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Abstract— Redundancy actuation systems are widely applied
in the fields of aviation and aerospace. This paper establishes
a nonlinear dynamic model of the dual-redundancy actuation
system driven by electro-mechanical actuators, involving control
constraints and unmatched bounded perturbation. We next
focus on the reset control of the dual-redundancy actuation
system and raise a robust control problem, which can be
transformed into a specified optimal controller design problem
theoretically. To acquire the optimal controller, we propose
a modified robust adaptive dynamic programming approach.
Using multiple critic neural networks, a simultaneous approx-
imation of the value function and the controller are achieved,
and all the weight parameters can be estimated through an
optimization framework, which is feasible guaranteed via well-
defined basis functions. Finally, a numerical example from the
dual-redundancy actuation system is presented to illustrate the
derived controller.

Index Terms— Dual-redundancy actuation systems, Optimal
control, Robust adaptive dynamic programming, Neural net-
work, Optimization.

I. INTRODUCTION

In recent years, the growing and diversified requirements
of aviation and aerospace missions have put forward higher
performance for automatic flight control systems [1]–[3]. To
enhance the reliability of automatic flight control systems,
redundancy design is adopted in different actuation systems.
For example, a control surface on ailerons is broadly driven
by multiple actuators in parallel, and that forms redundancy
actuation systems (RASs). As pivotal power units, actuators
determine directly the operation performance of RASs. In
contrast to the hydraulic actuator (HA) and electro-hydraulic
actuator (EHA), electro-mechanical actuator (EMA), known
for compact size, no oil leakage, and high power-to-weight
ratio, has been treated as a crucial component in the devel-
opment of multi-electric aircrafts and all-electric aircrafts.

Numerous works have paid attention to the modeling and
control of the RASs in aircrafts. In [4], a linear model of the
RASs driven by HAs is established. Based on the fractional
order approach, a cascade controller is proposed in [5] and
compensates the force signals to the position feedback loop,
which synchronizes the dynamics of the EHAs in different
channels. To reduce the force fight between the actuators, a
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cross-coupling control synthesis with force difference com-
pensation is provided in [6]. Nevertheless, fewer works have
focused on the RASs driven by EMAs. Furthermore, linear
models are generally employed to simplify the dynamics of
actuators, neglecting the nonlinear friction, the external load
characteristics, and the stiffness of mechanical components,
and this model inaccuracy results in the poor robustness of
the designed controller.

In this paper, a nonlinear model of the dual-redundancy
actuation system (DRAS) driven by EMAs is established,
involving the control constraint and the unmatched bounded
perturbation. In practice, the above issues stem from the
space and power restrictions and operation environment,
respectively, which are inherent in the dynamics of DRASs.
Based on the nonlinear model, we focus on the reset control
of DRASs and raise a robust control problem. In view of the
control constraint and unmatched perturbation, it is difficult
to design a controller directly. Inspired by the works in [7]–
[10], the above control synthesis can be converted to solving
the Hamilton-Jacobi-Bellman (HJB) equation. However, the
closed-form solution to the HJB equation is almost unavail-
able due to the nonlinear property and dimensionality curse.
In order to obtain the numerical solution, adaptive dynamic
programming (ADP) is first proposed in [11], which can be
applied both on-line and off-line. By means of the nonlinear
mapping capacity of neural networks (NNs), ADP is high-
performance and forward optimal [12]–[14].

In the literature, numerous ADP schemes are developed to
address the optimal control problems of dynamical systems.
A simultaneous policy iteration (PI) algorithm is provided
in [9] to design a robust controller for nonlinear systems
with unmatched perturbation. In [14], an on-line procedure
is improved for uncertain systems, and the uniform stability
is guaranteed. Based on the least square technique, a novel
PI implementation with the persistent excitation is proposed
in [15]. In this paper, we propose a modified robust ADP
approach for dynamical systems subject to the control con-
straint and unmatched perturbation simultaneously. Using
multiple critic NNs, the simultaneous approximation of the
value function and the constrained controller are achieved.
The NN weight parameters can be estimated by an optimiza-
tion framework. Based on the characteristics of the DRAS
model, we choose a sequence of well-defined basis functions
to guarantee the feasibility of the designed optimization
problem. Furthermore, the proposed approach is suitable for
both on-line and off-line implementations, and its efficacy is
verified by the reset control of DRASs in an off-line setting.

