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Abstract— This paper addresses the problem of simultaneous
estimation of the position, linear velocity and orientation of a
rigid body using single bearing measurements. We introduce a
Riccati observer-based estimator that fuses measurements from
a 3-axis accelerometer, a 3-axis gyroscope, a single body-frame
vector observation (e.g., magnetometer), and a single bearing-
to-landmark measurement to obtain the full vehicle’s state
(position, velocity, orientation). The proposed observer guar-
antees global exponential convergence under some persistency
of excitation (PE) condition on the vehicle’s motion. Simulation
results are presented to show the effectiveness of the proposed
approach.

I. INTRODUCTION

The problem of accurate complete pose (position, velocity,
and orientation) estimation of a rigid body is a critical
challenge for autonomous robotic platforms [1]. Inertial
navigation systems (INS) serve as essential devices, in this
context, enabling the localization and control of autonomous
vehicles by fusing measurements from onboard sensors.
These sensors are essentially accelerometers and gyroscopes
(typically included in an Inertial Measurement Unit (IMU)).
INS computes the position, velocity, and orientation by direct
integration of the information provided by these sensors.
However, this approach can easily fail in case of measure-
ments errors or unknown initial conditions [2]. Therefore,
INS requires often additional sensors such as Global Posi-
tioning System (GPS) to correct the position estimates over
time. However, in GPS-denied environments, such as indoor
applications, other types of sensors are required. Vision and
acoustic sensors [3], [4], among others, can be used to pro-
vide bearing (direction) measurements. These measurements
can also be combined with body-frame vector measurements
obtained from onboard sensors, such as magnetometer and
dual-GPS, to achieve accurate pose estimation.

Numerous estimation algorithms have been developed to
enhance INS through the integration of bearing measure-
ments and body-frame vector observations. These algorithms
find several applications in a wide array of fields, including
source localization [5], multiple object tracking [6], marine
navigation [7], and cooperative navigation [8]. Most of these
techniques are of Kalman-type. Despite their recognition
as industry-standard solutions, these stochastic filters come
with inherent limitations. One notable drawback is their
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dependence on local linearization, making them vulnerable
to initialization errors. To overcome these limitations, sev-
eral nonlinear deterministic observers have been developed
recently. These observers offer distinct advantages, includ-
ing well-established stability guarantees and computational
simplicity in contrast to stochastic filters, as mentioned in
[9].

In the context of vision-aided INS, a nonlinear observer
relying on 3D position landmark measurements with global
exponential convergence is proposed in [10]. To over-
come the need for landmarks 3D positions reconstruction
[11], a nonlinear observer is presented in [12] with direct
stereo bearing (direction) measurements, while also provid-
ing global stability guarantees under specific conditions on
the number and the configuration of the landmarks. On the
other hand, monocular cameras offer advantages in terms
of cost, simplicity, and reduced weight compared to stereo-
cameras. Therefore, in [13], a local Riccati observer for
simultaneous estimation of attitude, position, linear velocity,
and accelerometer bias with monocular-bearing measure-
ments is proposed, however it achieves only local exponen-
tial convergence. In the context of underwater applications,
global exponential convergent observers are proposed in [4],
[14] relying on bearing measurements from acoustic sensors
and relative velocity information.

In this paper, we propose a Riccati observer-based esti-
mation scheme for state estimation using IMU and single
bearing measurements. In contrast to [4], [14], [15], and with
an additional body-frame vector observation (e.g., obtained
from a magnetometer), our estimator provides complete
estimation of the vehicle’s inertial position, inertial velocity,
and orientation. In fact, in this work, we do not make use of
the low-acceleration assumption commonly used to decouple
the problem of IMU-based attitude estimation and position
estimation, see [9], [16] for a motivation. Under a persistency
of excitation (PE) condition on the vehicle’s motion relative
to the landmark, the proposed observer guarantees global
exponential stability; a strong stability result which cannot
be obtained using geometric observers such as [17] due to
topological obstructions. Furthermore, using IMU and single
bearing only, a reduced-order version of the observer allows
to estimate position, velocity, and gravity direction in body-
frame. The body-frame gravity direction allows, for example,
to extract reduced attitude (roll and pitch). In this case,
yaw (heading) readings obtained independently from other
external sources (e.g., dual GPS, compass, etc) allow to
recover the full vehicle’s state.

