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Abstract— In this work, a predictive controller that uses
online-learned terminal costs is proposed. The learned costs
are based on Approximate Dynamic Programming (ADP),
specifically, Value Iteration (VI), an ADP technique that aims to
iteratively determine the optimal value function of an optimal
control problem. With this, we aim to improve infinite-horizon
controller performance. Instead of performing an offline itera-
tion over the whole state space, we consider a local update law
which is executed online and reduces the computational burden.
We first extend results on local VI to the case where the iteration
is initialized with the value function of a stabilizing feedback
policy, showing that the local update law preserves the stability
of the associated control law. Then, we use the approximated
cost function in a predictive controller framework and provide
recursive feasibility, stability guarantees and an estimate of the
region of attraction for a sufficiently long prediction horizon.
The proposed approach is evaluated in simulation against a
predictive controller which uses VI over the whole state space,
and a predictive controller without terminal costs, to show the
advantages of the proposed controller.

I. INTRODUCTION

Model Predictive Control (MPC) is a control approach
based on an optimization problem which involves the min-
imization at each sampling time of a cost function along a
prediction of the system trajectory, starting from the current
system measurement. Constraints can be included directly
in the optimization problem to guarantee their satisfaction.
To ensure the stability of the closed-loop, so-called terminal
ingredients, i.e. terminal cost and terminal set, are commonly
used [14]. The terminal cost may be derived by using a local
linear quadratic regulation approach based on the linearized
dynamics [3] or constructed by a finite-horizon or infinite-
horizon cost function under a known control law (see [4]
and [9], [13], respectively). Learning-based methods, which
commonly use a parametric approximation of an optimal
infinite-horizon cost function, may also be considered to
design the terminal cost, e.g. [1], [15]. These results provide
performance guarantees with respect to the infinite-horizon
optimal control. The approximation of the value function is
based on Approximate Dynamic Programming (ADP).
In ADP, function approximators are used to solve optimal
control problems. For infinite-horizon optimal control prob-
lems, this provides a way of alleviating the curse of dimen-
sionality [6]. Two important methods can be distinguished in
the ADP literature, namely Value Iteration (VI) and Policy
Iteration (PI) (see [10], [16] for an overview). One difference
between the two is that PI requires an initial policy that is
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stabilizing. The policies resulting from the iterations also
remain stabilizing, which is of interest for online iterations
[7]. However, it has also been shown that initializing VI with
the value function of a stabilizing policy, guarantees that the
value functions generated by the iteration correspond to value
functions of stabilizing policies [7]. Convergence analysis of
VI can be found in, e.g., [11] and [2], and for PI in [12] and
[2].
Implementing ADP methods typically entails solving a point-
wise iteration over the whole domain of interest which can
be very computationally demanding and prohibits the use of
these methods for online applications. Furthermore, as the
system complexity increases, so does the amount of data
necessary to train the approximated functions. Considering
the fact that a system typically operates in a subset of the
state space, gathering data for the entire state space may not
be possible. A local version of VI was proposed in [17] to
address the aforementioned drawbacks. The properties of the
learned value function and the convergence of the algorithm
were also analyzed.
In this paper we extend the results of [17] using similar
arguments as in [7] to the case where the algorithm is
initalized using the value function of a stabilizing policy.
We analyze the properties of the approximated value func-
tion, with particular focus on the stability of the associated
feedback law. We show that local VI preserves the stability
of this feedback law, like its global counterpart. Furthermore,
following the ideas of [15], we embed the learned function
in an MPC framework to exploit the learned value function
to improve infinite-horizon closed-loop performance. Then,
only samples in the vicinity of the predicted terminal cost
can be used for the update of the learned function, reducing
the computational burden. By using a long-enough prediction
horizon we can guarantee stability and recursive feasibility
and give an estimate of the region of attraction of the
controller.
We first define the problem setup and introduce stabilizing VI
and local VI. Then, we present our results for local stabiliz-
ing VI and the closed-loop stability analysis in Section III. In
Section IV we implement the predictive controller based on
local stabilizing VI for the orbital rendezvous problem and
compare it with global VI and an MPC controller without
terminal cost. Section V concludes the paper.
Notation. We denote the set of integers greater or equal to an
integer i by Zi and the set of non-negative real numbers by
R≥0. The ceiling function is denoted by d·e. K∞ denotes the
set of functions α : R≥0 → R≥0 that are continuous, strictly
increasing, unbounded and satisfy α(0) = 0. The Kronecker
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product is denoted by ⊗ and diag(x1, . . . , xn) is a diagonal
matrix with main diagonal entries x1, . . . , xn. We denote the
exponential function as exp(x).

