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Abstract— This paper develops an intelligent flight controller
for a fixed-wing aircraft model in the longitudinal plane, using
a Reinforcement Learning (RL)-based control method, namely
Deep Deterministic Policy Gradient (DDPG). The neural net-
work controller is fed the values of aircraft position, velocity,
pitch angle and pitch rate, and outputs the elevator deflection.
Artificial Neural Network (ANN)s are used to approximate the
nonlinear state-action value function and the policy function.
Simulation results show that the flight controller learns from the
experienced data to fly over an obstacle wall with constrained
pitch angle.

I. INTRODUCTION

Reinforcement learning is a class of machine learning
algorithms that achieves ‘learning from interacting with
the environment’. The basic principle of Reinforcement
Learning (RL) is to maximize the the accumulated future
rewards coming from interacting with the environment, by
choosing an appropriate action at each time step[1]. The
environment is ideally assumed to be a Markov Decision
Process (MDP) with either observable or partial observable
property. Random actions are taken in the training phase to
explore different state transitions and at last to look for other
locally maximal state/state-action values. Various reward
mechanisms assist the agent to learn different behaviors
in operation phase. For example, Ref [2], [3], [4], [5] set
absolute value of the attitude angle tracking error at one
time step as reward, the agent then learns to adjust vehicles’s
attitude angles to the reference. Ref [6], [7] set the quadratic
value of attitude angles estimation error as reward, the agent
learns to improve the estimate precision. Ref [8], [9] set the
relative distances from controlled vehicles to target position
as reward, the agent learns to plan approaching paths.

State-of-the-art RL algorithms can be briefly classified into
two categories by training methods. The first one is value-
based RL algorithms, such as Deep Q Network (DQN)[10],
State-Action-Reward-State-Action (SARSA)[11], that start
with learning a state value function(or state-action value
function), then optimize a policy to maximize the learned
state value function(or state-action value function). The dis-
advantage is the difficulty of exploring an infinite number
of actions in a continuous action space. In contrast, policy-
based RL algorithms employ the policy gradient to improve
the policy, which improves the efficiency of policy search in a
continuous action space. See Proximal Policy Optimization
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(PPO)[12], Trust Region Policy Optimization (TRPO)[13])
as commonly used policy-based RL algorithms.

Researches in recent years have combined value-based
and policy-based RL to develop hybrid RL algorithms that
use gradient descent in both state/state action-value func-
tion learning and policy search. Deep Deterministic Policy
Gradient (DDPG) is one of these achievements and shows
potential applications on controlling physical systems with
continuous action spaces, such as spacecrafts[8], [14] and
aerial vehicles[15], [16].

Specifically, Ref [14] uses Distributed Distributional Deep
Deterministic Policy Gradient (D4PG) to train a spacecraft
to dock with stationary and spinning targets. Ref [15] uses
DDPG to learn obstacle-avoided paths for an Unmanned
Aerial Vehicle (UAV) to move to a target destination. Ref
[16] considers the control task for a compound aerial vehi-
cle, i.e. a robotic arm suspended from a quadrotor. DDPG
algorithm is used to train a control policy to make the
robotic arm minimize its effect on the quadrotor dynamics,
and achieve reference trajectory tracking task simultaneously.
Ref [17] uses DDPG algorithm to design a flight control
system for the open research civil aircraft model (RCAM).
The performance of the flight controller is compared with
other two robust flight controllers via Incremental Nonlin-
ear Dynamical Inversion (INDI) and Proportional-Integral-
Derivative Neural Network (PIDNN). The disadvantage of
flight controllers designed by PID and INDI, lies in that a
predetermined reference trajectory to be tracked is required
and is difficult to design in some cases, such as the aircraft
operating with constrained attitude angles and control inputs.

