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Abstract— We consider the problem of safely coordinating
ensembles of identical autonomous agents to conduct complex
missions with conflicting safety requirements and under noisy
control inputs. Using non-smooth control barrier functions
(CBFs) and stochastic model-predictive control as springboards,
and by adopting an extrinsic approach where the ensemble
is treated as a unified dynamic entity, we devise a method to
synthesize safety-aware control inputs for uncertain collectives.
Drawing upon stochastic CBF theory and recent developments
in Boolean CBF composition, our method proceeds by smoothing
a Boolean-composed CBF and solving a stochastic optimization
problem where each agent’s forcing term is restricted to the
affine subspace of control inputs certified by the combined CBF.
For the smoothing step, we employ a polynomial approximation
scheme, providing evidence for its advantage in generating
more conservative yet sufficiently-filtered control inputs than
the smoother but more aggressive equivalents produced from
an approximation technique based on the log-sum-exp function.
To further demonstrate the utility of the proposed method, we
present an upper bound for the expected CBF approximation
error, along with results from simulations of a single-integrator
collective under velocity perturbations. Lastly, we compare
these results with those obtained using a naive state-feedback
controller lacking safety filters.

Index Terms— control barrier functions, multi-agent systems,
safety-critical control, stochastic model-predictive control

I. INTRODUCTION

Intelligent cyber-physical systems — such as teams of aerial
robots or autonomous vehicle platoons — face a fundamental
challenge: they must safely navigate complex environments
while efficiently completing their objectives. This challenge is
non-trivial because the sub-tasks that constitute the ensemble’s
objective may often be varied and conflicting, making it
imperative to conduct appropriate trade-offs between tasks.
The inherent uncertainty in each agent’s model and operational
vicinity also imposes additional constraints on the multiagent
system, making safe multiagent control an acute problem.
Control barrier functions (CBFs) — an arguably de facto
technique for safety-critical controller synthesis — have
excelled in many applications in autonomous driving, robotics
[1], and allied fields. However, conventionally, most of
the associated results in CBF-enabled control are founded
on deterministic assumptions, making it challenging to
apply them in uncertain settings. Moreover, designing CBFs
for complex missions with competing safety requirements
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Fig. 1: Motivating example: A multi-agent reach-avoid
mission with complex safety requirements. Here, the dynamic
agents (depicted as mobile robots in orange (Ri)) must
navigate to specified goal positions (green circles (Gi)) while
avoiding multiple obstacles (gray circles (Oi)) and inter-agent
collisions. Figure annotations describe associated notions of
safety, with agent arrows indicating direction of travel.

typically entails a composition of distinct barrier functions, an
operation that may render the resulting function non-smooth,
so that traditional results of local Lipschitz continuity fail to
apply.

In composing barrier functions, one also runs the risk of
potentially losing safe controller existence guarantees. Again,
this is due to the fact that many CBF-derived control
synthesis algorithms generate filtered control signals by
solving quadratic programs (QPs) — or some optimization
problem with state and control costs — via gradient descent
or other derivative-based techniques. As such, even if one
could come up with CBFs that sufficiently capture all the
given safety requirements at hand, there might not exist any
control sequence for which the constraints of the resulting
CBF quadratic program are satisfied [2]. Moreover, while
an existence of non-negative Lagrange multipliers for each
CBF constraint has been shown to guarantee feasibility of
the resulting QP [2], such conditions are for the deterministic
case and do not apply in the stochastic setting.

Regarding CBF composition, a number of studies have
presented techniques for capturing diverse safety requirements
in the deterministic setting (see [1], [2]). These methods
typically involve computing the pointwise maximum (resp.
minimum) of all barrier functions that encode the safety
requirements, equivalent to an OR (resp. AND) Boolean
logical operation. Because the foregoing operations yield
non-smooth functions, however, synthesizing safe controllers
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TABLE I: NOTATION & NOMENCLATURE

Symbol Description

xi ∈ X ⊂ Rd Node- or agent-level state variable
ui ∈ U ⊂ Rm Node-level forcing term
ζd Vector [ ζ, ζ, ... ζ ]⊤ ∈ Rd

Id d× d identity matrix
||xi||p p-norm (set to two where p is omitted)
[Aij ]; tr(A); A⊤ Matrix (A) with elements Aij ; trace; transpose
||H||L1[a,b]

∫ b
a |H(τ)|dτ , H Lipschitz continuous on [a, b]