II. PROBLEM SETUP AND PRELIMINARIES

Consider a discrete-time nonlinear system

x(k + 1) = f(x(k), u(k)), k ∈ Z0 (1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control
input, with initial value x(0) = x0. The system dynamics
f , satisfy f(0, 0) = 0 and are continuous. Furthermore, the
system is subject to constraints

(x(k), u(k)) ∈ D := X× U ⊂ Rn × Rm, k ∈ Z0,

with a compact D, for which 0 ∈ int(D). As control goal,
we aim to minimize the closed-loop cost associated to a
continuous stage cost of the form l : Rn × Rm → R≥0

l(x, u) = Q(x) + u>Ru, Q : Rn → R≥0, R � 0.

We require the following assumption, which is typically
fulfilled by choosing quadratic stage costs.

Assumption 1: There exist functions αl, αl ∈ K∞, such
that αl(‖x‖) ≤ l(x, 0) ≤ αl(‖x‖) for all x ∈ Rn.

In the next section we introduce VI, upon which our
predictive controller is based.

A. Value Iteration

VI is a method to approximate the solution of nonlinear
optimal control problems. Consider the infinite-horizon cost
(2) for some x ∈ Rn and a sequence u(·) ∈ U∞, where
U∞ denotes the set of sequences that fulfill some, possibly
state-dependent, input constraints u(k) ∈ U(x(k)) ∀k ∈ Z0,

J(x, u(·)) :=

∞∑
k=0

l(x(k), u(k)), (2)

with x(k + 1) = f(x(k), u(k)), x(0) = x. Assuming the
minimum of this cost exists, we define the optimal value
function as

V (x) := min
u(·)∈U∞

J(x, u(·)).

The value function satisfies the Bellman equation

V (x) = min
u∈U(x)

(l(x, u) + V (f(x, u))) ,

with the associated optimal controller given by

h∗(x) = arg min
u∈U(x)

(l(x, u) + V (f(x, u))) .

Remark 1: This section considers only input constraints
for simplicity. However, state constraints can be translated
into state-dependent input constraints by using the dynamics
of the system.

Definition 1: (Adapted from [6]) An admissible controller
within a set Ω ⊂ Rn, containing the origin, is defined as a
continuous law u : Ω → Rm with u(0) = 0, such that
J(x, u(·)), with u(k) = u(x(k)), k ∈ Z0, is finite for any
x ∈ Ω and u(k) ∈ U(x(k)) for all k ∈ Z0.

To ensure boundedness of the value function on Ω, exis-
tence of at least one admissible controller is required. We
consider a set Ω ⊂ Rn compact with 0 ∈ int(Ω).

Assumption 2: There exists an admissible controller for
system (1) on Ω.

VI describes an iterative procedure to approximate the
optimal value function over a domain of interest, in our
case Ω, as introduced in Assumption 2. For this purpose,
the following iteration is performed

Vi+1(x) = min
u∈U(x)

(l(x, u) + Vi(f(x, u))) , ∀x ∈ Ω, (3)

using an approximator Vi : Ω → R≥0 over i ∈ Z0, with
initial guess V0. We associate a controller with each Vi as
follows

hi(x) := arg min
u∈U(x)

(l(x, u) + Vi(f(x, u))) , ∀x ∈ Ω.

The approximated function Vi may have desired properties
if V0 is initialized properly, as shown next.

B. Stabilizing Value Iteration

When VI as defined in (3) is initialized using the value
function of an admissible control policy within a set Ω ⊂ Rn,
it is often referred to as stabilizing VI. Obtaining the value
function (Vπ) of a admissible policy (π) amounts to solving
the equation

Vπ(x) = l(x, π(x)) + Vπ (f(x, π(x))) , ∀x ∈ Ω. (4)

We recall two results from [7], which will play an impor-
tant role in the stability analysis of the proposed controller.

