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Abstract—In this paper we validate, including experimentally,
the effectiveness of a recent theoretical developments made by
our group on control-affine Extremum Seeking Control (ESC)
systems. In particular, our validation is concerned with the
problem of source seeking by a mobile robot to the unknown
source of a scalar signal (e.g., light). Our recent theoretical
results made it possible to estimate the gradient of the unknown
objective function (i.e., the scalar signal) incorporated in the
ESC and use such information to apply an adaptation law which
attenuates the oscillations of the ESC system while converging
to the extremum (i.e., source). Based on our previous results, we
propose here an amended design of the simple single-integrator
control-affine structure known in ESC literature and show that
it can functions effectively to achieve a model-free, real-time
source seeking of light with attenuated oscillations using only
local measurements of the light intensity. Results imply that the
proposed design has significant potential as it also demonstrated
much better convergence rate. We hope this paper encourages
expansion of the proposed design in other fields, problems and
experiments.

Index Terms—Extremum Seeking; Source Seeking; Mobile
Robot; TurtleBot Experiment; Light Source; Control-Affine.

I. INTRODUCTION

Extremum seeking control (ESC) systems [1] are model-
free, real-time adaptive control methods which aim at steer-
ing a given dynamical system to the extremum (maxi-
mum/minimum) of an objective function [2] that may not
be known expression-wise. Moreover, the way ESC systems
operate make them very desirable to solve many problems
in many fields as they only require a perturbation action
and measurements of the objective function corresponding
to the actuated perturbations [2], [3]. Via feedback of the
objective function measurements, the ESC system updates the
parameter or the control input to drive the system towards the
extremum point. A simple diagram summarizing this idea is
provided in figure 1.

Broadly speaking, two types of ESC systems can be found
in literature: (i) ESC designs based on the classic structure
[4], [5]; and (ii) ESC systems that are in control-affine forms
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Fig. 1: Simple diagram explaining ESC systems.

[6], [7]. Both kinds can be studied/analyzed using averaging
tools [8]. ESC systems have been applied in unmanned sys-
tems, robotics, multi-agent systems, and bio-mimicry (e.g.,
[2], [6], [9]–[17]). Many of the ESC applications in the men-
tioned fields fall under what is known as the “source seeking”
problem. That is, the ESC system steers a dynamical system
(e.g., robot) towards the source point of a signal given that
this source represents the maximum/minimum of intensity or
strength of said signal. Hence, the ESC advantage in these
kinds of problems (i.e., source seeking) is that it will not
require the mathematical expression of the signal distribution
in the spacial domain or any global information for that
manner (e.g., GPS). In fact, the ESC source seeking problem
is solvable via the local measurement of the signal using, for
example, sensors. Hence, ESC systems enable model-free,
real-time source seeking. Figure 2 provides the idea of source
seeking. However, when it comes to experimental efforts,
verification, and deployments, most efforts in literature utilize
the classic ESC structure or designs based on it, for the source
seeking problem (e.g., [18]–[21]). In literature, it is quite
rare to find experimental deployments or efforts involving
control-affine ESC structures in general or using them in
source seeking; one of such rare works is [22] which verifies
experimentally the earlier theoretical results developed by the
same authors in [7] and expands on it.

Motivation. Experiments of ESC using robotics, multi-
agents, or unmanned systems can be challenging in general.
This is due to the continuous oscillations issue in both the
control input (e.g., the linear/angular velocity) and about the
extremum (usually ESC systems stabilize in a limit cycle
and practical stability sense [4], [6], [8]). The continuous
oscillations in the control input have been shown to be not
much of an issue and definitely not an obstacle in real-
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Fig. 2: Sensor-based source seeking

world experiments of source seeking (e.g., [18]–[21]). In
fact, we produced experiments using a robot (Turtlebot3)
[23] for source seeking of light by classic ESC replicating
the available literature of this problem – see our YouTube
video [24]. On the other hand, simple control-affine ESC
structures can be beneficial to use in the source seeking
problem given their overall simpler design, control laws,
guaranteed stability [6]–[8], and the fact that many of them,
like the single-integrator design (see [6]) have much smaller
number of parameters to tune compared to many classic ESC
designs. However, the authors in [22] stated in section IV.B
that the control law (ẋ = u =f(x)