The rest of this paper is organized as follows. In section
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II, we establish a nonlinear model of the DRAS driven by
EMAs, and then an optimal control synthesis is formulated.
Section III shows a modified robust ADP methodology for
nonlinear systems subject to both control constraint and un-
matched perturbation. The derived results are demonstrated
in Section IV. Conclusions are drawn in Section V.

Notations: Throughout this paper, let R := (−∞,+∞)
and R+ := [0,+∞). Given a vector x ∈ Rn, ‖x‖ denotes the
Euclidean norm of x. In denotes the n-dimensional identity
matrix. 0n×m ∈ Rn×m is a matrix with all its elements
equal to 0. For a matrix A ∈ Rn×m, A+ ∈ Rm×n denotes
the Moore-Penrose inverse of A.

EMA-1

EMA-2

Control

Face

Fig. 1: The schematic diagram of the DRAS driven by two
identical EMAs.

II. DUAL-REDUNDANCY ACTUATION SYSTEMS

In this section, a nonlinear model of the dual-redundancy
actuation system driven by two identical electro-mechanical
actuators is established. To achieve the specified control ob-
jectives of dual-redundancy actuation systems, we formulate
a robust control problem, and then convert it to an optimal
control problem.

A. Mathematical Modelling

Hereinafter, a dual-redundancy actuation system (DRAS)
driven by two identical electro-mechanical actuators (EMAs)
is considered, and its schematic diagram is shown in Fig. 1.
By synthesizing the stiffness and friction of the mechanical
components and the air resistance, a nonlinear dynamics
model is established as follows:

Jθ̈1 = T1 − Tl(θ1, ld)− Tf (θ̇1),

Jθ̈2 = T2 − Tl(θ2, ld)− Tf (θ̇2),

Ml̈d = Fl(θ1, ld) + Fl(θ2, ld)− Fa(l̇d),

(1)

where θi and Ti are respectively the angular rotation of the
screw and the output torque of the motor in the EMA-i for
i = 1, 2, and ld is the linear displacement of the load. Due
to the restrictions of safety operation and power supply, state
constraints are presented as ‖θi‖ ≤ ϑ and ‖ld‖ ≤ L, and the
input complies with ‖Ti‖ ≤ λ, where ϑ,L, λ > 0. J is the
rotational inertia of the rotating component; M is the mass
of the load. Let σ = p

2π , where p is the screw lead. For
i = 1, 2, Fl(θi, ld) := k(σθi− ld) denotes the force between
the EMA-i and the load, and its equivalent torque is defined
as Tl(θi, ld) := σ

ηFl(θi, ld), where k is the bending stiffness
of the load surface, and η is the efficiency coefficient of the

screw. The compound friction is formulated as

Tf (θ̇i) := γ1

(
tanh(γ2θ̇i)− tanh(γ3θ̇i)

)
+ γ4 tanh(γ5θ̇i) + γ6θ̇i, ∀i = 1, 2,

where γj > 0 for j ∈ {1, 2, . . . , 6}; see [16] for more details
regarding this friction model. Fa(l̇d) := 1

2Σa l̇
2
d denotes the

air resistance on the load, where Σa > 0 is associated with
the air density and drag coefficient and the effective frontal
area of the load.

We denote x = [ θ̇1, θ1, θ̇2, θ2, l̇d, ld ]> and u = [T1, T2]>.
In addition, d = [Tf (θ̇1), Tf (θ̇2), Fa(l̇d)]

> is regarded as the
perturbation term, For simplicity, let a = σk

ηJ and b = k
M ,

and the dynamics of the DRAS (1) can be rewritten as

ẋ = F (x) +Gu+Hd(x), (2)

where

F (x) :=


−aσx2 + ax6

x1
−aσx4 + ax6

x3
bσx2 + bσx4 − 2bx6

x5

 , G :=



1
J 0
0 0
0 1

J
0 0
0 0
0 0

 ,

H :=

− 1
J 0 0 0 0 0

0 0 − 1
J 0 0 0

0 0 0 0 − 1
M 0

> .
The control input u takes values from the set U = {u ∈ R2 :
‖ui‖ ≤ λ, i = 1, 2}. Note that the perturbation d is state-
dependent and bounded. In addtion, d vanishes at the origin,
that is, d(0) = 0. Hence, it can be inferred that there exists
a continuous function d̄ : R→ R+ such that ‖d(x)‖ ≤ d̄(x)
and d̄(0) = 0. We define the set D = {d ∈ R3 : ‖d(x)‖ ≤
d̄(x)}, and d̄ is determined empirically via sufficient real-
world experiments.