Λ([⋆i]i∈I) Block diagonal matrix with ith block ⋆i
R+; Z≥0, Z+ Set of positive reals; non-negative & positive integers
Ck Set of k-times continuously-differentiable functions
f(·); g(·) Drift and control vector fields
⊗; α(·); Kronecker product; Extended κ-class function
h(·) Control barrier function (CBF)
Lfh(·); Lgh(·); Lie derivatives of h along f and g
E; Pr(Ei) Expectation operator; Probability of event Ei

becomes a challenge, since certifying control inputs via barrier
functions requires computing the latter’s Lie derivatives along
the control and drift vector fields. Despite these challenges,
recent work [2] has demonstrated that safe control inputs
can still be synthesized by approximating the non-smooth
CBF (NCBF) via the log-sum-exp (LSE) function. They
further posit that the resulting CBF is bounded tightly by
asymptotically-decaying terms containing the NCBF, under
such a smoothing scheme. In the stochastic case and for
multiagent systems, however, no such analysis or guarantees
exist, to the best of our knowledge. With the recent emergence
of results extending CBF theory to stochastic systems [3], we
now have the tools to address the foregoing research gaps.

A. Scientific Contributions

Leveraging new-found ideas on Boolean composition of CBFs
with smooth approximation, we report results on synthesizing
safe controllers for ensembles under complex tasking and
noisy inputs. In contrast to similar work [2], however, we
apply a polynomial smoothing function in the smoothing
step and synthesize control inputs via a stochastic quadratic
program. Finally, we present two numerical examples to
demonstrate the proposed technique and validate the approach
through comparisons with a naive state-feedback controller
and an LSE-approximated CBF-enabled control scheme.

B. Outline

Notations that appear throughout the paper have been orga-
nized on Table I. Occasionally, several notations appearing
there will contain a subscript, a superscript, or both, but they
will be elucidated if unclear from the context. In the sections
that follow, we briefly discuss the mathematical elements
upon which our work is founded, viz. non-smooth CBFs
(Section II), Boolean composition (Section III), and stochastic
model-predictive control (SMPC) (Section V). These sections
set the background for our theoretical results (Section VI),
with numerical simulations (Section VIII), associated findings
(Section IX), the article’s conclusion (Section X), and the
appendices appearing last.

II. NON-SMOOTH CONTROL BARRIER FUNCTIONS

To preface our discussion on NCBFs, we consider a collective
comprising N identical agents, each evolving according to
nonlinear control-affine dynamics with noisy inputs given
by the following equation (with subscript i denoting the ith

agent):

ẋi = f(xi) + g(xi)ui +Kw(xi)wi, (1)

with admissible control signals taking values in the set, U,
of piecewise continuous and absolutely-integrable functions.
wi ∈ Rd represents the realization of an unknown disturbance
(with a known probability distribution) that is scaled by a
state-dependent and positive-definite gain matrix, Kw ∈ Rd×d.
The equation in (1) coincides with a stochastic differential
equation comprising a diffusion term equal to Kw(xi) and an
affine-in-control drift term. A few useful definitions follow.

Definition 1 (Safe Set): Let xi satisfy (1). The safe set, C,
with non-empty interior, Int(C), and boundary, ∂C, is the zero
super-level set of the sufficiently smooth map, h(·) : C→ R,
that is, C = {xi ∈ X : h(xi) ≥ 0}.

Definition 2 (Control Barrier Function [4]): Assume agent-
level dynamics of the form (1), with f and g locally Lipschitz,
and suppose there exists a function, α, belonging to the family
of locally Lipschitz continuous extended K-class functions1

on Rd. The C2 function, h : C ⊂ X→ R+∪{0}, is a control
barrier function2 for the system in (1) if there is a ui for
which the following property holds for all xi ∈ X satisfying
h(xi) > 0, with γ > 0:

Lfh+ Lghui +
1

2
tr

(
K⊤

w

∂2h

∂x2
i

Kw

)
≥ −α(γ, h(xi)). (2)

The family of controllers satisfying the foregoing condition
are important because they establish the forward invariance
of C, for C compact for all t ≥ 0. In particular, under certain
conditions on the drift and diffusion terms corresponding to
dh/dt (the exact derivative of h), then Pr(xi(t) ∈ C ∀ t ≥
0) = 1, provided that xi(0) ∈ Int(C) (see the recent paper [3],
Theorem 1, and Proposition 2 with its proof for the details).
This result thus enables the synthesis of safe controllers via
stochastic quadratic programming, set here as the expectation
minimization problem

min
ui∈U

J = E

[
T−1∑
τ=0

c (xi(τ), ui(τ))

]
(3)

s.t. Pr
(
Lfh+ Lghui +

1

2
tr

(
Kw

∂2h

∂x2
i

Kw

)
≥ −α(γ, h)

)
≥ 1− δh,

1An extended K-class function is a strictly increasing function that vanishes
at the origin.

