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Abstract— Motivated by the hostile working environments
that lack a robust communication infrastructure, such as in
the case of precision agriculture settings, we propose a novel
bandwidth-saving average consensus procedure that exploits
the beep communication model. Specifically, we allow the
agents to alternatively perform traditional average consensus
steps and steps where the agents only inform their neighbors
about the fact that their state has increased or decreased
with respect to the previous time step. All the information is
transmitted among the agents via beeps, which represent a
weak communications model with bandwidth preservation. We
theoretically characterized the practical convergence property
of the proposed algorithm towards the network average, i.e., the
consensus error can be made arbitrarily small by acting on the
parameters of the protocol. Additionally, we also numerically
demonstrate that, for a proper choice of such parameters, the
protocol exhibits an interesting trade-off between convergence
rate and achievable accuracy.

I. INTRODUCTION

In the last decades, multi-agent systems (MAS) [1] have
received great attention due to their capability to foster
agents’ cooperation, as in the case of consensus [2], [3],
which represents the cornerstone of applications in various
fields [4], [5]. Specifically, in the context of precision agri-
culture, multi-agent systems are exploited to improve all the
aspects of agricultural production, from crop performance to
environmental quality [6]–[8]. However, despite the potential
for economic, environmental, and social benefits, these solu-
tions come up against the difficulties of actual implementa-
tion of the designed systems [9]. One of the most critical
issues concerns the environment in which agents (robots,
drones, or microcontrollers) operate [10], as it often spans
vast geographical areas that are unstructured and poorly
supported by communication infrastructure [7]; this poses
significant challenges to the implementation of distributed
algorithms such as consensus, which requires continuous and
synchronous exchanges of information between agents.

In a scenario of an unstructured environment with low
communication capacity, energy constraints, and scarce com-
putational resources, one of the key aspects concerns the
preservation of bandwidth and the reduction of the length of
messages exchanged. To address this issues, some method-
ologies have been proposed, such as the distributed con-
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sensus with quantized communications assuming fixed [11],
[12], or even time variant topologies [13]. In [14], an im-
pulsive consensus problem of nonlinear multiagent systems
is addressed, but for this and the previous approaches, the
selection of the number of quantization levels is required. A
further strategy includes speeding up the convergence of the
consensus algorithm, as in [15], where each agent can expand
its knowledge by employing multi-hop paths. However, by
allowing multi-hop communications, this methodology is
not applicable in an environment with low communication
capability and the need to safeguard bandwidth utilization.
Another approach is based on the alternating direction multi-
pliers method (ADMM) [16]; requiring the solving of convex
optimization problems, this approach is difficult to apply in
contexts with limited computational capabilities.

A recent and effective model for weak communication
is the one proposed in [17], [18], which exploits beeps
as communication exchanges between agents. This model
is interesting from a practical point of view since it is
possible to implement it (or emulate it) even in extremely
restricted radio network environments. Interestingly, such
kind of approaches have been successfully adopted in the
context of power systems [19] and mobile devices [20].
Based on the beep model, it has been shown that several tasks
can still be carried out in spite of the reduced communication
bandwidth, e.g., interval coloring [17], distributed voting [21]
or broadcasting [18]. In [22], the binary consensus problem
is addressed, in which each agent is initialized with a value
in the set {0, 1} and aims to reach a common agreement
with the network on a value in the same set. In [23],
this framework is extended to the case the set of initial
values is not binary but contains some values assumed
by the network as initial conditions. However, to the best
of our knowledge, this type of communication has never
been exploited to propose a new bandwidth-saving iterative
structure for accomplishing consensus tasks. In this paper,
we aim to fill this gap by developing a protocol suitable
for all the applications characterized by the lack of robust
communication infrastructure and energy constraints, such as
in the case of precision agricultural settings.

A. Contribution

Despite the growing need to ensure that a common agree-
ment is reached in some real-world application scenarios
where a solid communication infrastructure is lacking and
energy constraints are in place (such as precision agriculture),
to date, this aspect is still poorly investigated.

In this paper, we propose a low-bandwidth usage discrete-
time average consensus algorithm for undirected graphs that
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exploits the beep communication model. Specifically, our
approach is based on the alternation of two dynamics: the
first involves traditional average consensus steps, while in the
second the agents update their state locally, based on whether
the states of their neighbors increased or decreased during
the last consensus step. All the information exchanged for
the two dynamics is transmitted via beeps, including both the
values of the state variables and the variation indicator signal,
which is encoded in a message of shorter length, allowing
the algorithm to progress based on information derived from
a minimal communication effort.