√
ωu1 +

√
ωu2), which

is the basis of the simple single-integrator design, performed
the “worst” in their experiments. In fact, the same authors
showed theoretically in [7] that single-integrator designs with
basic quadratic function and sinusoidal control inputs will not
achieve asymptotic convergence to the extremum, i.e., they
will be persistently oscillating about the extremum.

Contribution. In this paper, we take advantage from our
recent theoretical developments in [25] which made it possi-
ble for control-affine ESC systems, including, simple single-
integrator designs, to have attenuating oscillations as the
system approaches the exteemum point (i.e., asymptotically
convergent to the source point in a source seeking problem).
In our work [25], it was shown that structures eminent to have
persistent oscillations per [7], [22] can in fact, by design, be
made structures with attenuating oscillations using what we
call Geometric-based Extended Kalman Filer (GEKF) and an
adaptation law which attenuates the control input signals in a
stable and adaptive manner so the system perturbs as needed
(i.e., the closer the system is from the extremum/source,
the smaller perturbation it needs). We aim at using these
developments to introduce a novel single-integrator source
seeking design with attenuating oscillations. We provide both
simulation results, but more importantly, novel experimental
results for source seeking of light. The results validates our
recent theoretical developments in [25] and show that one can
achieve a model-free, real-time single-integrator-like source
seeking with attenuating oscillations. In fact, our experiments
demonstrate that the proposed design possesses remarkable
better convergence rate highlighting the potential of our work
to be used in other control-affine ESC applications, problems
and experiments.

II. CONTROL-AFFINE EXTREMUM SEEKING WITH
ATTENUATING OSCILLATIONS USING GEOMETRIC-BASED

KALMAN FILTERING

In this section, we briefly provide the background and
preliminaries from our theoretical results in [25] which will
be the basis for the main results provided in the next section.
Control-affine ESC systems can be characterized as [6], [25]:

ẋ = bd(t,x) +

m∑
i=1

bi(t,x)
√
ωui(t, ωt), (1)

with x(t0) = x0 ∈ Rn and ω ∈ (0,∞), where x is the state
space vector, bd is the drift vector field, ui are the control
inputs, m is the number of control inputs, while the vectors
bi correspond to the control vector fields. The control-affine
ESC system in (1) can be approximated and characterized by
what is known as the Lie bracket system (LBS) [6], [25]:

ż = bd(t, z) +

m∑
i=1

j=i+1

[bi, bj ](t, z)νj,i(t), (2)

with νj,i(t) = 1
T

∫ T

0
uj(t, θ)

∫ θ

0
ui(t, τ)dτdθ. The operation

[·, ·] donates Lie bracket operation applied to two vector
fields bi, bj : R × Rn → Rn with bi(t, ·), bj(t, ·) being
continuously differentiable, and is defined as [bi, bj ](t,x) :=
∂bj(t,x)

∂x bi(t, x)− ∂bi(t,x)
∂x bj(t,x). LBSs in (2) are gradient-

like systems [6], [7], [25] that average [8] the ESC system
in (1). In [7], a class of the control-affine ESC based on (1)
was proposed to generalize many control-affine ESC systems
in the literature (see [7], [25] for more details). Our work in
[25] extended the mentioned generalized class and proposed
a new ESC class which we will use in this paper:

ẋ =

n∑
i=1

(
b1i(f(x))

√
ωai(t)û1i + b2i(f(x))

√
ωai(t)û2i

)
ei,

(3)

ȧ =

n∑
i=1

(−λi(ai(t)− Ji(t,x))) ei, (4)

where ei denotes the ith unit vector in Rn. Moreover, b1i and
b2i are the vector fields associated with the control inputs
u1i = ai