2To be precise, h as delineated in Definition 2 refers to the special class
of CBFs known as zeroing or zero control CBFs [5], so named for their
property of vanishing at the boundary of the safe set, i.e., ∂C. They are
distinct from reciprocal CBFs (RCBFs) that instead grow unbounded as
the system state approaches ∂C.
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for δh ∈ (0, 1) small. The symbol T ∈ Z+ represents some
time horizon, and c(xi(t), ui(t)) is a positive-definite cost
function (typically made up of quadratic terms in ui and
xi) chosen to capture a desired weighting of the control
inputs corresponding to each component of xi. With this
primary setting in place, we transition to discussing Boolean
composition of CBFs.

III. COMPOSING CBFS VIA BOOLEAN LOGIC

Composing barrier certificates for complex safety require-
ments via Boolean logical operations appears in several
studies in the literature [2], [1], [6]. Besides Boolean logic,
however, it is theoretically possible to enforce global safety
requirements through distinct CBFs by passing them as inde-
pendent constraints to a QP. Nevertheless, non-smooth com-
positions — comprising some combination of maximization,
minimization, or negation — are standard, for reasons already
alluded to. These operations are respectively analogous to the
Boolean logical operators of OR (∨), AND (∧), and NOT
(¬), and the set-theoretic operations of union (

⋃
), intersection

(
⋂
), and complement (c). More concretely, suppose we have

a finite number of independent safety constraints completely
indexed by the set, I. We are interested in computing a
common CBF with attendant control inputs that drive each
agent in the ensemble only to configurations that respect all
|I| safety constraints. Denote by x = [[x⊤

i ]
N
i=1]

⊤ ∈ RNd and
u = [[u⊤

i ]
N
i=1]

⊤ ∈ RNm the ensemble analogs of the state
and control vectors. The ensemble-level safe set, hereafter
denoted as CΣ, with corresponding (zeroing) barrier function,
hΣ, is the set

CΣ = {x ∈ RNd : hΣ(x) ≥ 0} (4)

=
⋂
|I|

C⋆, for ⋆ = 1, 2, . . . , |I| (5)

=

{
x ∈ RNd : min

⋆∈I
h⋆(x) ≥ 0

}
, (6)

where hΣ is a conjunction of all independent CBFs, over I,
given by the expression:

hΣ(x) =

|I|∧
⋆=1

h⋆(x). (7)

Similarly, one can construct the OR analog of (5) (resp. (7))
through a union (resp. disjunction) over I. Even more com-
plicated safety requirements can be captured via successive
Boolean logical compositions [1], [2], as we illustrate in
Section VII.

IV. APPROXIMATING NCBFS VIA POLYNOMIAL
SMOOTHING

Since hΣ is non-smooth and, thus, unfit for quadratic opti-
mization, in this section, we discuss a parametric polynomial
smoothing technique for finding an approximation of hΣ,
hereafter denoted as ĥΣ. Rewriting hΣ = min⋆∈I h⋆ (with x
suppressed) as

hΣ(x) = −
1

2

(
ℓϕ(ℓ)− ℓ′

)
, (8)

where the expression on the right-hand side of (8) follows
from a known equivalent expression for the min. function
[7], with ℓ =

∑
⋆∈I\{1} h⋆(x)−h1(x) and ℓ′ =

∑
⋆∈I h⋆(x).