B. Problem Statement and Control Objectives

We next investigate the following robust control problem
of the system (2).

Problem 1: Design a feedback control policy u(x) ∈ U
such that the system (2) is asymptotically stable (AS) with
the perturbation d ∈ D.

Problem 1 describes a reset control requirement for the
DRAS. Since the system (2) suffers from both the control
constraint u ∈ U and the nonlinear perturbation d ∈ D. In
particular, d is unmatched due to G 6= H , thus it is generally
difficult to design a robust controller directly. According to
[7]–[9], such a robust control problem can be transformed
into a specified optimal control problem, which provides an
effective method for handling the robust control synthesis via
optimal techniques.

Without loss of generality, a nonlinear control system is
considered as follows:

ẋ = f(x) + g(x)ū+ k(x)w(x), (3)

where x ∈ X ⊂ Rn is the system state, and ū ∈ U ⊂ Rm is
the control input. X and U are compact sets containing the
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origin. w ∈ W ⊂ Rq is an external perturbation satisfying
W := {w ∈ Rq : ‖w(x)‖ ≤ w̄(x)}, where w̄ : Rn → R+ is
continuous with w̄(0) = 0. Assume that f : Rn → Rn, g :
Rn → Rn×m and k : Rn → Rn×q are Lipschitz continuous.
Let f(0) = 0 and ψ(x) := g+(x)k(x)w(x), and assume that
there exists a continuous function ψ : Rn → R+ such that
‖ψ(x)‖ ≤ ψ(x) satisfying ψ(0) = 0.

We next construct an auxiliary system of the system (3).
To this end, the perturbation term k(x)w(x) is divided into
matched and unmatched components as follows:

k(x)w(x) = g(x)g+(x)k(x)w(x)

+ (In − g(x)g+(x))k(x)w(x).

Hence, the system (3) can be reformulated as

ẋ = f(x) + g(x)u+
(
In − g(x)g+(x)

)
k(x)w(x),

where u = ū + g+(x)k(x)w(x), and w is regarded as an
auxiliary control input. Let M : U ×W → Rm+q and µ :=
[u>, w>]> ∈M, and then an auxiliary system is written as

ẋ = f(x) +M(x)µ, (4)

where M(x) =
[
g(x) (In − g(x)g+(x))k(x)

]
.

We define the value function of the system (4) as

V (x, µ) =

∫ ∞
t

(
q(x) + U(µ) + P (x) +W (x)

)
dτ, (5)

where q(x) = x>Qx with Q ≥ 0, and

U(µ) =

∫ u

0

2λ tanh−1(
s

λ
)>R ds+ ρ2‖w‖2 (6)

with R ≥ 0 and ρ > 0. U(µ) is a generalized non-quadratic
function used to address control constraints [9]. In addition,
P (x) = ‖ψ(x)‖2 and W (x) = ρ2‖w̄(x)‖2. Hereinafter, an
optimal control problem is established.

Problem 2: Design a feedback control policy µ(x) ∈ M
to minimize V (x, µ) for the system (4).

We next verify that the solution to Problem 2 includes a
robust control policy for Problem 1. Assume that µ∗ ∈ M
is the solution to Problem 2, and its corresponding optimal
value function is defined as

V ∗(x) = min
µ∈M

V (x, µ) = V (x, µ∗). (7)

Let Γ(x, µ) := q(x) + U(µ) + P (x) + W (x). According
to the Bellman optimal principle, V ∗ satisfies the Hamilton-
Jacobi-Bellman (HJB) equation

min
µ∈M

H(x, Vx, µ) = H(x, V ∗x , µ
∗) = 0, (8)

where Vx = ∂V (x)
∂x , V ∗x = ∂V ∗(x)

∂x and

H(x, V ∗x , µ
∗) = Γ(x, µ∗) + V ∗x

>(f(x) +M(x)µ∗).

Utilizing the stationarity conditions ∂H
∂u = 0 and ∂H

∂w = 0 to
(8), we have

u∗(x) = −λ tanh

(
1

2λ
R−1g(x)>V ∗x

)
,

w∗(x) = − 1

2ρ2
k(x)>(In − g(x)g+(x))>V ∗x .