√
ωû1i(ωt), u2i = ai

√
ωû2i(ωt), the objective

function f : Rn → R, ai ∈ R is the amplitude of the input
signal, and λi > 0 ∈ R is a tuning parameter. Lastly, Ji(t,x)
represents the estimation of the right hand side of the LBS
in (2) which can be estimated merely by estimation of the
gradient of the objective function ∇f(x) as shown in our
work [25]. Now, we impose the following assumptions:
A1. bji, bji ∈ C2 : R → R, and for a compact set C ⊆

R, there exist A1, ..., A3 ∈ [0,∞) such that |bj(x)| ≤
A1, |∂bj(x)∂x | ≤ A2, |∂[bj ,bk](x)∂x | ≤ A3 for all x ∈ C , i =
1, 2; j = 1, 2; k = 1, 2.

A2. û1i, û2i : R × R → R, i = 1, 2, are measurable
functions. Moreover, there exist constants Mi ∈ (0,∞)
that supωt∈R|ûi(ωt)| ≤ Mi, and ûi(·) is T-periodic,
i.e. ûi(ωt + T ) = ûi(ωt), and has zero average, i.e.∫ T

0
ûi(τ)dτ = 0, with T ∈ (0,∞) for all ωt ∈ R.
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A3. There exists an x∗ ∈ C such that ∇f(x∗) = 0,∇f(x) ̸=
0 for all x ∈ C \{x∗}; f(x∗) = f∗ ∈ R is an isolated
extremum value.

A4. Let the estimation error of Ji(t,x) be ηi(t), then
ηi(t) : R → R, i = 1, ..., n is measurable function
and there exist constants θ0, ϵ0 ∈ (0,∞) such that
|ηi(t2) − ηi(t1)| ≤ θ0|t2 − t1| for all t1, t2 ∈ R and
supt∈R |ηi(t)| ≤ ϵ0. Furthermore, limt→∞ ηi(t) = 0.

Our ESC design [25] for n = 1 is shown in figure 3. We
recall the following theorem from [25] which provides the
stability of the ESC system. (3)-(4)

Theorem 1: Let A1-A4 be satisfied with some ω ∈
(ω∗,∞), ω∗ > 0 and suppose ∃ t∗ > t0 = 0 such that
∀t > t∗ and |Ji(t, z)| ≤ 1/tp with some p > 1 then (i) the
equilibrium point ẑ∗ ∈ C is locally asymptotically stable
for the estimated LBS of ż = Ji(t, z), (ii) ai in (4) is
asymptotically convergent to 0; and (iii) the system in (3)
is practically asymptotically stable.

Fig. 3: The proposed ESC design in [25].

III. MAIN RESULTS

For the experimental work utilized in this section, we use
the Turtlebot3 (TB3) robot [23]. TB3 is a small, affordable,
ROS-based, and differential drive mobile robot platform that
is designed by ROBOTICS, for the purpose of research,
education. It has two forms: burger, and waffle. In this
work, we have used the burger TB3 type which has wheel
base and wheel radius of 160mm and 33mm. In fact, the
robot displayed in figure 2 is a TB3. An overview of the
experimental setup in our lab is shown in figure 4. There
are three main components in the setup. First component
(denoted by #1) is the TB3. Second component (denoted
by #2) is the light source utilized during the experiment,
which can be replaced by any extremum/source in the context
of ESC literature. Third component (denoted by #3) is the
motion capture system employed to track and visualize the
planar trajectory of the TB3.

A. Novel Single-Integrator-Like Source Seeking Design

Here we provide details on our proposed novel single-
integrator-like source seeking design which stabilizes a sys-
tem (e.g., robot like TB3) about the extremum/source with
attenuated oscillations. Traditional single-integrator designs
have been used in literature (e.g., [6]). In this work, we
propose a novel (amended) single-integrator design based

Fig. 4: Overview of the experimental setup.