Lemma 1: Let Assumption 2 hold. The sequence of func-
tions {Vj(x)}∞j=0 := {V0(x), V1(x), . . . } generated through
stabilizing VI is pointwise non-increasing in Ω.

Furthermore, using an admissible initial policy ensures that
the policies associated to the approximated value functions
Vi(x) are also admissible as shown by the next result.

Theorem 1: Let Assumption 2 hold and assume that only
the origin is a solution for the equations x = f(x, 0) and
l(x, 0) = 0. For every fixed i ∈ Z1, the control policy hi(·)
generated using stabilizing value iteration renders the origin
an asymptotically stable point. Moreover, the set βir := {x ∈
Rn : Vi(x) ≤ r} for any r > 0 such that βir ⊂ Ω, is a
subset of the region of attraction of the closed-loop system.

However, the iteration described by (3) must be performed
over the entire state space. Depending on the application this
may not be possible, such as when the behavior of the system
is only known for a subset of the state space or when the
algorithm is implemented online [17]. To avoid this, a local
value iteration scheme can be used, introduced next.

C. Local Value Iteration

The following VI scheme and the results presented in this
section were proposed in [17]. Consider a sequence of sets
{Li} for i ∈ Z0, where for each set it holds that Li ⊆ Ω, and
define a sequence of functions {λi(x)}, where each function
is such that
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{
0 < λi(x) ≤ 1, ∀x ∈ Li,
λi(x) = 0, ∀x ∈ Ω \ Li.

These sets determine where VI is applied at each time step
and need not be related to one another in some specific way.
Then, for i = 1, 2, ... and ∀x ∈ Li−1, the approximation is
locally updated as

Γi(x) := min
u

(l(x, u) + Vi−1(f(x, u))) . (5)

Finally, the global approximation is computed as

Vi(x) = (1− λi−1(x))Vi−1(x) + λi−1(x)Γi(x), ∀x ∈ Ω.
(6)

Thus, at each iteration i, the approximation is updated only
for points in the set Li−1. The initial guess V0 is selected as
an arbitrary positive semidefinite function. We can associate
a controller to each Vi as follows

πi(x) = arg min
u

(l(x, u) + Vi(f(x, u))) . (7)

Remark 2: The local VI scheme was originally proposed
without constraints, as presented above. However, we will
include henceforth input constraints in the minimization as
done in Section II-A.

The following theorem establishes the convergence of the
local value iteration scheme.

Theorem 2: Let Vi be calculated as in (6). If for all x ∈ Ω,
the learning rate function λi(x) satisfies

∞∑
i=0

λi(x) =∞, ∀x 6= 0

then the iterative value function Vi converges to the optimal
performance index function V as i→∞.

Note that condition on λi requires that any point in
Ω is sampled infinitely many times, which goes against
the objective of adapting the approximation only along the
predicted trajectory of the system. Thus, in the next section
we show that using the value function of an admissible
policy to initialize the local one, we can preserve the stability
of the associated control law. Then, we can use any of
the approximations generated by the algorithm as local
Lyapunov functions for the system.

III. MAIN RESULTS

A. Local stabilizing VI

We first extend the results of Section II-C to the case
where the iteration is initialized with the value function of
a admissible policy. Because of the input constraints in our
problem setup, we consider henceforth that the minimization
in (5) and (7) is subject to the constraints presented in Section
II-A. We first show that the sequence Vi is monotonically
nondecreasing in the following lemma.

Lemma 2: Let the local VI (6) be initialized with the value
function of an admissible policy, then for any i ∈ Z0 and for
all x ∈ Ω, the sequence Vi is monotonically non-increasing,
i.e.

Vi+1(x) ≤ Vi(x). (8)

Proof: We use similar arguments as in [17, Theorem 5].
First, we show that the statement is true for the first iteration.
For x ∈ L0 it holds that

V1(x) = (1− λ0(x))V0(x) + λ0(x)Γ1(x)

≤ (1− λ0(x))V0(x) + λ0(x)V0(x) = V0(x),

where the inequality holds because V0 is the value func-
tion of a admissible policy (see II-B). For x ∈ Ω \
L0, V1(x) = V0(x). Thus, the statement is verified for the
first iteration. Similarly, one can also show that Γ1(x) ≤
V0(x), ∀x ∈ Ω. Henceforth we assume that

Γi+1(x) ≤ Vi(x), ∀x ∈ Ω, i ∈ {0, . . . , l − 1}, l ∈ Z1.