This paper considers the control task of a fixed-wing
aircraft gliding over an obstacle wall. This task is challenging
because there is no thrust for the aircraft. Therefore, the con-
troller has to learn to generate an energy-saving trajectory,
otherwise it will crash before arriving at the obstacle. In
terms of control methods, traditional methods such as INDI
require a predefined reference trajectory which manages to
cross the obstacle. However, the specific flight environment is
unpredictable so that such a reference trajectory is difficult
to design. We propose to use RL-based control method to
enable the controller learning an energy-saving trajectory
from previous flight experience, without requiring any ref-
erence trajectories. The manually designed reward function
in typical RL framework is capable of evaluating previous
unsuccessful trajectories and assists tuning the controller
parameters. As a result, the aircraft with an after-training
controller is able to fly over an obstacle with least energy
consumption.
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Fig. 1. Markov Decision Process (MDP)

The rest of this this paper is organized as follows. Section
II introduces the Markov Decision Process model. Section
III presents the basic principle of DDPG algorithm and
three tricks to improve its performance. Section IV presents
a simplified model of a fixed-wing aircraft in longitudinal
plane. Section V provides the simulation results of the flight
controller trained by DDPG algorithm in the task of crossing
an obstacle wall. The conclusion of this paper is provided in
Section VI.

II. MARKOV DECISION PROCESS

Markov Decision Process is a general dynamical model for
a class of stochastic sequential decision processes, in which
the cost and transition functions only depend on the current
state of the system and the current action. This property is
also named as Markov property of a dynamical system. A
MDP model consists of four elements, i.e. state st ∈ S ⊆
Rn is the state of system at time step t, at ∈ A ⊆ Rm
is the action at time step t taken by the agent according
to a stochastic policy π(st), which drives the state st to
transfer to st+1. p(st+1|st, at) is the transition probability
density function from st to st+1 with action at. r(st, at) is
the reward function that evaluates state st for taking action
at. Define a set D of transition (st, at, rt, st+1, d), where d
indicates whether state st+1 is terminal.

Based on the definition of a MDP model, a RL agent tries
to find a policy π∗(·) which maximizes the sum of rewards
from each time step. An illustrative plot of MDP is given in
Figure 1.

III. DEEP DETERMINISTIC POLICY GRADIENT
ALGORITHM

A. Mathematical Principle of DDPG Algorithm

DDPG algorithm is an off-policy RL algorithm that is
suitable for policy search in a continuous action space.
Specifically, the Q-value network Qπψ(st, at) approximates
the state-action value function Qπ(st, at), which is used to
calculate the expected cumulative reward for state st taking
a specific action at, i.e. Qπ(st, at) ≜

∑∞
i=t E[γi−tr(si, ai)].

r(st, at) is defined to be the reward of taking action at at
state st. The Q-value neural network is parameterized by
ψ. The policy neural network µϑ(st)(parameterized by ϑ) is
used to approximate the policy function π(st).

The Bellman equation of Qπ(st, at) is given as

Qπ(st, at) = E
st+1∈S

[r(st, at) + γmax
at+1

Qπ(st+1, at+1)] (1)

where st+1 ∈ S is the state in the environment at time step
t+ 1. The transition from state st to state st+1 follows the
transition probability density function p(st+1|st, at).

The optimal action a∗t taken at time step t is solved by

a∗t = argmax
at

Qπ(st, at) (2)

The Bellman equation in (1) can be used to train a Q-
value network Qπψ(st, at), with a Mean Squared Bellman
Error(MSBE) loss function

L(ψ,D) = E
(st,at,r(t),st+1,d)∼D

{[
Qπψ(st, at)− [rt + γ(1− dt)

max
at+1

Qπψ(st+1, at+1)]
]2}

(3)

where L(ψ,D) is a measure that describes how close the ap-
proximator Qπψ(st, at) performs with respect to Qπ(st, at).

The training of policy network is based on the assumption
that the action space is continuous so that Q value function
is differentiable with respect to actor network parameters.
As a result, various gradient descent methods can be used to
learn a deterministic policy µϑ(st) which outputs the action
series that maximizes Qπψ(st, µϑ(st)), i.e.