Fig. 5: Proposed amended single-integrator design with
GEKF and optional High/Low Pass Filters (HPF/LPS).

on our recent theoretical developments in [25] which is
summarized in the previous section. That is, we propose an
amended single-integrator source seeking design with attenu-
ating oscillations as shown in figure 5. Note that the proposed
design in figure 5 is slightly different from the theoretical
results in [25] as we incorporate optional High/Low Pass
Filters (HPF/LPF). The reason for introducing these optional
filters into the design is to provide the user with the flexibility
to attenuate undesired noise and select frequency ranges
if needed. In our results, the inclusion of these filters has
demonstrated the ability to enhance the transient performance
of the system. Along the same lines of (3)-(4), the proposed
design which operates in a planar mode (x and y coordinates)
can be represented as follows:

ẋ = c f(x, y)
√
ωu1(ωt) + ax

√
ωu2(ωt),

ẏ = −c f(x, y)
√
ωu2(ωt) + ay

√
ωu1(ωt),

ȧx = −λx(ax − Jx(x, y)),

ȧy = −λy(ay − Jy(x, y)),

(5)

where u1(ωt) = sin(ωt), u2(ωt) = cos(ωt), f(x, y) is the
objective function, ω is the frequency, c is a constant, ax,
ay∈ R are the amplitude of the input signals for x and y
states, respectively, λx, λy> 0 ∈ R are tuning parameters,
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and Jx(x, y) and Jy(x, y) represent the estimation of the
right-hand side of the LBS such that [25]:

Jx(x, y) = α1∇zxf(x, y) + η1(t),

Jy(x, y) = α2∇zyf(x, y) + η2(t),
(6)

with α1, α2 are constants and η1, η2 are the estimation error
of Jx, Jy , respectively.

As shown in [25], the estimations Jx and Jy are good
and viable for the validity of Theorem 1 only if the gradient
estimation is accurate with vanishing error as t → ∞. This
is what we achieved in [25] via the novel filter we called
Geometric-based Extended Kalman Filter (GEKF) [26]. For
our design in this paper, as is the case in [25], GEKF [26]
works in real-time and is considered as a discrete-continuous
extended Kalman filter that requires:

1) a measurement equation, which is the discrete part
that relates the parameter we need to estimate (the
gradient of the objective function ∇f(x, y)) with the
measurements we have access to (measurements of the
objective function f(x, y)).

2) the propagation model, which is the continuous part
that governs the filer behavior as a continuous model
between the discrete measurements.

The GEKF procedure is summarized in Algorithm 1. How-
ever, the reader may refer [26] for more details on GEKF
idea, steps, application and solved examples by detail. Also,
the reader can refer [12] for an application using GEKF. In
this paper, the GEKF states are formulated as follows:

X̄ =


x̄1

x̄2

x̄3

x̄4

x̄5

 =


K
2 ∇xf(x, y)|t1
K
2 ∇yf(x, y)|t1

˙̄x1

˙̄x2

f(x, y)|t1


5×1

, (7)

where x̄1 and x̄2 are proportional to the gradient components
we are estimating. Following the guidelines provided in [25],
[26], we take k = (2/

√
ω) sin(ω∆t/2) where ∆t is a

short time step between the measurements. It is important
to emphasize that the time step ∆t has to be significantly
smaller than the periodic time. This requirement is due to
the fact that both ESC systems and GEKF [25] perform more
effectively at higher frequencies. Now, following a constant
velocity propagation model similar to [25], [26], we get:

˙̄X =


x̄3

x̄4

0
0
0


5×1

+Ω, (8)

where Ω represents the process noise as a random variable,
Q is the covariance matrix for process noise (system noise)

and the Jacobian matrix A associated with the state dynamics
is obtained as

A =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


5×5

. (9)