Then, for all x in Ω we obtain

Vl(x) = (1− λl−1(x))Vl−1(x) + λl−1(x)Γl(x)

≥ (1− λl−1(x))Γl(x) + λl−1(x)Γl(x) = Γl(x).

The final statement is proven by induction. Let (8) hold for
i ∈ {0, . . . , l − 1}, l ∈ Z1. Then, for x ∈ Ω it holds that

Γl+1(x) = min
u∈U(x)

(l(x, u) + Vl(f(x, u)))

≤ min
u∈U(x)

(l(x, u) + Vl−1(f(x, u))) = Γl(x).

By induction, we conclude that

Γi+1(x) ≤ Γi(x), ∀x ∈ Ω, (9)

holds. Finally, we obtain

Vl+1(x) = (1− λl(x))Vl(x) + λl(x)Γl+1(x)

≤ (1− λl(x))Vl(x) + λl(x)Γl(x)

≤ (1− λl(x))Vl(x) + λl(x)Vl(x) = Vl(x).

Thus, the induction step is proved and (8) holds.

With the monotonicity of the approximate value function,
we can show that each control law πi renders the system
asymptotically stable, as shown in the next theorem.

Theorem 3: Let Assumption 1 and 2 hold. If the local
VI (6) is initialized with the value function of an admissible
policy, then each associated control law πi, i ∈ Z0, stabilizes
system (1), and Biri is in the region of attraction of πi, where
Bir := {x ∈ Rn : Vi(x) ≤ r} and ri is the largest r such
that Bir ⊂ Ω. Specifically, for all i ∈ Z0 it holds that

Vi(f(x, πi(x)))− Vi(x) ≤ −l(x, πi(x)), ∀x ∈ Biri . (10)

Proof: We use Vi as a Lyapunov function. For that we
note that the following bounds hold

l(x, 0) ≤ Vi(x) ≤ V0(x), ∀i ∈ Z1, x ∈ Ω, (11)

where the lower bound holds because for any Vi−1(x) we
have for x ∈ Ω

Vi(x) = (1− λi−1(x))Vi−1(x) + λi−1(x)Γi(x)

≥ (1− λi−1(x))Vi−1(x) + λi−1(x)l(x, 0) ≥ l(x, 0).

Furthermore, note that V0(x) is upper bounded by a func-
tion αV0 ∈ K∞ , because it is the value function of
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the stable policy π. We conclude that Vi is a Lyapunov
function candidate. We show the decay rate of Vi by using
induction. We assume that Vi−1(f(x, πi−1(x)))−Vi−1(x) ≤
−l(x, πi−1(x)), ∀x ∈ Ω. For x ∈ Li−1, we get from (6)

Vi(x) = (1− λi−1(x))Vi−1(x) + λi−1(x)Γi(x)
(8),(9)
≥ (1− λi−1(x))Vi(x) + λi−1(x)Γi+1(x)

= (1− λi−1(x))Vi(x)

+ λi−1(x)(l(x, πi(x)) + Vi(f(x, πi(x)))).

Reorganizing the inequality such that only the stage cost is
on the right-hand side, we obtain

λi−1(x)(Vi(x)− Vi(f(x, πi(x)))) ≥ λi−1(x)l(x, πi(x)).

Thus, for x ∈ Li−1, (10) holds. For x ∈ Ω \ Li−1, Vi(x) =
Vi−1(x), from (7), we obtain πi(x) = πi−1(x). Then

Vi(f(x, πi(x)))− Vi(x) = Vi(f(x, πi−1(x)))− Vi−1(x)

≤ Vi−1(f(x, πi−1(x)))− Vi−1(x)

≤ −l(x, πi−1(x)) = −l(x, πi(x)),

where the first inequality holds, because f(x, πi−1(x)) ∈
Ω and (8) hold for any x in a sublevel set of Vi−1 in Ω.
Notice that from (11) it holds that B0

r0
⊇ Biri , ∀i ∈ Z1.