ϑ∗ = max
ϑ

E
st∼D

[Qπψ(st, µϑ(st))] (4)

In order for a RL agent randomly explores the action space
A when interacting with the environment, the noise is added
in action as

µ′(st) = µϑ(st) +N (5)

B. Three Tricks in DDPG Algorithm

1) Replay Buffer[18]: Replay buffer is a data pool to
reserve the experienced Markov transition samples denoted
with (st, at, rt, st+1, d). The samples from replay buffer are
further used to update parameter sets ψ in critic network and
ϑ in actor network.

2) Target Critic Network: In order to stabilize training
process, target critic network is used with copied parameters
from critic network. The target critic network has the same
structure as critic network, but its parameters are updated
differently. Define the target value(see Eq.(3)) as

rt + γ(1− dt)max
at+1

Qπψ(st+1, at+1) (6)

which is a target for Q-value neural network to approach
through minimizing the MSBE. Because the target depends
on parameters ψ to be trained, the minimization of MSBE
may be unstable. To solve this, the target network is used
which has a time-delayed parameters compared to ψ. As a
result, the parameter set ψtarget of target network is updated
by

ψtarget ← ρψtarget + (1− ρ)ψ (7)

where ρ is a hyperparameter between 0 and 1.
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Then, the MSBE loss is rewritten as

L(ψ,D) = E
(st,at,rt,st+1,d)∼D

{[
Qπψ(st, at)− [rt

+γ(1− d)Qπψtarget
(st+1, µϑ(st+1))]

]2} (8)

3) Target Actor Network: The target actor network shares
the same structure as the actor network. The parameter set
ϑtarget of target actor network is updated by[18]

ϑtarget ← ρϑtarget + (1− ρ)ϑ (9)

Because the parameters of target actor are updated to
slowly track the parameters of actor network, it can improve
the stability of learning. Then, equation (8) can be rewritten
as

L(ψ,D) = E
(st,at,rt,st+1,dt)∼D

{[
Qπψ(st, at)−

[
rt

+γ(1− d)Qπψtarget
(st+1, µϑtarget(st+1))

]]2} (10)

As a result, Q-learning method is performed in DDPG
algorithm by minimizing the MSBE loss in Eq.(10) with a
gradient descent method. The pseudocode of DDPG algo-
rithm is summerzied as follows.

C. Pseudocode

Algorithm 1: Deep Deterministic Policy Gradient
1: Initialization: policy network parameter set ϑ, Q network parameter

set ψ, blank replay buffer D
2: Initialization: target networks parameter sets ϑtarget ← ϑ, ψtarget ← ψ
3: Repeat
4: Observe state st and select action

at = clip(µϑ(st) + ϵ, aLow
t , a

High
t ), where ϵ ∼ N

5: Take action at to the present environment
6: Observe next state st+1, reward rt, and done signal dt to indicate

whether st+1 is terminal
7: Store (st, at, rt, st+1, dt) in replay buffer D
8: If st+1 indicates terminal signal, reset all environment states.
9: If training is required then
10: for training steps do
11: From buffer D, sample a batch of transitions with batch size n

Bn = (s, a, r, s′, d)*

12: Calculate targets with samples (s, a, r, s′, d) ∈ Bn
z(r, s′, d) = r + γ(1− d)Qπψtarget

(s′, µϑtarget (s
′))

13: Update Q-value network parameter set ψ by one-step gradient
∇ψ 1

|Bn|
∑

(s,a,r,s′,d)∈Bn
[Qπψ(s, a)− z(r, s

′, d)]2

14: Update policy network parameter set ϑ by one-step gradient
∇ϑ 1

|Bn|
∑
s∈Bn

Qπψ(s, µϑ(s))

15: Update target critic/actor network parameter sets ψtarget, ϑtarget
ψtarget ← ρψtarget + (1− ρ)ψ
ϑtarget ← ρϑtarget + (1− ρ)ϑ

16: end for
17: end if
18: until convergence
* (s, a, r, s′, d) is a general representation of state transitions collected in

replay buffer.