For the measurement updates, The Chen-Fliess series ex-
pansion is used as shown in detail in [25], [26] as follows:

f(x, y)|t2 = f(x, y)|t1 + (∇f(x, y) · b1)|t1K cos(ωt)

+ (∇f(x, y) · b2)|t1K sin(ωt) + ν(t).

and

b1 =
[
c
√
ωf(x, y) ; ax

√
ω
]
,

b2 =
[
−c

√
ωf(x, y) ; ay

√
ω
]
,

(10)
where t2 = t1+∆t. The residual terms follow a Gaussian dis-
tribution as measurement noise denoted as ν(t) ∼ N(0, R),
and R is the covariance matrix associated with noise mea-
surement. Moreover, it is further assumed that the process
noise and the measurement noise are uncorrelated. Now, we
rewrite the measurement update equation as:

f(x, y)|t2 = h(X̄) + ν(t)

= f(x, y)|t1
+
(
cf(x, y)∇xf(x, y) + ax∇yf(x, y)

)
K cos(ωt)

+
(
ay∇xf(x, y)− cf(x, y)∇yf(x, y)

)
K sin(ωt)

+ ν(t)

= x̄5 + 2cx̄1x̄5 cos(ωt) + 2ax̄2 cos(ωt)

+ 2ax̄1 sin(ωt)− 2cx̄2x̄5 sin(ωt) + ν(t),
(11)

where t = (t1 + t2)/2. The Jacobian matrix associated
with the measurement update equation is:

C =


2cx̄5 cos(ωt) + 2ay sin(ωt)
2ax cos(ωt)− 2cx̄5 sin(ωt)

0
0

1 + 2cx̄1 cos(ωt)− 2cx̄2 sin(ωt)


5×1

(12)

With the measurement update equation (11) in place and
the propagation model (8) in place, Algorithm 1 can be
applied effectively as per [25], [26] and our proposed design
in figure 5 can be put in action. In the next subsections our
proposed design will be verified by simulations and mostly
real-time, real-world experiments. Here we layout our efforts
in conducting said simulations and experiments in the next
subsections. Whenever possible, we compare our proposed
design in figure 5 (amended single-integrator with GEKF
and adaptation law for the attenuation of oscillations) vs. the
traditionally found single-integrator design in literature (e.g.,
[6]). The first phase of our verification results is provided in
subsection 3.B. In that phase, we take the objective function
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(a) x position vs. time. (b) y position vs. time. (c) Planar plot of x vs. y.

Fig. 6: Simulation of x and y coordinates with obtaining measurements from a known objective function. Our proposed
design (red) attenuate oscillations successfully when compared with literature (blue).

Algorithm 1 Geometric-based Continuous-discrete Extended
Kalman Filter

Initialize X̄ with some initial values.
choose a sample rate as an output Tout less than the sensors
rates (used for measurments ).
For each sample time Tout:
for i = 1 to N do (Prediction Step)
X̄ = X̄ + (Tout/N) ˙̄X
P = P + Tout

N (AP + PA+Q),
once the measurement is received i then
(Measurement step)
C = ∂h

∂X (X̄)
L = PCT (R+CPCT )−1

P = (I −LC)P
X̄ = X̄ +L(y[n]− h(X̄))

end if

measurements from a known mathematical expression which
we do not use in any analytical computations (e.g., computing
∇f(x, y)). This enables us to test the design in a more
controlled manner and environment. For instance, by taking
the measurements from a mathematical expression of an
objective function, we can: (i) run a simulation for the ex-
periment before the hardware implementation; (ii) guarantee
the applicability of assumptions A1-A3 in the real-world
experiment, and (iii) have less noisy environment so that
the performance of GEKF is more ideal in its first time
ever experimental implementation. The second phase of our
verification results is provided in subsection 3.C. In that
phase, we take the experiments in a step forward where we
use a light sensor for measuring light intensity, aiming at
model-free, real-time light source seeking by the TB3. In this
phase, we obviously are working in a complete model-free
fashion in all fronts (no equations for TB3 model, sensor,
or light intensity/distribution). Lastly, in subsection 3.D, we
provide some comments on how Theorem 1 condition seems
to have been observed in our experimentation.