The rest of the paper is organized as follows. The next
section provides some preliminaries. Section III formulates
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the considered problem where details about the studied
vehicle’s model, the possible available measurements and
the technical assumptions needed for our main result are
provided. In Section IV, we present the main result with the
proposed observer and the associated observability analysis.
In Section V, we provide simulation results while Section VI
concludes the paper.

II. PRELIMINARIES

We denote by Z>0 the set of positive integers, by R
the set of reals, by Rn the n-dimensional Euclidean space,
and by Sn the unit n-sphere embedded in Rn+1. We use
||x|| to denote the Euclidean norm of a vector x ∈ Rn.
The i-th element of a vector x ∈ Rn is denoted by xi.
The n-by-n identity and zeros matrices are denoted by In
and 03×3, respectively. By blkdiag(·), we denote the block
diagonal matrix. The Special Orthogonal group of order three
is denoted by SO(3) := {A ∈ R3×3 : det(A) = 1;AA⊤ =
A⊤A = I3}. The set so(3) := {Ω ∈ R3×3 : Ω = −Ω⊤}
denotes the Lie algebra of SO(3). For x, y ∈ R3, the map
[.]× : R3 → so(3) is defined such that [x]×y = x × y
where × is the vector cross-product in R3. We introduce
the following important orthogonal projection operator Π :
S2 → R3 that will be used throughout the paper:

Πx = I3 − xx⊤, x ∈ S2. (1)

Note that Πx is an orthogonal projection matrix which geo-
metrically projects any vector in R3 onto the plan orthogonal
to vector x ∈ S2. In addition, one verifies that Πxy = 03×1

if x and y are collinear. For simplicity and for the sake of
clarity, the argument of the time-dependent signals is omitted
unless otherwise required.

A. State Estimation for Linear Time-Varying (LTV) Systems

An LTV system is described by

ẋ = A(t)x+B(t)u,

y = C(t)x,

(2a)
(2b)

where x ∈ Rn is the state, u ∈ Rm is the input and
y ∈ Rp is the output with n,m, p ∈ Z>0. The time-
varying matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈
Rp×n are known, continuously differentiable and uniformly
bounded with bounded derivatives. Observer design for LTV
systems has a long history. Mainly, in the spirit of the
Kalman filter, solutions are usually based on a Luenberger-
type observer with a gain matrix updated using some sort of
a Riccati equation [15], [18]. A traditional Riccati observer
for system (2) is given by

˙̂x = A(t)x̂+B(t)u+K(t)(y − C(t)x̂), (3)

with x̂ is the estimate of x, and the gain of the observer is
given by

K(t) = PC(t)⊤Q(t), (4)

where P is the solution of the following Riccati equation:

Ṗ = A(t)P + PA⊤(t)− PC⊤(t)Q(t)C(t)P + V (t), (5)

and where P (0) is a positive definite matrix and Q(t) and
V (t) are uniformly positive definite matrices that should
be specified. Note that, in the context of Kalman filter,
the matrices V (t) and Q−1(t) represent covariance matrices
characterizing additive noise on the system state.

The following definition formulates the well-known uni-
form observability (UO) condition in terms of the observ-
ability Gramian matrix. The UO property guarantees uniform
global exponential stability of the Riccati observer (3), see
[15] for more details.

Definition 1 (Uniform Observability) The pair (A(t), C(t))
is uniformly observable if there exist constants δ, µ > 0 such
that

W (t, t+ δ) :=
1

δ

∫ t+δ

t

ϕ⊤(s, t)C⊤(s)C(s)ϕ(s, t)ds

≥ µIn, ∀t ≥ 0 (6)

where ϕ(s, t) is the transition matrix associted to A(t) ∈
Rn×n such that

d

dt
ϕ(t, s) = A(t)ϕ(t, s) and ϕ(t, t) = In.