For the base case we see that V0(x) = Vπ(x). From (4)
the base case holds. Thus, we have established the decay
rate of the Lyapunov function by induction and conclude
that a trajectory from a point in any sublevel set of Vi in Ω
converges to the origin under πi. We also conclude that the
largest sublevel of Vi in Ω is in the region of attraction.

Remark 3: In comparison to Theorem 2, we do not show
convergence of local VI, as we are only interested in the
properties of the approximated function during iterations.
Thus, we do not require convergence of the approximation.

In the next section we embed the approximated value
function in an MPC framework as a means to improve the
suboptimality of the closed-loop system. Furthermore, we
give stability and recursive feasibility guarantees.

B. VI-based Model Predictive Control
The proposed predictive controller is given by the follow-

ing optimization problem

VMPC,N (x, k) := (12a)

min
u(·;x,k)

N−1∑
j=0

l(x(j;x, k), u(j;x, k)) + Vk(x(N ;x, k))

(12b)
s.t. x(j + 1;x, k) = f(x(j;x, k), u(j;x, k)), x(0;x, k) = x

(12c)
(x(j;x, k), u(j;x, k)) ∈ D, ∀j ∈ {0, . . . , N − 1}, (12d)

where Vk is the current value function approximation as
defined in (6). Notice that the terminal cost varies with
time. The solution of the optimization problem is denoted
by u∗(·;x, k) with associated state trajectory x∗(·;x, k). At
each time step the optimization problem (12) is solved using
the current state measurement x = x(k) and the input
u(k) = u(0;x(k), k) is applied to the system.

C. Stability results

We require the subsequent assumptions to derive an ap-
propriate horizon length to guarantee stability.

Assumption 3: There exists a constant ε > 0 such that
the set Bε := {x ∈ Rn |l(x, 0) ≤ ε} is contained in Ω and
(x, π(x)) ∈ D, and x ∈ B0

r , ∀x ∈ Bε.
Assumption 4: There exists a constant γ > 0 such that

VMPC,N (x, 0) ≤ γl(x, 0),∀x ∈ Bε.
Note that this implies that VMPC,N (x, k) ≤ γl(x, 0),∀x ∈

Bε, ∀k ∈ Z0, as (8) holds.
Remark 4: Assumption 3 implies that the controller π

fulfills the system constraints locally around the origin and
the set Bε is completely contained in B0

r , in order to use
Theorem 3. Such a controller can be found, e.g., in case
the linearization of the system is stabilizable, by designing
an LQR controller based on the system linearization and
considering a sufficiently small neighborhood around the
origin. The set inclusion condition can be fulfilled with a
small enough ε. Assumption 4 requires the system to be con-
trollable sufficiently fast to the origin. The exponential cost
controllabilty in [9] and [5, Section 6.2] can be expressed as
required in the assumption.

To guarantee stability of the closed-loop system and recur-
sive feasibility, we determine a sufficiently long prediction
horizon. The terminal predicted state is required to lie in the
set Bε to exploit the properties of the learned terminal cost.
To do this, consider the following lemma, adapted from [15].

Lemma 3: (Terminal state) Let Assumptions 1,
3, and 4 hold. Then, for any V > 0 there exists
NΩ ∈ Z1 such that for all N ∈ Z1, N ≥ NΩ, any
k ∈ Z0 and any x ∈ XV := {y ∈ X|VMPC,N (y, k) ≤ V },
it holds that x∗(N ;x, k) ∈ Bε. Additionally,
V (N ;x, k) ≤ ρN−N0

γ min{γl(0, u∗(0;x, k)), γε}
holds, where N0 =

⌈
max

{
0, V−γεε

}⌉
and

V (k;x, k) = VMPC,N−k(x∗(k;x, k)), with ργ = γ−1
γ

and γ = min{γ, V /ε}.
Proof: As shown in [9, Theorem 5], by selecting

N ≥ NΩ = N0 +

⌈
max{log(γ), 0}

log(γ)− log(γ − 1)

⌉
, (13)

we obtain V (N ;x, k) ≤ ε. Then ε ≥ Vk(x(N ;x, k)) ≥
l(x(N ;x, k), 0), where the last inequality holds by (11).
Thus, from Assumption 3 we obtain x(N ;x, k) ∈ Ω.
The following theorem presents the main stability result.