B. Simulations and Experimentation of the Proposed Design
with Known Objective Function

As elaborated at the end of the previous subsection, here
we provide details, results and observations of our first phase.
In this phase, we implement our design with a know mathe-
matical expression of the objective function f(x, y) but only

for obtaining measurements. We first present our results via
simulations to test and verify the effectiveness of our design.
We used MATLAB and Simulink® in said simulations. Now,
we provide details on the conducted simulations as follows.
For the states (x, y), the initial conditions are taken as (2,2).
For the GEKF, the initial value of the covariance matrix P is
taken as [4, 4, 4, 4, 4]T , sample rate Tout = 0.1, Q = 0.05I
with I being the identity matrix, R = 0.5 and N = 10.
For the ESC parameters we take ω = 30, and c = 0.3. For
the adaptation law we take ax(0) = 1 and ay(0) = 1; note
that for simulations with traditional single-integrator (i.e., no
GEKF and no adaptation law), ax = ay = constant = 1,
λx = 0.015 and λy = 0.0995. We used all optional
high pass filters (HPFs) such that h1 = h2 = 1. The
objective function we used for obtaining the measurements
is f(x, y) = 10− 1

2 (x−1)2− 3
2 (y−1)2 which clearly yields

an extremum (maximum) at f∗ = 10 when (x, y) = (1, 1).
The simulation results are provided in figure 6 parts (a)-(c)

in addition to figure 8 (top). From figure 6, it is obvious that
our proposed design with GEKF attenuated the oscillations
and asymptotically converged to the maximum points of x
and y. As expected, the x vs. y planner trajectory of the sys-
tem shows convergence with attenuated oscillations. Lastly,
the objective function reached its maximum f∗ = 10 with
attenuated oscillations in figure 8 (top). In all simulations,
it is safe to conclude that our proposed design with GEKF
outperformed the literature design (no GEKF) significantly
in that it converged faster and with attenuated oscillations.

Moving forward with the experimental part of this phase,
we conducted real-world experiments in which we used
the same known objective function that we used in the
simulations for the mere purpose of obtaining measurements.
In our experiments, we implemented the proposed single-
integrator design with GEKF and compared its performance
with the traditional single-integrator of the literature (no
GEKF). For the experimental implementation, we used the
following parameters. Initial values of (x, y) states as (2,2),
the covariance matrix P as [4, 4, 4, 4, 4]T , sample rate Tout =
0.1, Q = 0.05I , R = 0.5 and N = 10. The ESC parameters
are: ω = 30 and c = 0.5. The adaptation law parameters:
ax(0) = 0.137, ay(0) = 0.137; note that for simulations with
traditional single-integrator (i.e., no GEKF and no adaptation
law), ax = constant = 0.137, ay = constant = 0.137, and
the tuning parameter λx = λy = 0.005. The two optional
HPF were used such that h1 = h2 = 0.005.
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(a) x position vs. time. (b) y position vs. time. (c) Planar plot of x vs. y.

Fig. 7: Trajectories (data obtained via motion capture system) of x and y coordinates of the real-world, real-time TB3
robotic experiment obtaining measurements from a known objective function. We did the experiment two times to compare
our proposed design (red) with the literature design (blue). Clearly our design attenuate oscillations and converges faster.

Fig. 8: Objective Function vs. time (top for simulation, bot-
tom for experimental implementation). The proposed design
(red) is referred to by “with GEKF” whereas the literature
design is referred to by “without GEKF.”