IV. FIXED-WING AIRCRAFT DYNAMICAL MODEL

The aircraft model considered in this paper is a fixed-wing
perching UAV composed of foam and weights approximately

2 lb, which is capable of providing long-distance flights[19].
Model coefficients are provided in Table I.

mẍ =− Ff sin θ − Lw sin γw −Dw cos γw − Ls sin γs
−Ds cos γs

(11)

mÿ =Ff cos θ + Lw cos γw −Dw sin γw + Ls cos γs

−Ds sin γs −mg
(12)

Iθ̈ =− Ffdf + dcpLw cos(θ − γw) + dcpDw sin(θ − γw)
− dsLs cos(θ − γs)− dsDs sin(θ − γs)

(13)

where I is the moment of inertia about center of gravity, θ
is aircraft pitch angle, Ff is fuselage aerodynamic force, dcp
is center of pressure moment arm, Ls, Ds are stabilator lift
and drag forces. df is fuselage moment arm, ds is stabilator
moment arm. γw is angle made by wing velocity and wing
horizontal velocity, γs is angle made by stabilator velocity
and stabilator horizontal velocity. γw, γs are defined as

γw = arctan
ẏw
ẋw

(14)

γs = arctan
ẏs
ẋs

(15)

and (xw, yw) and (xs, ys) are positions of wing and stabilator
surface area centroids in a longitudinal body axis[13]:

(xw, yw) = (x+ dw cos θ, y + dw sin θ) (16)

(xs, ys) = (x− ds cos θ, y − ds sin θ) (17)

The angles of attack of the wing (αw), the stabilator (αs),
and the fuselage (αf ) are defined as:

αw = θ − γw + αi (18)

αs = θ − γs + ϕ (19)

αf = θ − arctan(
ẏf
ẋf

) (20)

where αi is the wing incidence angle measured relative to
the longitudinal body axis, ϕ is the stabilator deflection, and
(xf , yf ) is the position of the fuselage centroid.

In Ref[19], the detailed models are developed for wing lift
force Lw and drag force Dw, stabilator lift force Ls and drag
force Ds, the aerodynamic force Ff , and center of pressure,
which are used in the following numerical simulation.

V. SIMULATION RESULTS

This section provides the simulation results of the flight
controller trained by DDPG algorithm for the task of
crossing an obstacle wall. In the training phase, the initial
states of the aircraft are set to be [x0, ẋ0, y0, ẏ0, θ0, θ̇0] =
[10m, 8m/s, 10m,−0.5m/s, 0◦, 57.29◦/s], where θ repre-
sents the pitch angle. The aircraft tries to cross an obstacle
wall with the height 10.2m and position xobstacle = 17m.
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TABLE I
AIRCRAFT PHYSICAL COEFFICIENTS

Parameter Value
Mass m 0.88kg

Moment of intertia I 0.30 kg· m2

Fuselage length L 0.38m
Stabilator span Ss 0.40m

Stabilator moment arm ds 0.49m
Fuselage moment arm df 0.53m

Wingspan Sw 1.41m
Wing chord cw 0.21m

Wing centroid to center of gravity dw 0.29m

A. Reward Shaping

The destination of reward shaping is to reward the states
and actions that are helpful to finish the final task of crossing
the obstacle wall, and penalize the states and actions that
hinder the final task. Intuitively, to cross the obstacle wall
with the height 10.2m, the aircraft is encouraged to fly over
a certain height. Therefore, the reward function is designed
to reward the aircraft altitude over 10m before the obstacle,
which is the initial altitude of the aircraft. To reward the
successful crossing maneuver, the altitude of aircraft at 17m
is multiplied with a parameter a to emphasize its importance.
Meanwhile, to penalize the crossing maneuver with large
pitch angles, the cost is designed to be a quadratic form of
pitch angle, multiplied with an importance parameter b. Then
the reward function is designed as

reward =

{
y − 10, x ̸= 17

a(y − 10.2)− b|θ|2, x = 17
(21)

B. Neural Network Implementation

The implementation of DDPG algorithm is based on the
usage of 4 artificial neural networks, namely critic network,
target critic network, actor network and target actor network,
the nonlinear activation function is selected to be ReLU
function. In the first and second hidden layers, the numbers
of neuron are 400, 300, respectively. The schematics of critic
and actor networks are provided in Figure 3 and Figure 4,
respectively. The target critic(actor) network shares the same
structure as the critic(actor) network. The optimizer used
to achieve stochastic gradient descent for critic and actor
networks is Adaptive Moment Estimation(Adam)[23]. The
hyperparameters are provided in Table II.