We theoretically characterize the practical convergence
property [24] of the proposed protocol, that is the error
can be made arbitrarily small by acting on the parameters
of the dynamics. Additionally, we numerically demonstrate
that, for a proper choice of such parameters, the protocol
exhibits an interesting trade-off between convergence rate
and achievable accuracy. This makes the proposed protocol
a valuable alternative compared to the standard consensus
algorithm, especially for all those scenarios lacking a robust
communication infrastructure while requiring an energy-
preserving solution, such as in the case of precision agri-
culture settings.

The outline of the paper is as follows: Section II collects
some preliminary concepts and definitions; Section III details
the proposed approach for distributed consensus algorithm
and Section IV analyzes the error dynamics and its con-
vergence properties. Section V provides some simulations
to numerically evaluate convergence scenarios as parameters
change; finally, Section VI draws some conclusions and
discusses possible future work directions.

II. PRELIMINARIES

A. Notation

We denote vectors with boldface lowercase letters and
matrices with uppercase letters. We refer to the (i, j)-th entry
of a matrix A by Aij . We use ker(A) to refer to the kernel
of A. We represent by 0n and 1n vectors with n entries, all
equal to zero and to one, respectively. Given a vector p ∈ Rn,
we use diag(p) to denote the n × n diagonal matrix such
that diagii(p) = pi. We also use span(p) to denote the
linear span of the vector p, i.e., the set of all vectors αp with
α ∈ R. We represent the elementwise signum function of a
vector p using the notation sign(p). We use ∥ · ∥ to denote
the Euclidean norm and ∥·∥1 to denote the Manhattan norm.

B. Graph Theory

Let G = {V,E} be a graph with n nodes V =
{v1, . . . , vn} and e edges E ⊆ V × V , where (vi, vj) ∈ E
captures the existence of a link from node vi to node vj . A
graph is said to be undirected if the existence of an edge
(vi, vj) ∈ E implies the existence of (vj , vi) ∈ E, while it
is said to be directed otherwise. In this paper, we consider
undirected graphs. Let the neighborhood Ni of a node vi
in an undirected graph be the set of nodes vj such that
(vj , vi) ∈ E. The degree di of a node vi in an undirected
graph is the number of its edges, i.e., di = |Ni|. Given an

undirected graph G = {V,E} with n nodes, we define the
Laplacian matrix L as the n×n matrix such that Li,j = di if
i = j, Li,j = −1 if (vj , vi) ∈ E, and Li,j = 0, otherwise. It
is well known [25] that when G is connected L has a unique
eigenvalue equal to zero and that the corresponding left and
right eigenvectors coincide and are equal to 1n.

C. Distributed Consensus

Let us consider a network of n agents, interconnected by
an undirected graph G = {V,E}. Let us suppose each agent
i holds an initial condition wi(0) = wi0, and can interact
according to the protocol

wi(k + 1) = wi(k) + τ
∑
j∈Ni

(wj(k)− wi(k)) , (1)

which, in a compact form, corresponds to
w(k + 1) = (I − τL)w(k), where w(k) ∈ Rn collect
the entries wi(k).

It is well known (see [2], [3]) that, if G is connected
and undirected and τ < 1/maxi{di}, then the agents
asymptotically reach an agreement such that

lim
k→∞

w(k) =
1

n
1n1

⊤
nw(0),

i.e., the agents asymptotically reach the average of their
initial conditions.

D. Beep Communication Model

The beep model, introduced in [17], is a weak network
communication model in which information can be passed
only in the form of a beep or a silence; it can be used to trans-
mit logical values or binary-encoded messages sent through
bit strings of defined length [18]. The network is modeled as
an undirected connected graph G = {V,E}, where vertices
in the graph represent devices in the network, and edges
represent direct reachability. According to the model, each
node is able to send a beep and all neighboring nodes will
receive it: each node can both beep and listen, but, in order
to avoid collisions, it is not possible to listen while beeping.
Notably, each node is assumed to have minimal knowledge
about the environment and severely limited communication
capabilities, therefore it cannot even distinguish the number
of beeps it receives if they are sent to it simultaneously.
Time is divided into discrete steps, and the basic unit of
time is referred to as the time slot; we assume that global
synchronization among the agents’ clocks has been achieved,
as in the other works exploiting the beep model [17], [21],
and that the nodes send the beep signals at the specified time
slots. It is assumed that, at the beginning of the message, the
sender node identifier is provided suitably encoded.