□

III. PROBLEM FORMULATION

Let {I} be an inertial frame, {B} be an NED body-fixed
frame attached to the center of mass of a rigid body (vehicle)
and the rotation matrix R ∈ SO(3) be the orientation
(attitude) of frame {B} with respect to {I}. Consider the
following 3D kinematics of a rigid body

ṗI = vI ,

v̇I = gI +RaB,

Ṙ = R[ω]×,

(7a)

(7b)

(7c)

where the vectors pI ∈ R3 and vI ∈ R3 denote the position
and linear velocity of the rigid body expressed in frame {I},
respectively, ω is the angular velocity of {B} with respect
to {I} expressed in {B}, gI ∈ R3 is the gravity vector
expressed in {I}, and aB ∈ R3 is the ’apparent acceleration’
capturing all non-gravitational forces applied to the rigid
body expressed in frame {B}.

This work focuses on the problem of position, linear
velocity and attitude estimation for INS. The objective of
this paper is to design a uniformly globally convergent
observer to simultaneously estimate the inertial position
pI , inertial velocity vI and attitude R using the following
measurements:

Assumption 1 (Available Measurements) We assume that
the following measurements are available:
(i) The angular velocity ω.
(ii) The apparent acceleration aB.
(iii) A body-frame bearing measurement to a known land-
mark.
(iv) A body-frame vector measurement of a known inertial
direction. □

The measurements in items (i) and (ii) of Assumption 1
can be obtained from an IMU while the one of item (iii)
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of Assumption 1 can be obtained, for instance, from vision
or acoustic sensors. The single bearing measurement to the
landmark expressed in {B} is given by

ηB := R⊤ pI − pIℓ
||pI − pIℓ ||

, (8)

where pIℓ ∈ R3 is the position (constant and known) of the
landmark in {I}, see Fig. 1. Note that the measurement ηB

gives information solely about the direction to the landmark
with respect to {B}. More specifically, the unitary vector
ηB corresponds to the projection of the landmark position
vector with respect to {B} onto a virtual spherical image
plane. The body-frame vector measurement in item (iv) of
Assumption 1 can be obtained using an additional sensor,
e.g., a magnetometer. This vector correspond to the expres-
sion in {B} of a constant and known vector mI ∈ R3 in
{I}, i.e.,

mB = R⊤mI . (9)

The following is a general observability assumption used in
the field of attitude estimation (see, e.g., [19]).

Assumption 2 The inertial vectors mI and gI are non-
collinear. □

{B}

{I}

pI

pI` η

Landmark

S2

Fig. 1: Illustration of the bearing measurement ηB, the
position of the rigid body pI and the landmark pIℓ .

Note that Assumption 1 provides a very minimal set of
measurements for the given problem. In fact, for the attitude
estimation problem alone, we usually require at least two
non-collinear body-frame vector observations [19] while
the translational motion estimation usually requires position
information in inertial frame as in [14], [15]. In this work, we
use only a single vector observation along with a body-frame
position bearing to recover position, velocity, and orientation.

The translational system (7a)-(7b) is a linear system with
an unknown input RaB. Therefore, there is a coupling
between the translational dynamics and the rotational dy-
namics through the accelerometer measurements. Most adhoc
methods in practice assume that RaB ≈ −gI to remove this
coupling between the translational and rotational dynamics.
However, this assumption holds only for non-accelerated
vehicles, i.e., when v̇I ≈ 0. In this work, we instead design
our estimation algorithm without this latter assumption.

IV. MAIN RESULTS

In this section, we provide the main result of this work.
We first write the state-space model of the system in the body

frame as well as a virtual output defined by the projection of
the rigid body’s position (in {B}) in the plan perpendicular to
the bearing measurement ηB. We then establish a sufficient
condition for uniform observability of the resulting LTV
system.

Let pB = R⊤pI , vB = R⊤vI , gB = R⊤gI be the position
and linear velocity of the rigid body and the gravity vector,
all expressed in {B}, respectively. Thus, in view of (7) and
(9), we have:

ṗB = −[ω]×p
B + vB,

v̇B = −[ω]×v
B + aB + gB,

ġB = −[ω]×g
B,

ṁB = −[ω]×m
B.