TABLE II
HYPERPARAMETERS OF DDPG AGENT

Parameters Value
learning rate(critic) 0.00001
learning rate(actor) 0.00001

batch size 64
ρ 0.99
γ 0.99
a 10000
b 500

Fig. 2. Critic Neural Network

Fig. 3. Actor Neural Network

C. Online Training Phase

This subsection provides the training results in the task of
crossing an obstacle wall. Figure 5 plots the score history of
100 training episodes. The first episode in which the crossing
task is successful is episode 66 with a score of 200.24. By
adding a randomized noise to the stabilator deflection before
each step of the agent interacting with the environment,
the agent learns to find other locally maximal Q values in
episodes 72, 79 and 87.

D. Online Operation Phase

This subsection verifies the online operation performance
of the flight controller trained in the previous online training
phase. The flight condition considered is the initial positions
with uncertainties. This is common in practical cases because
the simulated trajectory is in the terminal phase of the aircraft
and its initial positions may be affected by the flight condi-
tions in previous flight phases. Specifically, it is assumes
that the initial position variables x0, y0 follow Guassian
distributions as x0 ∼ N (10m, 0.5m), y0 ∼ N (10m, 0.5m).

Figure 6 provides the score history of 100 episodes. The
high scores does not necessarily equal successful crossings
because the initial position variables are different. By observ-
ing the flight data collected in replay buffer, the successful
rate is 57%, which means that in 57 of 100 simulated online
operations the trained flight controller controls the aircraft to
cross the obstacle wall.

Figures 7, 8 provide the averaged reward history in various
time periods(plotted with the solid line), as well as its max-
min bounds that make the shaded region. The max-min
bounds in [85,105] time steps are large (see the first sub-

1632



0 20 40 60 80 100
Episode number

−25000

−20000

−15000

−10000

−5000

0

To
tal

 sc
or

e (
-)

Fig. 4. Score history of 100 episodes in online training phase.
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Fig. 5. Score history of 100 episodes in online operation phase. The task
successful rate is 57%.

figure in Figure 7) because the parameters a, b are used
to amplify the reward made by altitude and the cost made
by pitch angle above the wall. In simulation, the obstacle
wall is set to be a line without width, but the large max-
min bounds last for 20 time steps(0.2s). This is a result of
different arriving times to the obstacle wall in 100 episodes.

Figures 9, 10, 11 provide the histories of averaged states,
x(t), y(t), ẋ(t), ẏ(t), V (t) and the history of averaged action
ϕ(t)(plotted with the solid line). In the second sub-figure
of Figure 9, the shaded region over 10.2m indicates the
successful crossing over the wall.

VI. CONCLUSION

The aircraft flight controller trained by DDPG algorithm
achieves the task of crossing the obstacle wall with a 57%
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Fig. 6. The curve of reward in two periods of time: [0,130] and [0,85]
time steps. The solid line is the averaged evaluation of reward, the shaded
region is made by its max-min bounds within 100-episode data.
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Fig. 7. The curve of reward in two periods of time: [85,105] and [105,130]
time steps. The solid line is the averaged evaluation of reward, the shaded
region is made by its max-min bound within 100-episode data.
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Fig. 8. The histories of averaged x(t), y(t). The shaded region is made
by their max-min bounds.
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Fig. 9. The histories of averaged ẋ(t), ẏ(t). The shaded region is made
by their max-min bounds.
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successful rate, under the condition of uncertain initial posi-
tion variables x0, y0. Designing the reward function carefully
leads to a flight trajectory that balances between the reward
terms and the cost terms.
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