III. PROPOSED APPROACH

Let us consider a network of n agents interconnected by a
connected and undirected graph topology G = {V,E}, each
holding a scalar initial condition1 xi(0) ∈ R. Moreover, let

1For the sake of clarity, scalar initial conditions are considered even
though the result can be easily generalized for the vectorial case.
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Fig. 1: Micro- and macro-iterations within the proposed approach.
A consensus macro-iteration requires w beep steps b (e.g., w = 64)
while a state variation macro-iteration requires two beep steps. We
use k to index the k-th macro-iteration (either type), while we use
q to index the overall-iterations (i.e., a consensus macro-iteration,
followed by a state variation one).

us consider the average consensus problem, i.e., the agents
aim to reach the average of their initial values. In doing so,
we assume that agents are able to transmit information to
others by exchanging only beep signals, according to the
beep communication model.

Assumption 1: Each agent in the network is able to com-
municate with its neighbors by exchanging beep signals.
Within the proposed framework, we assume that the agents
communicate with their neighbors by using sequences of
beeps (referred to as beep steps and acting as micro-
iterations) that are organized by alternating two concep-
tual phases (see Fig. 1), which we refer to as macro-
iterations: a consensus macro-iteration and a state variation
macro-iteration. In particular, the consensus macro-iteration
amounts to the transmission of the agent’s state (e.g., a
double-precision2 number) via a given number w of succes-
sive beep steps (i.e., w = 64 for double-precision numbers).
Conversely, the state variation macro-iteration amounts to
two beep steps, encoding the fact that the sender’s state has
increased or decreased, respectively. We use overall-iteration
to denote a consensus macro-iteration followed by a state
variation macro-iteration. In the following, for the sake of
analysis only, we use the iterator k to model the k-th macro-
iteration: at even-numbered macro-iterations k, each agent
i transmits to its neighbors the current value of its state
xi(k), while at odd-numbered macro-iterations each agent
only transmits information bi(k) ∈ {−1, 0, 1}, indicating
whether that state has decreased or increased compared to the
previous step, i.e., bi(k) = 1 if xi(k) > xi(k−1), bi(k) = 1
if xi(k) < xi(k − 1), and bi(k) = 0, otherwise. In order to
better describe the dynamics, let us define the index function
ζ(k) as ζ(k) = 1 if k is even, while ζ(k) = 0 if k is odd.
In other words, ζ(k) = 1 if k is a consensus macro-step and
ζ(k) = 0 if k is a state variation.

Overall, the dynamics of the i-th agent is given by

xi(k + 1) = xi(k) + ζ(k)τ
∑
j∈Ni

(xj(k)− xi(k))

+ (1− ζ(k))βτ
∑
j∈Ni

(bi(k)− bj(k)) ,
(2)

where β, τ are positive gains to be discussed next, while
bj(k) is the variation signal transmitted by the j-th agent at

2For the sake of simplicity, in this paper we ignore quantization errors.

time k. In a compact form, defining x(k), b(k) as the stack
of the terms xi(k) and bi(k), respectively, we get

x(k + 1) = x(k)− ζ(k)τLx(k) + (1− ζ(k))βτLb(k),
(3)

where L is the Laplacian matrix associated to the graph G.
Remark 1: Assuming the word length to represent the

agents’ state is w bits, the actual beep counter associated
with each iterator k (i.e., the number of beep steps at
which the k-th macro-iteration terminates) is Tk, where
T0 = 0 and Tk+1 = Tk + wζ(k) + 2(1− ζ(k)). In fact, w
beep steps are required during a consensus macro-iteration,
while a state variation macro-step consists of two beep steps.
Based on the above equation, it can be easily shown that
Tk = (w + 2)⌊k

2 ⌋+ 2(1− ζ(k)).

IV. CONVERGENCE ANALYSIS

In this section, we aim to define an equivalent expression
of the error dynamics, and then analyze its convergence
properties. To this end, let us now express the dynamics in
terms of an iterator q = ⌊k/2⌋ that represents the number
of overall-iterations (see Fig. 1). Notice that the actual beep
step associated with the end of each of such iterations q is
Tq = (w + 2)q.