Our real-world, real-time experimental results are pre-
sented in figure 7. We can remarkably observe the effective-
ness of our proposed design for the first time experiments
involving GEKF. It is clear that x and y states reached
the desired maximum point with attenuated oscillations (i.e.,
achieving asymptotic convergence) as shown in parts (a) and
(b) of the figure. Moreover, as shown in part (c) of the planar
plot, the TB3 reached the maximum position taking a shorter
and faster path (i.e., better convergence rate compared to the
literature design. Moreover, as shown in figure 8 (bottom),
the objective function could reach the optimal value faster
and with better convergence rate with our design when
compared with the literature. Also, for the convenience of
the reader and for better visualization, we made a YouTube
video accessible in [27]. It is worth noting that the attenuation
of oscillations and asymptotic convergence is the verification
of the effectiveness of our design which is based on our
theoretical findings in [25]. However, we here record that

“better convergence rate” was not something that was studied
before; this suggests that GEKF can have more and wider
benefits to control-affine ESC systems. Hence, this paper
suggests the need for future studies on the wider and broader
effects of using GEKF in control-affine ESC systems.

C. Experimentation of the Proposed Design for Model-free,
Real-time Source Seeking of Light

For more verification and validation of the effectiveness
of our proposed design, we conducted another phase of
experimentation. We conducted real-world, real-time experi-
ments in which we used a light intensity/distribution as the
unknown objective function which we only have access to its
measurements via a light sensor; clearly, the extremum will
be the maximum light intensity which will be the position
of the source itself (a source seeking problem). That is, this
experiment is totally model-free (no mathematical expression
is used for the TB3, sensor, or light intensity/distribution). We
implemented the proposed design with GEKF and compared
it with another implementation using the literature design (no
GEKF) for performance evaluation. During our experiments,
we used the following parameters. Initial values of (x, y)
states as (0,2), the covariance matrix P as [4, 4, 4, 4, 4]T ,
sample rate Tout = 0.1, Q = 0.05I , R = 100, and N = 10.
The ESC parameters are: ω = 30 and c = 1. The adaptation
law parameters are: ax(0) = 0.027, ay(0) = 0.027, and
λx = λy = 0.005. The optional HPFs were used such that
h1 = h2 = 1.5. As done in the previous phase, for the
experiment without GEKF, we took ax = constant = 0.027
and ay = constant = 0.027.

Our novel real-world, model-free, real-time experiments
showed remarkably promising results in two fronts. First, our
proposed design could steer the TB3 to the light source with
attenuated oscillations (i.e., with asymptotic convergence)
with better performance in x position as shown in part (a) of
figure 9 and in y as shown in part (b) of figure 9; this is also
clear in the planner plot in part (c) of the same figure. Second,
which is, again, an observation we made in the previous phase
(subsection 3.B), the TB3 reached the maximum position
(the light source itself) taking a shorter and faster path
which demonstrates our GEKF design has better convergence
rate. It is noticeable, however, that due to some software
and/or hardware issues/limitations, a slight delay occurred
while using the GEKF as shown in figure 9 (see the red
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(a) x position vs. time. (b) y position vs. time. (c) Planar plot of x vs. y.

Fig. 9: Trajectories (data obtained via motion capture system) of x and y coordinates of the real-world, real-time TB3
robotic experiment obtaining measurements of the light intensity via sensor. We did the experiment two times to compare
our proposed design (red) with the literature design (blue). Clearly our design attenuate oscillations and converges faster.

(a) Jx vs Time (b) Jy vs Time (c) Jx vs Time (d) Jy vs Time

Fig. 10: Jx, Jy vs. against bound 1
te for known objective function experiment (a,b) and light source experiment (c,d).

graph in parts a and b). Despite this early delay, the GEKF
subsequently improved the convergence rate and successfully
attenuated the oscillations. It is significant to record here that
our proposed design maintained the same observation we
made in the previous phase about “better convergence rate”
even though, clearly, source seeking of light via a sensor
is less ideal of a condition to experimentation, due to, for
example, more noises and sensitivities to the environment.
For the convenience of the reader and better visualization,
we made a YouTube video for this experiment which is
accessible in [28], the first link.

