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Abstract— The optimal placement and design of sensors is
commonly encountered in industrial and applied problems, such
as urban planning and the supervision of temperature and
pressure in gas networks. In essence, sensors are considered
optimally designed when they ensure the highest level of
observation for the specific phenomenon in question. Typically,
this design process is guided by specific objectives and is subject
to constraints commonly defined by an appropriate partial
differential equation (PDE), taking into account the underlying
physics of the process. In the present work, we focus on two
independent study cases:

• The optimal shape design of a convex sensor.
• The optimal placement of a finite number of sensors inside

a given region.

Here, we address the problem in a purely geometric setting,
without involving a specific PDE model. We consider a simple
and natural geometric criterion of performance, based on
distance functions. But, as we shall see, tackling it will require
to employ geometric analysis methods.

I. INTRODUCTION

The optimal placement of sensors in various industrial
applications is a critical component of modern monitoring
and control systems. For example, in the context of gas
networks, sensor placement is essential for ensuring the
efficient distribution and management of gases like natural
gas or hydrogen. Sensors are strategically located at various
points within the network, such as pipelines, compressor sta-
tions, and distribution hubs, to monitor factors like pressure,
temperature, flow rates, and gas composition. For instance, in
a natural gas network, sensors placed near critical junctions
can swiftly detect leaks or pressure fluctuations, allowing
operators to take immediate corrective actions, reducing the
risk of safety incidents and environmental damage. The data
collected from these sensors can also be analyzed to optimize
the network’s performance and minimize energy losses,
ultimately improving its reliability and cost-effectiveness.

The body of literature addressing optimal sensor place-
ment is extensive, with techniques varying depending on
the specific problem at hand and the underlying modeling
assumptions. For example, in [9], the authors introduce an
algorithm aimed at determining the optimal sensors to in-
corporate, ensuring compliance with diagnosis requirements
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related to fault detectability and isolability. They subse-
quently demonstrate the efficacy of their approach through
an illustrative application to a model of an industrial valve,
effectively showcasing the benefits and properties of their
method. Another interesting example can be found in [6],
where the authors investigate the optimal sensor placement in
a water distribution network avoiding deliberate contaminant
intrusion. Finally, we recommend consulting the books [2],
[11] for further insight and practical examples.

In this note, we consider the problem of optimizing sensor
design within a purely geometric framework, devoid specific
PDE models. Our approach revolves around a straightforward
yet effective performance metric based on distance functions.
However, as we’ll soon discover, navigating this challenge
will necessitate the utilization of geometric analysis tech-
niques and prompt consideration of classic approximations
of distance functions via solutions of some suitable PDEs.

These problems can then be formulated in a shape opti-
mization framework. Indeed, given a set Ω ⊂ R2, and a mass
fraction c ∈ (0, |Ω|), the problem can be mathematically
formulated as follows:

inf{sup
x∈Ω

d(x, ω) | |ω| = c and ω ⊂ Ω},

where d(x, ω) := infy∈ω ∥x − y∥ is the minimal distance
from x to ω. In fact, the problem can be written in terms of
the classical Hausdorff distance dH . Indeed, when ω ⊂ Ω,
one has

sup
x∈Ω

d(x, ω) = dH(ω,Ω).

We are then interested in considering the following prob-
lem

inf{dH(ω,Ω) | |ω| = c and ω ⊂ Ω}, (1)

where c ∈ (0, |Ω|).
By using a homogenization strategy, which consists in

uniformly distributing the mass of the sensor over Ω (see
Figure 1), we show that problem (1) does not admit a
solution. Indeed, the infimum is equal to 0 and is asymp-
totically attained by a sequence of disconnected sets with an
increasing number of connected components.

In order to make problem (3) non trivial, we chose to work
with two classes of sensors:

• The class of convex sensors of a given area.
• The class of unions of N spherical sensors of a given

radius.

II. THE CASE OF CONVEX SENSORS

In this section, we focus on the optimal design of a convex
sensor ω inside a given convex region Ω in such a way to
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Fig. 1. The homogenization strategy.

minimize the maximal distance to all the points of Ω. The
problem can then be written in the following form

min{dH(ω,Ω) | ω is convex ⊂ Ω such that |ω| = α0|Ω|},
(2)

with α0 ∈ (0, 1). One may then consider to parameterize
a convex sets K via its support functions hK defined on
[0, 2π) as follows:

hK : [0, 2π) 7−→ sup

{〈(
cos θ

sin θ

)
, y

〉
| y ∈ K

}
.