The function ϕ : R→ {−1, 1} characterizes the discontinuity
of hΣ and is given by

ϕ(ℓ) =

{
1, ℓ ≥ 0

−1, ℓ < 0.
(9)

Smoothing hΣ thus reduces to the task of redefining (9) to
address the jump discontinuity at ℓ = 0. In particular, if we
redefine ϕ (hereafter denoted as ϕ̂(ℓ, β) to make its distinction
from (9) clear) as

ϕ̂(ℓ, β) =


1, ℓ > β

Mk(ℓ, β), −β ≤ ℓ ≤ β

−1, ℓ < −β,

(10)

where β is the smoothing parameter and Mk(ℓ, β) = a0(β)+
a1(β)ℓ+a2(β)ℓ

2+ · · ·+ap(β)ℓ
p, we arrive at the following

expression for ĥΣ(x):

ĥΣ(x) = −
1

2

(
ℓϕ̂(ℓ, β)− ℓ′

)
. (11)

The choice of p in Mk depends on the desired level of
continuous differentiability for ĥΣ, i.e., p = 2k + 1, k ∈ Z+,
for ĥΣ ∈ Ck. Denoting the ensemble drift and control vector
fields respectively as F and G, we can write the corresponding
ensemble Lie derivatives (omitting higher derivatives for
brevity) as

LF ĥΣ(x) =
∂ĥΣ

∂x F (x) and LGĥΣ(x) =
∂ĥΣ

∂x G(x),

where F (x) and G(x) are given respectively by[
f⊤(x1), f⊤(x2), . . . , f⊤(xN )

]⊤ ∈ RNd and∧( [
g(x1), g(x2), . . . , g(xN )

] )
∈ RNd×Nm,

with

∂ĥΣ

∂x
= −1

2

[( ∑
⋆∈I\{1}

∂h⋆(x)

∂x
− ∂h1(x)

∂x

)
ϕ̂(ℓ, β) (12)

+

( ∑
⋆∈I\{1}

h⋆(x)− h1(x)

)
∂ϕ̂(ℓ, β)

∂x
−
∑
⋆∈I

∂h⋆(x)

∂x

]
.

V. SMPC WITH POLYNOMIAL-APPROXIMATED NCBFS

We segue now to generating control commands for each
agent via SMPC. In particular, having constructed a valid
and smooth CBF from the given independent safety con-
straints, we can now synthesize control inputs by solving the
(ensemble-level) stochastic quadratic program

min
u∈RNm

E
[Tu−1∑

τ=0

||u(τ)− ud(τ)||2 ·
(
1− 1{||x−xg||≤εg}

)]
s.t. Pr

(
LF ĥΣ(x) + LGĥΣ(x)u(τ)

+
1

2
tr
(
(Kw ⊗ IN )⊤

∂2ĥΣ(x)

∂x2
(Kw ⊗ IN )

)
+ α(γ, ĥΣ(x)) ≥ 0

)
≥ 1− δh (13a)

− umax · 1Nm ≤ u(τ) ≤ umax · 1Nm, (13b)

3757



with ud ∈ RNm denoting the nominal and unsafe ensemble-
level control input, and where Tu is the MPC control horizon.
We include an indicator function, 1{||x−xg||≤εg}, to prevent
the accumulation of costs after all agents have reached
positions within a goal region defined by the closed ball
centered at xg with radius, εg. The agents’ respective goal
locations are given by each element of the goal vector,
xg = [x⊤

i,g]
⊤. Finally, we also place bounds on the control

inputs to respect physical actuation limits (13b), characterized
by a positive scalar, umax. Due to the hard input constraints
and chance constraints, SMPC problems of the form (13) are
generally intractable [8]. Thus, a few assumptions (presented
next) are in order, to guarantee the problem’s feasibility.

Assumptions:
(A1) The dynamical system for the ith agent is fully observ-

able, so that access to full state information is assumed.

(A2) The disturbance vector is zero-mean Gaussian with
bounded covariance, i.e., wi ∼ N (0d, [Σwij

]), with
0 < Σwii

≤ σmax ∀ i ∈ [1, 2, . . . , d], where σmax ∈ R+

represents a bound on the noise. This assumption is
important to argue for the convexity of the set of safe
controls using the log-concavity of the multivariate
normal distribution.

(A3) ud is parameterized by the disturbance as ud(t) =
uf (t) + (Kw ⊗ IN )w, with w = [[w⊤

i ]
N
i=1]

⊤ ∈ RNd

denoting the ensemble disturbance vector and where uf
is a simple feedback law (see Section VII for its form).

These assumptions together with a restriction of the control in-
puts to an invariant set (13a) and the quadratic cost guarantee
the feasibility of (13) [8], since they enable a transformation
of the chance constraints into convex constraints via a
logarithm operation. One can then solve the resulting QP using
optimization software with quadratic programming support.

VI. THEORETICAL RESULTS

A. Upper Bound on the Expected CBF Approximation Error

To quantify the accuracy of the CBF approximation with re-
spect to the smoothing parameter, we introduce the following
lemma, which we will invoke in the proposition to follow.