We also conducted another experimentation to further test
the capability of the proposed design. It is clear that as
the TB3 reaches the light source (the extremum), it will
have attenuated oscillations. But what if the light source (the
extremum) moves with time (i.e., time varying extremum)?
Our adaptation law (see figure 5 and Eq (5)) changes the rate
of the amplitude of the input signal depending on how far the
system is from the extremum (i.e., the closer the system is
from the extremum, the smaller oscillations it needs to extract
gradient information). However, from Eq (5), it is clear that
the vice-versa situation may be applicable as well. That is,
if we start from a small values of ax and ay and we are far
away from the extremum, the adaptation law will increase
the rate of ax and ay to increase the oscillations so that
more gradient information can be extracted. Our experiment
succeeded in demonstrating the capability of our design to
do so and to track the source by increasing or decreasing the
oscillations as needed. This suggests that future studies can
be done to generalize further our theoritical results in [25]
to admit time varying extremum. Our results are provided
in figure 11. Also, we made a YouTube video for better
visualization that can be accessed in [28], the second link.

D. Comments on Stability from Experimentation

In literature, the stability of single-integrator without
GEKF has been studied/concluded in [6] and was generalized
in [7]. However, for the proposed design with GEKF which is
based on the theoretical results provided in our previous work
[25], Theorem 1 can be used for verification of stability. The-
orem 1 necessitates that the terms |Jx(x, y)| and |Jy(x, y)|
be bounded eventually after some time t∗ by a decreasing
function 1/tP with P > 1. Thus, we plotted said components
from two experiments: the one from subsection 3.B using
the measurements of a known objective function (its results
are provided in figure 7); and the one from subsection 3.C
using light intensity/distribution measurements via a sensor
(its results are provided in figure 9c). The plots show that
the components |Jx| and |Jy| are behaving as expected per
Theorem 1 – see figure 10. Parts (a) and (b) are from the first
experiment (figure 7), whereas parts (c) and (d) are from the
second experiment (figure 9c).

IV. CONCLUSIVE REMARKS AND FUTURE WORK

This paper provided a novel design with experimental
verification for model free, real-time source seeking via
control-affine ESC systems. The paper provided real-world
experiments by a robot (TB3) for said design. Experimen-
tation of the proposed design has shown promising results
verifying the effectiveness of our recent theoretical results
in [25] which allows for attenuating the oscillation of the
ESC system based on gradient estimation via what we call
Geometric-based Kalman Filter (GEKF) [26]. To the best of
our knowledge, this paper is the first to provide an experimen-
tal validation that single-integrator-like control-affine ESC
system can perform well. In fact, it was argued and shown in
[22] that the simple control law used for example in single-
integrator designs (ẋ = u =f(x)

√
ωu1+

√
ωu2) are not rec-
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Fig. 11: Planar plot for light source seeking by our proposed
design when the source keep changing its position with time.
The data captured for the trajectories via the motion capturing
system are presented here for the deployed TB3.

ommended. This has also been observed in our experiments
when we implemented traditional single-integrator of the lit-
erature. However, we observed and recorded remarkable and
significant improvement in performance using our proposed
design, which is an amended single-integrator structure with
GEKF. Our results concluded that, not only the attenuation
of oscillations have been achieved successfully, but also, the
proposed design possesses better convergence rate.

In the future, and encouraged by the results of this paper,
multiple studies can take place. First, theoretical analysis
should be conducted to provide the necessary conditions
and proof that the use of GEKF with control-affine systems
improve the convergence rate. Second, given how successful
and effective the use of GEKF have been with simple
design and simple control laws of single-integrator, it is
recommended justifiably to try amending other control-affine
ESC designs using GEKF in a similar manner to this paper.
Lastly, it is important to develop a theoretical, and perhaps,
experimental works studying the necessary conditions for
admitting time-varying objective functions with time-varying
extremum to control-affine ESC systems with GEKF (i.e.,
further generalization of our work in [25]).
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