(10a)

(10b)

(10c)

(10d)

To simplify the analysis, we assume without loss of
generality that pIℓ = 0, i.e., the center of {I} coincides with
the position of the landmark. Note that if this was not the
case, one can redefine p̃I = pI − pIℓ and ˙̃pI = vI . Once p̃I

is estimated then pI = p̃I + pIℓ . Hence, (8) becomes

ηB = R⊤ pI

||pI ||
=

pB

||pB||
. (11)

Let ỹ := ΠηBpB. In view of (11), we have ηB and pB are
collinear and thus

ỹ = 0. (12)

Equation (12) represents a virtual (linear in pB) output
inspired from [9], [15], [20]. This form of the output will
be useful in the design of the observer as well as in
conducting the corresponding uniform observability analysis.
The structure of the proposed approach is given in Fig. 2.

IMU

Bearing

measurement
Observer

Body-frame vector

Correction

aB

ω

ηB

m̂B

p̂B

v̂B

ĝB
p̂I

v̂Iattitude
Reconstruction

R̂

mB
mI gImeasurement

Riccati {B} to {I}

(15)

Fig. 2: Illustration of the proposed state estimation approach.

The proposed observer provides an estimation of pB, vB, gB

and mB using the available measurements. The estimates of
gB and mB together with their expressions in {I} are then
fed to an attitude reconstruction algorithm. Once the attitude
is reconstructed, the estimates of the position and the velocity
in the inertial frame are recovered.

Note that gB is also estimated because, for accelerated
vehicles, the accelerometer does not measure the body-frame
gravity vector (measures only non-gravitational forces). Be-
sides, it should be mentioned that it is possible to obviate
mB in the estimator’s state but this measurement has been
included for noise filtering purposes, see also Remark 2 for
an alternative reduced-order estimator.

Now, by letting the state

x =
[
pB vB gB mB]⊤ , (13)
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we obtain, in view of (10) and (12), an LTV system of the
form:

ẋ = A(t)x+BaB,

y = C(t)x,

(14a)
(14b)

with matrices A(t), B and C(t) given by

A(t) =


−[ω(t)]× I3 03×3 03×3

03×3 −[ω(t)]× I3 03×3

03×3 03×3 −[ω(t)]× 03×3

03×3 03×3 03×3 −[ω(t)]×

 ,

B =
[
03×3 I3 03×3 03×3

]⊤
,

C(t) =

[
ΠηB(t) 03×3 03×3 03×3

03×3 03×3 03×3 I3

]
.

Note that matrix A(t) is time-varying since it depends
on the profile of the angular velocity ω(t) which can be
seen as an external time-varying signal. Similarly, matrix
C(t) is also time-varying since it depends on the time-
varying bearing ηB(t). Furthermore, we impose the following
realistic constraint on the system’s trajectory which is needed
to ensure that the matrix A(t) is well-conditioned for the
convergence guarantees of the Riccati observer (3).

Assumption 3 The angular velocity is continuously differ-
entiable and uniformly bounded with bounded derivatives.
□

The state of system (13) is then estimated using the Riccati
observer:

˙̂x = A(t)x̂+BaB +K(t)(y − C(t)x̂), (15)

where x̂ := [p̂B v̂B ĝB m̂B] with p̂B, v̂B, ĝB, m̂B are
the estimates of pB, vB, gB, mB, respectively, and K(t) is
computed using (4) and (5). In the next Lemma, we analyse
the uniform observability of the pair (A(t), C(t)) in the sense
of Definition 1 which is necessary for the convergence of the
observer.