Lemma 1: The overall dynamics of the error is equal to

e(q + 1) = (I − τL)e(q)− βτLsign(Le(q)) (4)
Proof: Firstly, we observe that, when k corresponds to

a consensus macro-iteration (i.e., when k is even), Eq. (3)
amounts to

x(k + 1) = (I − τL)x(k) (5)

while, during the subsequent state variation macro-iteration,
it holds

x(k + 2) = x(k + 1) + βτLb(k + 1)

= x(k + 1) + βτLsign(x(k + 1)− x(k))

= x(k + 1) + βτLsign(−τLx(k))

= x(k + 1)− βτLsign(Lx(k)),

(6)

where we used the fact that, assuming α > 0, it holds
sign(−αw) = −sign(w) by construction.

At this point, plugging Eq. (5) into Eq. (6), and using the
iterator q to account only for the overall-iteration, we get the
equivalent dynamics

x(q + 1) = (I − τL)x(q)− βτLsign(Lx(q)). (7)

In other words, the above equation models the evolution of
the overall dynamics after considering only the q steps.

Let us now consider the error e(q) between the state and
the average of the initial conditions, i.e.,

e(q) = x(q)− 1

n

n∑
i=1

xi(0)1n︸ ︷︷ ︸
xave

,

and let us derive the equivalent error dynamics (i.e., the error
dynamics when only overall-iterations are considered). Since
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L1n = 0n, we have that

e(q + 1) = x(q + 1)− xave

= (I − τL)x(q)− βτLsign(Lx(q))− xave

= (I − τL)(x(q)− xave)− βτLsign(L(x(q)− xave))

= (I − τL)e(q)− βτLsign(Le(q)).

This completes our proof.
Let us now analyze the equivalent error dynamics in Eq. (4)
to establish the convergence properties of the error. As a first
step, let us show that the fixed points of Eq. (4) correspond
to span(1n), as in regular consensus.

Proposition 1: The fixed points of Eq. (4) all belong to
span(1n).

Proof: In order to prove the statement, let us consider
the fixed points of Eq. (4), i.e., those vectors z ∈ Rn that
satisfy z = (I − τL)z − βτLsign(Lz), which is equiva-
lent to

L(z + βsign(Lz)) = 0n. (8)

By construction, for z to be a fixed point, it must hold

z + βsign(Lz) ∈ ker(L) = span(1n), (9)

i.e., z = α1n − βsign(Lz), for some α ∈ R. There-
fore, since sign(Lz) ∈ {−1, 0, 1}n, we have that
zi ∈ {α− β, α, α+ β}, for all i ∈ {1, . . . , n}. We claim
that the only possibility is zi = α for all i and we prove
our claim by contradiction. Suppose that for some i it holds
zi = α+ β. By Eq. (9), we have that

α+ β + sign

∑
j∈Ni

(α+ β − zj)

 = α

i.e.,

sign

∑
j∈Ni

(α+ β − zj),

 = −β

which holds true if and only if
∑

j∈Ni
(α + β − zj) < 0.

However, since zj ∈ {α − β, α, α + β}, we have that
α+ β − zj ≥ 0, which is a contradiction. Similarly, mutatis
mutandis, we get the same kind of contradiction when zi =
α − β. Hence it must hold zi = α for all i, i.e., z = α1n,
which is our claim. The proof is complete.

Let us now show that the error vector is orthogonal to 1n.
Lemma 2: For all q it holds e(q) ⊥ 1n.

Proof: Let us prove the statement by induction.
Specifically, we observe that, by construction, it holds
1⊤
n e(0) = 1⊤

nx(0)− nxave = 0. At this point, let us assume
that 1⊤

n e(q) = 0 and let us show that, then, 1⊤
n e(q+1) = 0.

In particular, we have that, since 1⊤
nL = 0⊤

n , by construction
it holds

1⊤
n e(q + 1)=1⊤

n e(q)−τ1⊤
nLe(q)−τβ1⊤

nLsign(Le(q))

= 1⊤
n e(q) = 0.

The proof is complete.
Let us now show that, within the proposed discrete-time

scheme, the norm of the error decreases whenever it is above

a given bound that depends on τ and β. Such bound can be
made arbitrarily small for suitably small values of τ and β.