The support function is a classic tool that allows to
parametrize convex sets. For more information, one may re-
fer to [12, Chapter 2]. This parametrization is popular among
convex geometers as it has some interesting properties:

• It allows to provide a simple criterion of the convexity
of Ω. Indeed, Ω is convex if and only if h′′

Ω+hΩ ≥ 0 in
the sense of distributions, see for example [12, (2.60)].

• It is linear for the Minkowski sum and dilatation. In-
deed, if Ω1 and Ω2 are two convex bodies and α, β > 0,
we have

hαΩ1+βΩ2
= αhΩ1

+ βhΩ2
,

see [12, Section 1.7.1].
• It allows to parametrize the inclusion in a simple way.

Indeed, if Ω1 and Ω2 are two convex sets, we have

Ω1 ⊂ Ω2 ⇐⇒ hΩ1
≤ hΩ2

.

• It also provides elegant formulas for some geometric
quantities. For example, the perimeter and the area of
a convex body Ω are respectively given by

P (Ω) =

∫ 2π

0

hΩ(θ)dθ

and

|Ω| = 1

2

∫ 2π

0

(h′
Ω
2 − h2

Ω)dθ.

As for the Hausdorff distance between two convex
bodies Ω1 and Ω2, it is given by

dH(Ω1,Ω2) = max
θ∈[0,2π]

|hΩ1
(θ)− hΩ2

(θ)|,

see [12, Lemma 1.8.14].
As explained in [8, Section 5], the support function can

be used to provide a numerical scheme to solve problem

(2) in particular and other shape optimization problems with
convexity constraints in general. We refer to the following
works for more examples and details [1], [3], [4]. Thus,
problem (2) can be formulated in terms support functions
as follows 

inf
h∈H1

per(0,2π)
∥hΩ − h∥∞,

h ≤ hΩ,

h′′ + h ≥ 0,

1
2

∫ 2π

0
h(h′′ + h)dθ = α0|Ω|,

(3)

where H1
per(0, 2π) is the set of Sobolev H1 functions that

are 2π-periodic.

Problem (3) is then discretized in judicious way via
truncated Fourier series of the involved (periodic) functions.
Then, Matlab’s routine ’fmincon’ is used to solve the
obtained finite dimensional problem approximating problem
(3).

In the following figures we present the results obtained for
different shapes and different mass fractions α0|Ω|, where
α0 ∈ {0.01, 0.1, 0.4, 0.7}.

Fig. 2. Obtained optimal shapes for α0 ∈ {0.01, 0.1, 0.4, 0.7} and
different choices of Ω.

III. THE CASE OF N SENSORS

In this section, we consider the problem of minimizing the
farthest distance to N spherical sensors of a given radius r.
The problem is formulated as follows

inf{dH(∪N
i=1Bi,Ω) | ∀i ∈ {1, . . . , N}, Bi ∈ Ω}, (4)

where Bi are balls of radius r. We then consider (xi) the
centers of the balls and write (4) as a finite dimensional
optimization problem

inf{f(x1, . . . , xN ) | xi, . . . , xN ∈ Ω−r}, (5)

where f(x1, . . . , xN ) := ∥d(·,∪Bi)∥∞ = dH(∪N
i=1Bi,Ω)

and Ω−r := {x ∈ Ω | d(x, ∂Ω) ≥ r}.
Being non differentiable, the infinity norm ∥ · ∥∞ is in

general not practical to consider when performing numerical
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optimization as one needs accurate formulas for the gradients
of the objective function that one wants to optimize. We then
chose to work with the following functional involving the
p-norm ∥ · ∥p, with p > 0 sufficiently large. We are then
minimizing functions

fp(x1, . . . , xN ) := ∥d(·,∪Bi)∥p =

(∫
Ω

d(x,∪Bi)
pdx

)1/p

,

known as average distance functionals. We refer to [10]
for a review on the average distance problems and relevant
references.