Lemma 1 Let ηI := RηB be the bearing-to-landmark
expressed in the inertial frame. If there exist δ, µ > 0 such
that

∀t ≥ 0 :
1

δ

∫ t+δ

t

ΠηI(s)ds ≥ µI3, (16)

then the pair (A(·), C(·)) in (14) is uniformly observable. □

Proof: The proof can be found in [21]. ■
Lemma 1 provides a persistency of excitation condition on

the matrix ΠηI . This PE condition is essentially equivalent to
requiring that |η̇I | is regularly larger than a positive number
[15]. In other words, this requires that the vehicle is never
static nor indefinitely moving in a straight line with the
landmark [9].

Since the pair (A(t), C(t)) is uniformly observable under
the PE condition of Lemma 1, we can design a Riccati
observer [15, Section 2.2] to estimate the position pB, the
velocity vB, the gravity vector in the body frame gB and the
body-frame vector measurement mB. Once good estimates
of gB and mB are available, the orientation matrix can be

computed using algebraic reconstruction (see [22, Corollary
6]) as follows:

R̂⊤ =

[
ĝB

|gI |
ĝB × m̂B

|gI ×mI |
ĝB × (ĝB × m̂B)

|gI × (gI ×mI)|

]
R̄⊤, (17)

where

R̄ :=

[
gI

|gI |
gI ×mI

|gI ×mI |
gI × (gI ×mI)

|gI × (gI ×mI)|

]
. (18)

It is important to note that R̂ as defined above is not
necessary a rotation matrix but converges to a rotation matrix.
However, if it is required to work with a rotation matrix at
all time, a simple solution is to project R̂ to the nearest
rotation matrix using polar decomposition as explained in
[22, Proposition 7]. Note that (17) is implementable under
Assumption 2.

Remark 1 (Attitude Estimation on SO(3)) An alterna-
tive solution to estimate the full attitude matrix R̂ is to
cascade the proposed linear observer with a nonlinear
complementary filter on SO(3) such as in [19], [23]. Thanks
to the proposed observer being globally exponentially con-
vergent and the almost global input-to-state stability (ISS)
property of the nonlinear complementary filters on SO(3)
(see [24]), it is not difficult to show that the interconnection
preserves almost global asymptotic stability of the estimation
errors. □

Remark 2 (Decoupled Observer) Note that, in practice,
the estimation of the pitch and roll angles independently
from the magnetic disturbances holds significant importance
for ensuring robust flights for UAVs [25, Section II-C]. In
fact, thanks to the structure of the system’s matrices and by
choosing the parameters of the Riccati equation as follows:

• The initial condition P (0) = blockdiag(P1(0), P2(0))
with P1(0) ∈ R9×9 and P2(0) ∈ R3×3 as positive
definite matrices,

• The matrices V (t) = blockdiag(V1(t), V2(t)) and
Q(t) = blockdiag(Q1(t), Q2(t)), where V1(t) ∈ R9×9

and V2(t), Q1(t), Q2(t) ∈ R3×3 as uniformly positive
definite matrices,

the obtained observer’s structure becomes decoupled and its
gain will be written, in view of (4) and (14), as follows:

K(t) =

[
P1(t)C1(t)

⊤Q1(t) 03×3

03×3 P2(t)Q2(t)

]
, (19)

with C1(t) =
[
ΠηB 03×3 03×3

]
and the estimates of pB,

vB and gB will be independent of the estimates of mB.
Thus, the pitch and roll estimates can be extracted from
ĝB independently from the estimates of yaw, which can be
obtained from m̂B. □

Remark 3 (Reduced-Order Observer) An alternative so-
lution to decouple the roll/pitch estimation from yaw esti-
mation would be to consider the following reduced state
x̃ =

[
pB vB gB

]⊤
. Then, if the condition of Lemma 1
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is satisfied, the pair (Ã(t), C̃(t)) given by

Ã(t) =

−[ω(t)]× I3 03×3

03×3 −[ω(t)]× I3
03×3 03×3 −[ω(t)]×

 ,

C̃(t) =
[
ΠηB 03×3 03×3

]
is uniformly observable and the estimates of x̃ is computed
using the Riccati observer:

˙̂
x̃ = Ã(t)ˆ̃x+ B̃aB + K̃(t)(ỹ − C̃(t)ˆ̃x), (20)

with ˆ̃x =
[
p̂B v̂B ĝB

]
, B̄ =

[
03×3 I3 03×3

]⊤
, ỹ is

given in (12) and K̃(t) is computed similarly to (4) and
(5). On the other hand, the pitch and roll angles can be
computed from the estimates of gB. In fact, if we consider
the ZYX convention, the last row of the rotation matrix e⊤3 R
is given by [26]

e⊤3 R =
[
− sin(θ) cos(θ) sin(ϕ) cos(θ) cos(ϕ)

]
, (21)

where θ and ϕ are the pitch and roll, respectively. Now, since
gI = gI3 e3, one has gB/gI3 = R⊤e3 and, therefore, the pitch

and roll are given by θ = atan2
(
− gB1 ,

√
(gB2 )

2 + (gB3 )
2
)

and ϕ = atan2(gB2 , g
B
3 ). Therefore, since only ĝB is avail-

able, the estimated roll and pitch are obtained using:

θ̂ = atan2

(
−ĝB1 ,

√
(ĝB2 )

2 + (ĝB3 )
2

)
,

ϕ̂ = atan2(ĝB2 , ĝ
B
3 ).

(22)

(23)

Yaw estimates can be provided independently using external
sources such as dual-GPS or compasses. □

V. SIMULATION RESULTS

In this section, we obtain simulation results to test the per-
formance of the observer proposed in Section IV. Consider
a vehicle moving in 3D space and tracking the following
eight-shaped trajectory:

p(t) =

 cos(5t)
sin(10t)/4

−
√
3 sin(10t)/4]

 . (24)

The rotational motion of the vehicle is subject
to the following angular velocity: ω(t) =[
sin(0.1t+ π) 0.5 sin(0.2t) 0.1 sin(0.3t+ π/3)

]⊤
.

The initial values of the true pose are pI(0) =[
1 0 0

]⊤
, vI(0) =

[
−0.0125 2.5 −4.33

]⊤
and

R(0) = exp([πe2]×/2) with e2 =
[
0 1 0

]⊤
.

The initial conditions for the observer are x̂(0) =[
1 1 1 1 1 1 4.9 4.9 4.9

]⊤
, P (0) = I9,

V (t) = 36I9, Q(t) = I3 and R̂(0) = I3. The gravity vector
gI is set to

[
0 0 9.81

]⊤
while the constant vector mI

is set to [ 1√
2

0 1√
2
]⊤, which mimics the magnetic filed.

The body-frame vector measurement mB is considered
to be affected by Gaussian white noise with noise-power
10−2. The results are presented in Figs. 3-7. One can easily
observe that the estimate trajectories converge to the real

ones after some seconds. In overall, we find the performance
of the proposed observer quite satisfactory. Note that the
considered trajectory (24) is rich enough to satisfy the PE
condition of Lemma 1 and ensures exponential convergence
of the observer.

Fig. 3: Time behaviour of the components of the real and
estimated position.

Fig. 4: Position and velocity estimation errors.

VI. CONCLUSION

In this work, we proposed a Riccati-based observer for
simultaneous position, linear velocity and attitude estimation
of a rigid body. The proposed observer uses measurements
from IMU (acceleration in the body frame and angular veloc-
ity), a single bearing measurement and a body-frame vector
observation. A detailed uniform observability analysis (UO)
has been curried out and sufficient conditions for UO are
derived as a persistency of excitation (PE) condition on the
trajectory. This PE condition guarantees global exponential
convergence of the proposed estimator. Furthermore, under
the same PE condition, a reduced-order form of the estimator
has been discussed in Remark 2 which allows to estimate
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Fig. 5: True and estimated trajectory in the inertial frame.

Fig. 6: Attitude estimation error.

Fig. 7: Components of the measured and estimated (filtered)
magnetic field vector expressed in the body frame.

body-frame position, velocity, and gravity using only IMU
and single bearing. This allows to estimate roll and pitch
independently from the other body-frame vector observation
(e.g., magnetometer). As a future work, we intend to improve
our proposed approach by considering biased IMU measure-
ments while preserving the global convergence property.
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