Theorem 4: Let Assumptions 1–4 hold. Furthermore, let
VI be initialized by using an admissible policy π(·). Then,
there exists NV ∈ Z1 such that for any N ≥ NV and any
x0 ∈ XV := {y ∈ Rn | VMPC,N (y, 0) ≤ V }, the predictive
control problem (12) is feasible for all k ∈ Z0, the constraints
are satisfied, and the origin is asymptotically stable for the
resulting closed loop.

Proof: We show the claim by using VMPC,N as a
Lyapunov function. First, notice that

l(x, 0) ≤ VMPC,N (x, k) ≤ γl(x, 0), ∀k ∈ Z0, (14)
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with γ := max{γ, V /ε}, as shown in [9, Theorem 5]. The
upper bound holds using a case distinction, whether x ∈
Bε or not. Define ∆VMPC,N := VMPC,N (x(k + 1), k + 1) −
VMPC,N (x(k), k). Consider an input sequence û(·; k) such
that û(j; k) = u∗(j+ 1;x(k), k) for j ∈ {0, . . . , N −2} and
û(N − 1; k) = πk(x̂(N − 1;x(k), k)), where x̂(j; k) is the
associated system trajectory. Then, with N ≥ NΩ and x(k) ∈
XV , from Lemma 3, x̂(N − 1; k) = x∗(N ;x(k), k) ∈ B0

r0
.

Because of this, πk(x̂(N − 1; k)) is a feasible control input
and û(·; k) is a feasible input sequence for the problem (12)
at time step k + 1, thus

∆VMPC,N ≤ −l(x(k), u(k))

+ l(x∗(N ;x(k), k), û(N − 1; k))

+ Vk+1(x̂(N ; k))− Vk(x∗(N ;x(k), k))

= −l(x(k), u(k))

+ l(x∗(N ;x(k), k), πk(x∗(N ;x(k), k)))

+ Vk+1(f(x∗(N ;x(k), k), πk(x∗(N ;x(k), k))))

− Vk(x∗(N ;x(k), k))
(8),(10)
≤ −l(x(k), u(k)).

Then, the optimal control problem with x0 ∈ XV is feasible
for all k ∈ Z0 and VMPC,N is a Lyapunov function for the
closed-loop system. Thus, the origin is asymptotically stable
for all x0 ∈ XV .

IV. SIMULATION STUDY

We consider the orbital maneuver problem which has been
addressed using ADP in [8] and [1]. The state of the system
is chosen as x(k) = [X(k), Y (k), Xt(k), Yt(k)]>, where
[X,Y ]> describes the position of the spacecraft measured
from the orbital frame in the destination orbit and [Xt, Yt]

>

its velocity. The discretized dynamics of the system are given
by

x(k + 1) = x(k)+

∆t


x3(k)
x4(k)

2x4(k)− (1 + x1(k))
(

1
r(k)3 − 1

)
−2x3(k)− x2(k)

(
1

r(k)3 − 1
)
+ ∆t


0 0
0 0
1 0
0 1

u(k)

with r(k) =
√

(1 + x1(k))2 + x2(k)2. We consider con-
straints X = [−0.5, 0.5]4, U = [−2, 2]2 and use a sampling
time of ∆t = 0.05. As weighting matrices we select Q =
diag(50, 50, 50, 50) and R = diag(1, 1). All the calculations
and simulations were done in MATLAB and fmincon was
used to solve nonlinear optimization problems. We select
the approximator as a linear combination of basis functions
as done in [6] and [1],

Vi(x) = wTi [(x⊗ x)>, (x⊗ x⊗ x)>]>.

The local VI is initialized using a value function of an ad-
missible policy obtained using global value iteration over the
domain Ω = [−0.23, 0.23]4 and using 5000 samples from a
uniform distribution and the previously introduced function
approximator, however, without achieving convergence. The

stability of the control law is verified through samples using
the results in [15], as the convergence, measured with the
constant cδ = 0.55 and the approximation error with cε =
0.38 fulfill the condition cε+ cδ < 1. This results in ε ≈ 2.7
and γ ≈ 28.5. Using these values in (13) we obtain a required
horizon of 236. This horizon is conservative, as the system
converges to the origin for much shorter horizons. This was
also seen in [1] and [15]. The effect of the different choices
of the terminal cost is best seen using a shorter horizon that
also stabilizes the system. Thus, we use a horizon of 10
in our simulation study. We evaluate initial conditions of
the form x0,j = [x1,j , x2,j ,−2, 2] and use 100 simulation
steps. The system is simulated with the MPC controller
using online VI, offline VI and without terminal cost. We se-
lect Lk = {x ∈ Ω | ‖x− x∗(N ;x(k − 1))‖ ≤ dN}, and set
dN = 0.144. We also use 5000 random samples over Ω for
the local update, which are filtered according to each Lk.
For x ∈ Lk, the learning rate is selected as a Gaussian type
function [17]