Lemma 1: Let the functions ϕ̂(ℓ, β) and ϕ be as defined in
(10) and (9), respectively. Then, for β > 0 and on Iβ =
[−β, β], the following inequality holds:

E
[
||ϕ(ℓ)− ϕ̂(ℓ, β)||L1[a,b]

]
=

15

4
β. (14)

Proof. Since ϕ̂(ℓ, β) and ϕ(ℓ) coincide for ℓ < −β and
ℓ > β, when β > 0, and the L1[a, b] norm is equivalent to
the integral,

∫ β

−β
|ϕ(ℓ)− ϕ̂(ℓ, β)|dℓ, on Iβ , it is sufficient to

prove that (14) holds on Iβ . By straightforward integration
on Iβ , with k = 2 in (10) (see the corresponding coefficients
for M2(ℓ, β) on Table II), and using the definition of the
L1[a, b] norm and the fact that E [c] = c, if c is a constant,
we arrive at the expression in (14). ■

Proposition 1: Let ĥΣ be defined as in (11). Define the CBF
approximation error as ê = ĥΣ−min⋆∈I h⋆. Then, under the
polynomial smoothing scheme, with k = 2 in (10), we have
the following inequality for the expected CBF approximation
error, E

[
||ê||L1[a,b]

]
:

E
[
||ê||L1[a,b]

]
≤ 15β2

8
. (15)

Proof. See Appendix A. ■

Remark 1: Since the upper bound on the CBF approximation
error consists of terms quadratic in β, successively higher
values of β may lead to smoother approximations under the
polynomial smoothing scheme at the cost of losing information
about the original function. Conversely, the approximations
for β values on (0, 2

√
2√

15
) may be comparatively less smooth

while being less prone to distortion. It turns out, in fact,
that no perceptible change in the smoothing performance is
recorded for β values on (0, 1] (see Fig. 2), with safe controls
assured nonetheless (see Fig. 3).

B. Forward Invariance of the Ensemble-Level Safe Set

Considering that our method relies on the synthesis of control
inputs via a polynomial-smoothed NCBF (i.e., ĥΣ), that itself
defines the ensemble-level safe set (CΣ), we need to verify
that ĥΣ is indeed a valid CBF. The following result from
[3] specifies conditions that guarantee almost-sure safety via
stochastic zeroing CBFs that will be useful in establishing
the validity of ĥΣ in our next result (Proposition 2).

Theorem 1 (Conditions for Almost-Sure Safety via Zeroing
CBFs (Corollary 11 in [3])): Assume there exists a function
h : X→ R and a K-class function, α⋆, where, for all xi ∈ X
satisfying h(xi) > 0, there exists a control ui ∈ U such that3

µ̃i −
σ̃2
i

h(xi)
≥ −h2(xi)α⋆(h), (16)

with µ̃i and σ̃i, respectively denoting the drift and diffusion
terms corresponding to dh/dt, with xi evolving according
to (1). Then, for all t ≥ 0,Pr (x(t) ∈ C) = 1, provided that
x(0) ∈ Int(C).

Proposition 2 (Forward Invariance of CΣ): Provided that
x(0) ∈ CΣ, if there exists a u : [0,∞) → U satisfying
the ensemble analog of (16) (given in Appendix B), then
x(t) ∈ CΣ ∀ t ≥ 0, with probability 1.

Proof. This proof follows from an invocation of Theorem 1,
from CΣ’s definition, and from the smoothness of ĥΣ. We
provide the details in Appendix B. ■

Remark 2: Although the proof for Proposition 2 establishes
the invariance of C for all t ≥ 0, we note here that we require
safety to be assured only for a finite interval, since the controls

3Note that α⋆ (K-class function) and α (extended K-class function), while
similar, denote separate objects throughout this article.

3758



are computed (and applied) for t ∈ {0, 1, . . . ,Tmax−1} (see
the limits of the summation operator in Eqs. (3) and (13)).

Algorithm 1 Safety-Aware Collective Control via Polynomial-
Smoothed NCBFs and Stochastic Quadratic Programming

Require: N , Tu, xg , εg , Dynamics: f, g,Kw, wi.
1: Max. mission time (in number of time steps): Tmax.
2: Tg ← 0.
3: repeat
4: x0 = STATEESTIMATOR().
5: xc ← x0 ▷ Store current state.
6: Sample ensemble disturbance realization, w.
7: for τ ← 1 to Tu do
8: Compute ud(τ) = (xc − xg) + (Kw ⊗ IN )w.
9: xc ← F (xc) +G(xc)ud(τ).