Theorem 1: Let ∆(q) = ∥e(q + 1)∥2 − ∥e(q)∥2 and
assume that τ < 2/λ2(L). Then, ∆(q) < 0 whenever
∥e(q)∥ > ϕ(β, τ) > 0, where

ϕ(τ, β) = β
4τd2max

√
n− λ2(L) +

√
d

λ2(L)(2− τλ2(L))
,

and

d = (4τd2max

√
n− λ2(L))

2 + τλ2(L)λ
2
n(L)n(2− τλ2(L)).

Proof: In the following, where understood, we use e
to denote e(q) and s to denote sign(Le(q)). Moreover, we
abbreviate λ2(L) and λn(L) with λ2 and λn, respectively. In
order to prove the statement, we observe that, by Lemma 1,
it holds

∆(q) = e⊤(I − τL)2e+ τ2β2s⊤L2s− 2τβs⊤L(I − τL)e

− e⊤e.
(10)

At this point we remark that, by Lemma 2, it holds e(q) ⊥
1n for all q. Based on this fact, and on the fact that 1n is
an eigenvector of L associated with the eigenvalue λ1(L) =
0 with the smallest magnitude, we have that the following
inequalities hold true:

e⊤(I−τL)2e ≤ (1−τλ2)
2∥e∥2 = (1+τ2λ2

2−2τλ2)∥e∥2,

s⊤L2s = ∥Ls∥2 ≤ λ2
n∥s∥2 ≤ λ2

n∥1n∥2 = λ2
nn,

sLe = ∥Le∥1 ≥ ∥Le∥ ≥ λ2∥e∥,

and

sL2e ≤ ∥L2e∥1 ≤ ∥L∥21
√
n∥e∥ = 4d2max

√
n∥e∥,

where we used the fact that by construction ∥L∥1 = 2dmax,
dmax being the maximum degree of a node in the graph
underlying L. As a consequence, we have that

∆(q) ≤ −a∥e∥2 − b∥e∥ − c, (11)

where

a = τλ2(2− τλ2), b = 2τβ(λ2 − 4τd2max

√
n), (12)

c = −τ2β2λ2
nn. (13)

Since we assumed τ < 2/λ2, we have that a > 0, and
thus, by some algebra, ∆(q) < 0 for ∥e∥ > ϕ(τ, β). Notably,
since by construction d > λ2

2, we have that ϕ(τ, β) > 0. This
completes our proof.
As a consequence of Theorem 1, the error norm is decreasing
as long as it is above ϕ(τ, β). We now show that, when
the error falls below such a threshold for the first time, it
becomes bounded by a quantity that can be made arbitrarily
small based on the choice of τ or β.

Corollary 1: Let the assumptions of Theorem 1 hold true.
Then, if at some q∗ it holds ∥e(q∗)∥ ≤ ϕ(τ, β), then for all
q ≥ q∗ it holds ∥e(q)∥ ≤ ω(τ, β), where

ω(τ, β) =
√

ϕ2(τ, β) + |b|ϕ(τ, β) + |c|,
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while b and c are defined in Eqs. (12) and (13), respectively.
Proof: In order to prove the statement, let us assume

that at some q∗ it holds ∥e(q∗)∥ ≤ ϕ(τ, β). According to
Theorem 1, we can not exclude that ∥e(q∗ + 1)∥ > ∥e(q∗)∥.
However, since τ < 2/λ2(L), we have that a > 0. Therefore,
using Eq. (11), it holds

∥e(q∗ + 1)∥2 = ∥e(q∗)∥2 +∆(q∗)

≤ ∥e(q∗)∥2 + |b|∥e(q∗)∥+ |c|
≤ ϕ2(τ, β) + |b|ϕ(τ, β) + |c|.

At this point we observe that, if ∥e(q∗+1)∥ > ϕ(τ, β), then
by Theorem 1 it holds ∥e(q∗ + 2)∥ < ∥e(q∗ + 1)∥, while if
∥e(q∗ + 1)∥ ≤ ϕ(τ, β), using the same argument as above,
we conclude that ∥e(q∗+2)∥ < ω(τ, β). This reasoning can
be iterated for all q > q∗. The proof is complete.
A few remarks are now in order.

Remark 2: The bounds ϕ(β, τ) and ω(β, τ) can be made
arbitrarily small for sufficiently small τ .

