium x = 0 of (19) is uniformly observable if Π⋆(t)
is persistently exciting in the sense of (3). From there, one
deduces that the Riccati solution at the equilibrium point
(i.e., when C(t) = C⋆(t)) is bounded and well-conditioned
(see [20], [21]). Combining this with the fact that C(t) is
uniformly continuous, one shows by continuity (see Theorem
3.1 and Corollary 3.2 [22]) that P (t) (solution of (22)) and
P−1(t) remain bounded along the solutions to the systems
(19a),(20) and (21)-(22) w.r.t. initial conditions taken in a
small neighborhood of x = 0. From there, one concludes
that L converges exponentially to zero.

The above proposition indicates that to be able to obtain
an exponentially stable estimate of the air velocity and the
gravitational direction, one either has to use a multiprobe
Pitot tube with m ≥ 3 probes to guarantee that B is full rank
or impose a trajectory that introduces some persistence of
excitation on pitch and yaw when considering a single Pitot
tube b1 = e1. Note that only a persistent motion on the yaw
(respectively pitch) is required when considering multiprobe
Pitot tube with two probes such that b1, b2 ∈ span{e1, e3}
(respectively b1, b2 ∈ span{e1, e2}).

Based on the estimate V̂a of Va when the uniform ob-
servability condition (3) is fulfilled, one can reasonably get
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the estimates of the airspeed Va, angle-of-attack α and the
side-slip angle β from the well-known polar representation
Va = Va[cαcβ , cαsβ , sα]

⊤. From there, one deduces the
airspeed estimate V̂a = |V̂a|, and the angles

α̂ = arcsin

(
V̂a,3

|V̂a|

)
, β̂ = arctan

(
V̂a,2

V̂a,1

)
.

V. EXPERIMENTAL RESULTS

This section presents the results of the proposed observer
design, which was evaluated using real flight data acquired
from an indoor flight experiment involving the Eflite Con-
vergence VTOL UAV. The observer was implemented in a
discretized version. The vehicle is equipped with the Pix-
hawk 4 microcontroller running the PX4 autopilot [23]. The
Pixhawk 4 incorporates an IMU, providing measurements for
the specific acceleration and angular velocity.

Additionally, it features an external 3-axis magnetometer,
a GNSS receiver that provides position and inertial velocity
data, and a Pitot tube aligned with eB1 (i.e., B = e1),
involving the SDP33 Sensirion differential-pressure sensor
[24].

The autopilot records flight logs for each sensor. It main-
tains an on-board attitude and inertial velocity estimate (here
denoted R̄ and v̄, respectively) computed by an Extended
Kalman filter, known as EKF2 [25].

The assumption that the absence of wind holds in the
controlled indoor environment reasonably implies that the in-
ertial velocity is equivalent to the air velocity (v ≈ va). Con-
sequently, the onboard inertial velocity estimate V̄ := R̄⊤v̄
becomes a valuable benchmark for assessing the accuracy of
the air velocity estimate V̂a ∈ B. Simultaneously, the onboard
estimated attitude is used as a reference for evaluating the
proposed filter’s estimate of η by computing η̄ := R̄⊤e3.
To assert the reliability of the onboard attitude and inertial
velocity estimates in this experiment, we computed the first
component of the body-fixed frame velocity estimate (i.e.,
V̄1 = e⊤1 R̄

⊤v̄) and compared it to the Pitot tube measures
Va,1. The segment of the flight selected for this analysis is
depicted in Fig. 1. It is shown that the measurements of Va,1

and V̄1 differ mainly when V̄1 approaches zero, while for
the remaining part of the flight, the differences are, at most,
1m/s.

1078 1080 1082 1084 1086 1088 1090 1092 1094 1096

time (s)

-2

0

2

4

6

V
 [
m

/s
]

Fig. 1. Comparison between measurements of Va,1 and the first component
of the velocity in the body-fixed frame V̄1 in the real flight data set.

In this application using real data, the initialization was
performed during a specific flight portion for which the
p.e. condition (3) is satisfied to ensure uniform observability
assessed here by the computation of the condition number
of the matrix

M̄(tk, tk+1) :=

∫ tk+1

tk

R̄(s)BB⊤R̄⊤(s)ds, (23)

over the time interval, with tk = kδ, k ∈ N∗ and δ = 2s.
The initial conditions at t0 = 1077.8s are such that:

V̄ (t0) ≈ [5,−1, 1.3]⊤(m/s), V̂a(t0) = [10,−2, 0.3]⊤(m/s),

η̄(t0) ≈ [0.30,−0.02, 0.96], η̂(t0) = R̂⊤(t0)e3,

where R̂(t0) is chosen using the Euler angle parametrization
with a pitch of −π/18, a roll of π/9, and a yaw of zero. The
matrix P (t0) is set to diag(0.6I2, 50I3) and the matrices Q
and S are set to 800 and diag(0.01I2, 0.2I3), respectively.
The sensor measurements were discretized with an update
frequency of 250Hz for the IMU and 50Hz for the Pitot
tube.

Fig. 2 shows the time evolution of the error terms |η̄− η̂|
and |V̄ − V̂a| along with the condition number cond(M̄).
One remarks that the estimates (η̂, V̂a) reach practical con-

Fig. 2. Results for the experiment using real data. On the first and second
plots, |η̄− η̂| and |V̄ − V̂a|, respectively. The last plot shows the evolution
cond(M̄) over time.

vergence relative to the onboard estimates (η̄, V̄ ). The slight
increase in errors observed in the time interval [1091s, 1095s]
is due to the notable rise in the condition number of M̄ . In
contrast, during the time interval between [1095s, 1098s],
the slight increase is mainly due to the growing disparities
between V̄1 and Va,1, which become more pronounced as the
Pitot tube measurements approach zero (see Fig. 1).
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Fig. 3. Evolution of the air velocity estimate using real data. The plots
compare the respective components of the estimated air velocity V̂a (red)
and the onboard estimated body-fixed frame velocity V̄ (blue).

VI. CONCLUDING REMARKS

This paper presents a novel observer design for Pitot Tube-
Assisted Air Velocity and Attitude Estimation in GNSS-
Denied Environments. This approach is particularly valuable
when dealing with small fixed-wing UAVs where traditional
sensors used in attitude estimation, such as magnetometers
or GNSS, are unreliable or unavailable. To the authors’
knowledge, this design is the first to feature such stability
properties. Realistic simulation and preliminary experimental
tests exemplifying the common case of an aircraft with
one Pitot tube illustrate the estimator’s performance and
applicability in typical aircraft trajectories.
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