10: Solve stochastic QP (13) for {u⋆(t)}Tu−1
t=0 .

11: Send u⋆(0) to agents’ actuators.
12: for τ ← 1 to Tu − 2 do
13: u(τ − 1)← u⋆(τ).
14: u(Tu − 1)← uinit ▷ Initial element of u.
15: if Tg = Tmax then
16: break ▷ Exit loop.
17: Tg ← Tg + 1.
18: until ||xc − xg|| ≤ εg .

VII. MULTI-AGENT SAFETY NOTIONS

While different notions for safety exist, each depending on
the specific task requirements at hand, we define safety in
this article using the two constraints provided next (see Fig. 1
for a visual summary of the tasks under consideration).

Safety Constraints:

(C1) an inter-agent collision avoidance constraint, which
requires each agent to maintain a distance of δ meters
(m) from other agents, and

(C2) an obstacle avoidance constraint that ensures agents do
not collide with No static circular obstacles of radius
ro in the mission field by keeping a distance of δo > δ
m, with δo at least twice the width of each agent4.

The aforementioned conditions can be enforced separately
by the CBFs (i signifies the agent index)

hδ
i = ||xi − xj ||2 − δ2 (17)

ho
i = ||xi − xo

k||2 − δ2o , (18)

where xo
k is the absolute position of the kth obstacle. Using

(7), we select the following CBF candidate for the ensemble
hΣ = hδ ∧ ho, with hδ and ho given, respectively, as

N∧
i=1

N∧
j=1+1

hδ
i and

N∧
i=1

No∧
k=1

ho
i . (19)

4We will assume that these distances are detected by range sensors fitted
on each agent. Obstacles of disparate sizes can also be considered with an
appropriate modification of δo.

The entire safe set CΣ is, thus, CΣ =
⋂

⋆∈{δ,o} C⋆, with
corresponding CBF, min⋆∈{δ,o} h⋆. Finally, we will assume
that uf in (A3) evolves according to the following feedback
control law: uf (t) = x(t) − xg. This nominal controller is
thus adjusted by the safety filter provided by the CBF only
as needed, to adhere to the specified safety requirements.

VIII. NUMERICAL EXAMPLES

We discuss two mission scenarios in this section. In the first
mission, the agents must each navigate to their respective
goal locations within a planar mission space that includes
a single obstacle whose position is known; in the second,
multiple obstacles are introduced. For both examples, we
consider single-integrator systems with dynamics of the form

ṗxi
= (vxi

+ wxi
) (20a)

ṗyi
= (vyi

+ wyi
), i = 1, 2, . . . , N, (20b)

with control inputs perturbed by wxi
and wyi

, the x and
y components of the normally-distributed disturbance, wi.
pxi and pyi are the ith agent’s position in the plane along
the abscissa and ordinate axes, respectively, with correspond-
ing linear velocities, vxi

and vyi
. It is trivial to see that

(20) is equivalent to the control-affine form in (1), with
f = 02 and g = I2, and where ui = [vxi

, vyi
]⊤ and

xi = [pxi
, pyi

]⊤ are the ith agent’s control and state vectors,
respectively. For convenience, we will take the disturbance
terms to encode the nonlinearity in the agents’ models.
Furthermore, the agents are tasked with the multi-objective
problem set forth in Section VIII. Table II lists values
of the parameters we used during simulations. Assuming
identical agents, we can then write the ensemble-level
dynamics for the single-integrator collective as ẋ = u +
(Kw ⊗ IN )w, with x = [px1 , py1 , px2 , py2 , . . . , pxN

, pyN
]⊤

and u = [vx1
, vy1

, vx2
, vy2

, . . . , vxN
, vyN

]⊤. In Algorithm 1,

TABLE II: SIMULATION PARAMETERS

Parameter Value Parameter Value

β [1, 1
2
, 1
10

] a3 − 5
4β3

[δ, δ0] [0.14, 0.15] a5
3

8β5

δh 0.01 Kw I2
a1

15
8β

α(γ, h) γ3h

a2k,k∈Z≥0
0 Σw 0.1 · Id

we provide pseudocode for implementing the proposed safety-
aware control scheme. Tg is the number of time steps it
takes for all agents to reach positions within their respective
goal sets. Its value is unknown; however, for finite goal
reachability, we require that Tg be bounded by a finite number,
Tmax ∈ Z+. The STATEESTIMATOR sub-routine returns an
estimate of the current ensemble state.