Remark 3: Let us assume that β is replaced by a vanishing
β(q). In this case, for any τ > 0, we have that

lim
q→∞

ϕ(τ, β(q)) = 0, lim
q→∞

ω(τ, β(q)) = 0,

and thus the error converges to zero asymptotically.

v1

v2

v3

v4

v5

v6

v7

v8

Fig. 2: Graph topology considered for the simulations.

V. SIMULATIONS

In this section, we illustrate the effectiveness of the pro-
posed approach through simulations. In particular, we con-
sider the undirected network topology reported in Figure 2.

We assume the agents have initial conditions equal to

x0=
[
0.500,5.359,6.638,5.149,9.446,5.866,9.034,1.375

]⊤
,.

and we implement the proposed algorithm considering the
overall-iteration provided in the equivalent dynamics in
Eq. (7) with τ = 0.0005 and β = 1. In Figure 3 we compare
our protocol (Fig. 3a) with a standard consensus (Fig. 3b)
in terms of executed beep steps (we assume w = 64 bits),
and we observe that the latter is remarkably slower than
the proposed approach. Figs. 4a and 4b compare the two
approaches in terms of macro-iterations and beep steps, re-
spectively, considering different choices for β. Interestingly,
in Figure 4a, we identify an initial zone where the proposed
approach is slightly slower than regular consensus, an inter-
mediate zone where our approach is remarkably faster, and
a zone where our algorithm remains bounded (while regular

consensus keeps reducing its associated error). Moreover,
within the proposed algorithm, there is an evident trade-off
between the initial speed of convergence before becoming
bounded (i.e., faster for higher values of β) and the final error
(i.e., smaller for lower values of β). Notably, if we consider
the actual beep steps (Fig. 4b), since the two algorithms
require different amounts of beep steps to implement the
macro-iterations, the proposed algorithm exhibits even better
performance. We recall that our approach requires w+2 beep
steps to implement one of such iterations, while standard
consensus implements it in 2w beep steps (with w = 64, to
model double-precision numbers).

0 1 2 3 4
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0
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beep steps b

x1

x2

x3

x4

x5

x6

x7

x8

(a)

0 1 2 3 4
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0

5

10

beep steps b

x1

x2

x3

x4

x5

x6

x7

x8

(b)

Fig. 3: State evolution over the topology in Figure 2: (a) of the
proposed algorithm with β = 1, and (b) of the standard consensus.

To conclude, Fig. 5 depicts the case where β(k) =
0.999k/2 is vanishing. According to the figure, the proposed
algorithm exhibits an error that is initially similar to standard
consensus, but during an intermediate phase we observe a
relevant error reduction. Finally, as β(k) becomes negligible,
the error converges with a rate that is comparable to consen-
sus. Notably, in this case, the bound ω(τ, β(k)) becomes
monotonically convergent to zero.

VI. CONCLUSIONS

In this paper, we present a novel consensus algorithm
designed for undirected graphs, which prioritizes low-
bandwidth usage by harnessing the capabilities of the beep
communication model. Specifically, the algorithm amounts to
the repetition of two conceptual phases: a traditional average
consensus and a phase where the agents only inform their
neighbors about the increase or decrease of their states.
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Through theoretical analysis, we describe the practical con-
vergence behavior of the proposed protocol, wherein adjust-
ments to the dynamics parameters can significantly reduce
errors. Furthermore, the numerical simulations illustrate that,
by appropriately selecting these parameters, the protocol
shows a trade-off between convergence rate and accuracy.

Future research directions include: (i) further characteriz-
ing the convergence speed and its trade-off against accuracy,
also accounting for the duration of the macro-iterations in
terms of beep steps; (ii) optimizing the gains and adapting
them during the algorithm execution to improve accuracy;
(iii) extending the approach to directed graphs and to dis-
tributed optimization problems.
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β = 1
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Fig. 4: Norm of the equivalent error dynamics of the proposed
algorithm as β varies, compared to the norm of the error dynamics
of the standard consensus algorithm (dashed red line), with respect
to macro-iterations (a) or beep steps (b).
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·104

10−5

100
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Fig. 5: Norm of the equivalent error dynamics of the proposed
algorithm when β is vanishing, compared to the norm of the error
dynamics of the standard consensus and to the bound ω(τ, β(k)).
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