In order to numerically tackle this problem, one has
to compute the distance function the the balls Bi. The
prevailing approach to distance computation is to solve the
eikonal equation

|∇d| = 1

with Dirichlet boundary conditions d = 0 on the balls Bi.
Being non linear and hyperbolic, such equations present

difficulties to be solved directly. Inspired by [5], we propose
to use an approximation of distance functions via a classic
PDE result of Varadhan [13]:

Theorem III.1. Let Ω be an open subset of Rn and ε > 0,
we consider the problem{

wε − ε∆wε = 0 in Ω,
wε = 1 on ∂Ω.

(6)

We have

lim
ε→0

−
√
ε lnwε(x) = d(x, ∂Ω) := inf

y∈∂Ω
∥x− y∥,

uniformly over compact subsets of Ω.

In Figure 3, we plot the approximation of the distance
function to the boundary obtained via the result of Theorem
III.1.

Let us now show how we can use the result of Theorem
III.1 to construct an approximation of the objective function
f defined in problem (5).

Proposition III.2. Let us consider a fixed box D containing
the set {x ∈ Rn | d(x,Ω) ≤ diam(Ω)}, where diam(Ω) is
the diameter of Ω. For ε > 0, we denote by wε the solution
of the problem{

wε − ε∆wε = 0 in D\ ∪N
i=1 Bi

wε = 1 on ∂ ∪N
i=1 Bi ∪ ∂D

The function vε : x 7−→ −
√
ε lnwε(x) uniformly converges

to
d(·,∪Bi) : x 7−→ inf

y∈∪N
i=1Bi

∥x− y∥

on Ω\ ∪N
i=1 Bi.

Proof: By Theorem III.1, the function vε uniformly
converges to the function dω∪∂B : x 7−→ inf

y∈ω∪∂B
∥x−y∥ on

Ω\ ∪N
i=1 Bi. Since the box D contains the set

{x ∈ Rn | d(x,Ω) ≤ diam(Ω)},

Fig. 3. Approximation of the distance function to the boundary via
Varadhan’s result of Theorem III.1, where we have used Matlab’s toolbox
’PDEtool’ to solve problem (6), with ε = 10−4.

we have for every x ∈ Ω\ ∪N
i=1 Bi

d(x,∪N
i=1∂Bi ∪ ∂D) = d(x,∪N

i=1Bi),

because d(x, ∂D) ≥ diam(Ω) ≥ d(x,∪N
i=1Bi), where the

first inequality is a consequence of the inclusion {x ∈
Rn | d(x,Ω) ≤ diam(Ω)} ⊂ D and the second one is a
consequence of the inclusion ∪N

i=1Bi ⊂ Ω.
Now, that we have an approximation vε of the distance

to the sensors Bi via Varadhan’s result, we consider the
following approximation of f :

fp,ε(x1, . . . , xN ) := ∥vε∥p =

(∫
Ω

vpεdx

)1/p

and will focus the numerical resolution of problems

inf{fp,ε(x1, . . . , xN ) | xi, . . . , xN ∈ Ω−r}, (7)

with p > 0. The first step is to compute the gradients
of the function fp,ε via shape derivatives for perturbations
corresponding to translations of the sensors Bi. To obtain
practical formulas of the shape derivatives a judicious adjoint
state is introduced. Once, the gradients are computed, we use
them to perform a gradient descent in order to minimize
the function fp,ε and thus find the optimal placement of
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the sensors Bi. More information is coming the paper in
preparation [7].

In Figure 4, we present an example of the obtained optimal
placement of N ∈ {1, 2, 3} sensors.

Fig. 4. Optimal placement of N ∈ {1, 2, 3} sensors.

IV. CONCLUSION AND PERSPECTIVES

The problem of optimal shape and placement of sensors
has been addressed in a purely geometric setting, indepen-
dent of the physical process under consideration and in the
absence of PDE restrictions. Problems are then recast in the
context of of the optimization of the Hausdorff distance,
but the use of Varadhan’s approximation theorem naturally
leads to consider optimization problems constrained by the
Laplacian. This allows to apply the classical analytical and
computational tools in PDE shape design.

In conclusion, mathematics provides analytical tools and
frameworks necessary for modeling, optimizing, and ana-
lyzing sensor placement strategies within applied contexts.
By leveraging mathematical principles such as optimization
algorithms, graph theory, and statistical modeling, engineers
and researchers can devise sophisticated sensor deployment
schemes tailored to the specific needs and constraints of
industrial systems. Hence, numerous avenues for further de-
velopment and exploration remain, spanning both theoretical
inquiry and practical application.
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