IX. RESULTS & DISCUSSIONS

A. Safety-Critical Control under Varied Safety Specifications

In Fig. 2a, we plot the collective’s trajectories and associated
CBFs, with both smoothing schemes and for the single-
obstacle mission. Similar plots corresponding to the multiple-
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Fig. 2: Comparing controller reach-avoid performance: (a) Time-evolution of agent trajectories and CBFs showing the
effect of smoothing technique and smoothing parameter (β) on hΣ, with a horizontal line at hΣ = 0 for reference. (b) Results
for the multiple-obstacle example. From the inset on the right, we notice that the LSE-smoothed CBF assumes a zero value
rather abruptly on the interval 6 ≤ t ≤ 7. (c) Envelope of 100 safe trajectories (with magnified inset) for agent 3.

obstacle example are provided in Fig. 2b, from where we
notice comparable observations as in the single-obstacle case,
with the controller driving each agent locally to the goal while
ensuring that they avoid obstacles and inter-agent collisions
en route. From the magnified view of the highlighted area in
Fig. 2b, we also notice that ĥΣ admits a zero value for the
LSE approximation scheme, which may cause the controller
to revert to its nominal value, hence violating the safety
constraints and effectively invalidating such CBF. ĥΣ is also
less sensitive to the smoothing parameter for the polynomial
approximation scheme than for the LSE technique. Finally,
we notice from Fig. 2c, that under the proposed controller,
assured safety is guaranteed for all 100 experiment runs.

B. Effect of β on Safety-Critical Control

Next, in Fig. 3, we compare the nominal and CBF-filtered
control inputs for β ∈ {0.1, 0.5, 1}, (for the multiple-obstacle
setting only, due to page limits). From the plot, we observe
that the polynomial smoothing technique tends to generate
more conservative control actions that are adequate for the
task and closely track the nominal CBF controller, modifying
it only minimally, while that of the log-sum-exp function
is more aggressive, exhibiting larger deviations from the
nominal CBF-based controller, for unsafe control actions.

C. Control Input Computation Time

Lastly, given that Algorithm 1 relies on polynomial ap-
proximation and solving an online optimization problem,
we computed average control input computation times for
100 simulation runs (see Table III) to roughly assess our
method’s performance. Although limited, the results show a
direct relationship between the control horizon and average
control synthesis time. Simulations were conducted using a
workstation equipped with an AMD 7950x 16-core processor
and 128 GB of RAM, with software programs optimized for
parallel processing.
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Fig. 3: Synthesized control inputs: Time-evolution of
the norms of the nominal and CBF-filtered control inputs
with β = 1, 0.5, and 0.1, and for the multiple-obstacle
mission setting. A red inset highlighting the control inputs
corresponding to the nominal and CBF-filtered cases is also
depicted.

TABLE III: COMPUTATION TIME (IN MILLISECONDS)

Tu Computation Time [ms]
[time steps] I II

10 0.6± 0.03 1.05± 0.2

20 0.647± 0.035 1.08± 0.23

30 0.66± 0.037 1.11± 0.239

X. CONCLUSIONS

This paper set out to illuminate an approach for safely coordi-
nating autonomous collectives operating in environments with
obstacles and under noisy control inputs. We showed that
by polynomial smoothing of Boolean-composed CBFs and
stochastic MPC, safe controls can be synthesized (locally)
for collectives by considering the ensemble as one agent,
computing controls, and propagating the resulting optimal
values (component-wise) to individual agents, leading to
both safety and performance guarantees. In addition, we
provided evidence for the robustness of our proposed method
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to variations in approximation for small-enough values of the
approximation parameter, with a fractional error upper bound.
Our work, however, relies on the assumption of identical
agent dynamics and a static environment, making controller
synthesis for uncertain heterogeneous dynamical systems
under varied tasking an interesting topic for future work.
Other valid directions include an extension of the foregoing
ideas to the non-Gaussian noise scenario or for more complex
and dynamic mission environments. One can also consider
gradient-free metaheuristic techniques that depart altogether
from the QP-based framework presented here.
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APPENDICES

A. Proof of Proposition 1
Proof. Since ê = 0 everywhere on R where ϕ(ℓ) and ϕ̂(ℓ, β)
coincide (see Lemma 1), and ℓ ≤ β on Iβ = [−β, β], using
the definition of the L1[a, b] norm and from Eqs. (8) and (11),
we can write