λk(x) = exp
(
−‖x− x∗(N ;x(k − 1))‖2 /(2σ2)

)
.

The constant σ is set to 0.067, so that the learning rate is
almost zero at a distance of 0.15 from the predicted terminal
state and larger than 0.8 for a distance of 0.04 or less. In other
words, we update the approximation of the value function in
the vicinity of the predicted terminal state at the previous
time step. The reason behind this is to use the last predicted
terminal state as a proxy for the unknown current predicted
terminal state, as the terminal cost can be regarded as the
cost tail of an infinite-horizon problem.

Figure 1 shows a comparison of the closed loop perfor-
mance for a predictive controller with the learned terminal
cost and one without it. The performance improvement is
measured as the reduction in the closed-loop cost, taking the
controller without terminal cost as the starting point. It can
be seen that there was significant improvement over most of
the inspected initial conditions. The highest improvement is
seen for initial conditions near the upper left corner of the
grid, while the lowest was seen for the points around the
origin.

A similar result is seen in Figure 1, where the performance
of the online VI-based controller was compared with the
performance of controllers with a value function approxi-
mated offline. In this case, the performance improvement is
zero if the resulting performance is the same as that of the
controller with the immature approximation, used to start
the local VI, and 100 percent if it achieves the performance
of the controller with a mature one, obtained by continuing
offline VI for the immature approximation. The greatest
performance improvement is seen for the points farthest away
from the origin, and the lowest for a neighborhood around
the origin. This behavior may be due to the fact that the
online scheme can perform more iterations for points farther
away from the origin, and thus obtain a better approximation.
However, the dynamics of the system and the constraints also
play a role. It must be noted that the absolute difference
between the performance of both controllers with constant
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terminal cost is very small, with a maximum value of 0.12,
while the performance of the online VI-based controller
oscillates between 460 and 15. Regarding the computation
time, the average time per iteration for global VI was 34
seconds, while the local VI needed 1.84 seconds on the
computing server Gigant of the Chemnitz University of
Technology. Thus, using local VI significantly reduces the
time needed.

−0.4 −0.3 −0.2 −0.1 0

−0.4

−0.3

−0.2

−0.1

0

x1, j

x
2
,j

10%

20%

30%

Fig. 1. Performance improvement, online VI and no terminal cost.
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Fig. 2. Performance improvement, online VI and offline VI.

V. CONCLUSION

We propose an MPC controller that uses an online ap-
proximation of an infinite-horizon optimal value function
as the terminal cost, obtained using online VI. First, we
showed that using a local VI update, controlled using a state-
dependent learning rate, we can preserve the stability of the
associated controller for all iterations. This enables us to
use a long-enough prediction horizon, which depends on the
desired region of attraction and the design parameters of the
MPC controller, to give stability guarantees. The local VI
step can be considered as extending the prediction horizon
of the controller by one step at each time step, however,
with a relatively constant computation time. Even though the
proposed controller provides a more suboptimal closed-loop

performance in comparison to a controller based on global
VI, the computational demand can be significantly reduced
by using the learning rate and the sets that control the update.
Furthermore, the proposed controller may be extended with
a robust or adaptive framework, for cases where information
about the system is only available for a subset of the state
space, and controllers such as the one presented in [15],
are not applicable. Even though the resulting stabilizing
horizon is conservative, a common shortcoming of this type
of analyses, a short prediction horizon could be used in
conjunction with a terminal constraint. Stability and recursive
feasibility of the controller are still guaranteed, provided the
optimization problem is initially feasible. Future research
may improve on the required stabilizing horizon. Also, the
influence of the approximation error on the properties of the
learned value function can be analyzed, as the approximators
used do not provide an exact solution of the iteration.
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