E
[
||ê||L1[a,b]

]
= E

[∫ β

−β

|ê|dℓ
]

= E
[∫ β

−β

∣∣− 1

2
(ℓϕ̂− ℓ′) +

1

2
(ℓϕ− ℓ′)

∣∣dℓ]
= E

[∫ β

−β

∣∣1
2
ℓ(ϕ− ϕ̂)

∣∣dℓ]
≤ β

2
E
[∫ β

−β

|ϕ− ϕ̂|dℓ
]

(by the monotonicity of E [·])

=
β

2
E
[
||ϕ− ϕ̂||L1[a,b]

]
=

β

2
· 15β

4
=

15β2

8
,

by Lemma 1. Thus, we arrive at the intended result given in
Proposition 1 (i.e., E

[
||ê||L1[a,b]

]
≤ 15β2

8 ), which completes
the proof. ■

B. Proof of Proposition 2

Proof. Let µh and σh denote the ensemble analogs of µi and
σi, defined respectively as

µh := LF ĥΣ(x) + LGĥΣ(x)u

+
1

2
tr
((

(Kw ⊗ IN )⊤
∂2ĥΣ(x)

∂x2
(Kw ⊗ IN )

))
(21a)

σh :=
∂ĥΣ(x)

∂x
(Kw(x)⊗ IN ). (21b)

According to Theorem 1, we need to show that ĥΣ satisfies

µh −
σh

2

ĥΣ(x)
≥ −ĥ2

Σ(x)α⋆(ĥΣ). (22)

Our proof will proceed in two steps. First, we will show that
ĥΣ is a valid zeroing CBF (in Part I of the proof). To finish
the proof, in Part II, we will then construct a reciprocal CBF
(RCBF) from ĥΣ and prove that such an RCBF satisfies valid
conditions for almost-sure safety as set forth in Theorem 10
in [3]. Part I’s proof follows.

From Eqs. (10) and (11), by the definitions of ℓ and ℓ′,
and since infℓ M2(ℓ, β) = −1 and supℓ M2(ℓ, β) = 1 on
−β ≤ ℓ ≤ β, it can be shown that ĥΣ > 0 for all h∗, ∗ ∈
I such that ∀ x ∈ ∂CΣ, h∗(x) is positive5. Note that, by
the sum and difference law of limits and the continuous
differentiability of its constituent CBFs, ĥΣ is smooth and
twice continuously-differentiable, i.e., in C2. Thus, by Lemma
2 in [5], if ĥΣ(x) > 0 ∀ x ∈ ∂CΣ, then for each k ∈ Z+,
there exists a constant γ > 0 s.t.

dĥΣ(x)

dx
≥ −γĥk

Σ(x), ∀ x ∈ Int(C). (23)

Setting α(γ, ĥΣ) = γĥk
Σ(x), we conclude that ĥΣ satisfies

the ensemble analog of (2), thus completing Part I’s proof.

For Part II, motivated by Corollary 11 in [3], we define the
RCBF, B̂Σ := 1/ĥΣ, and write its corresponding drift term,
µB , in terms of µh and σh as

µB = −ĥ−2
Σ µh + ĥ−3

Σ σ2
h. (24)

By the definition of an RCBF (see [5], [3]), from (24), we
can write

−ĥΣ(x)
−1µB ≤ α⋆(ĥΣ)

=⇒ −ĥΣ(x)
−1

(
−ĥ−2

Σ µh + ĥ−3
Σ σ2

h

)
≤ α⋆(ĥΣ)

=⇒ µh −
σh

2

ĥΣ(x)
≥ −ĥ2

Σ(x)α⋆(ĥΣ),

which is the same expression in (22), where α⋆ is a K-class
function. We have now proved almost-sure safety for ĥΣ.
Invoking Proposition 1 in [5], since the previous argument
establishes the validity of ĥΣ as a zeroing CBF for all time
t ≥ 0, the forward invariance of CΣ follows immediately,
thus completing the proof. ■

5This statement is valid for all h∗(x) cases, i.e., for
∑

⋆∈I\{1} h⋆(x)−
h1(x) ≥ 0 and for

∑
⋆∈I\{1} h⋆(x)− h1(x) ≤ 0. In all cases, ℓ′ > 0,

since h∗ > 0, for all ∗ ∈ I by Definition 2.
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