(9)

The following theorem indicates that u∗ ensures the system
(4) to be AS.

Theorem 1: Consider the systems (3) and (4). Let V ∗(x)
be an optimal value function of the system (4) and ϕ∗(x) =
1
2λR

−1g(x)>V ∗x . If u∗ and w∗ in (9) satisfy that

2ρ2‖w∗(x)‖2 + λ2‖ϕ∗(x)‖2 ≤ q(x), (10)

then u∗ guarantees the system (3) to be AS.
Proof: Consider a Lyapunov function candidate

V(x) := V ∗(x).

We have that V(x) ≥ 0 for all x ∈ X and V(x) = 0 if and
only if x = 0. Let Vx = ∂V(x)

∂x . Taking the time derivative
of V(x) along the system (3) under u∗, we obtain

V̇(x) = V>x ẋ
= V>x (f(x) +M(x)µ∗(x)) + V>x g(x)ψ(x)

+ V>x (In − g(x)g+(x))k(x)
(
w(x)− w∗(x)

)
.

Combining (8)–(9), it can be derived that

V̇(x) = −Γ(x, µ∗) + 2λϕ∗(x)>ψ(x)

− 2ρ2w∗(x)>
(
w(x)− w∗(x)

)
, ∀x ∈ X .

Let
∆1 = −q(x)− U(µ∗),

∆2 = −P (x) + 2λϕ∗(x)>ψ(x),

∆3 = −W (x)− 2ρ2w∗(x)>
(
w(x)− w∗(x)

)
.

One has
∆2 = −P (x) + 2λϕ∗(x)>ψ(x)

= −‖λϕ∗(x)− ψ(x)‖2 + λ2‖ϕ∗(x)‖2 ≤ λ2‖ϕ∗(x)‖2.
It follows from the Cauchy-Schwarz inequality that

−2w∗(x)
>
w(x) ≤ ‖w∗(x)‖2 + ‖w(x)‖2,

which yields that

∆3 ≤ −ρ2
(
‖w̄(x)‖2 − ‖w(x)‖2

)
+ 3ρ2‖w∗(x)‖2

≤ 3ρ2‖w∗(x)‖2.
Summarizing the above analysis, one has

V̇(x) = ∆1 + ∆2 + ∆3

≤ −q(x) + 2ρ2‖w∗(x)‖2 + λ2‖ϕ∗(x)‖2 ≤ 0,

where V̇(x) = 0 if and only if x = 0. Hence, we conclude
that u∗ ensures the system (3) to be AS.

Based on Theorem 1, we can infer that Problem 1 can be
transformed into Problem 2. In other words, we can design
an optimal controller to achieve the reset control objective
of the DRAS in (1).

III. ROBUST ADAPTIVE DYNAMIC PROGRAMMING FOR
OPTIMAL CONTROL DESIGN

In this section, a robust adaptive dynamic programming
approach is developed to solve the optimal control problem
with the control constraint and unmatched bounded pertur-
bation. For this purpose, we provide a policy iteration proce-
dure to establish an optimization framework to approximate
the numerical solution of the HJB equation.
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Algorithm 1: Policy Iteration Algorithm
Input: An initial admissible control input µ0(x) and a threshold

ε > 0.
Output: The approximated optimal value function V ∗(x) and the

approximated optimal control input u∗(x).
Set i = 0.
while i ≥ 0 do

Solve the value function Vi(x) by

Γ(x, µi) + V >xi
(
f(x) +M(x)µi

)
= 0

Update the control policy µi+1(x) via

ui+1(x) = −λ tanh

(
1

2λ
R−1g(x)>Vxi

)
,

wi+1(x) = −
1

2ρ2
k(x)>(In − g(x)g+(x))>Vxi.

if ‖µi+1(x)− µi(x)‖ ≤ ε then
break;

else
Set i = i+ 1.

end
end
Return: V ∗(x) = Vi+1(x), u∗(x) = ui+1(x).

A. Policy Iteration Procedure
Due to the nonlinear property of the HJB equation in (8),

it is generally difficult to obtain its closed-form solution. To
approximate its numerical solution, we need to introduce a
definition of the admissible control input.

Definition 1 ( [17]): If a controller µ(x) ∈ M is contin-
uous on X , makes V (x, µ) in (5) finite for any x ∈ X , and
ensures the system (4) to be AS with µ(0) = 0, then µ(x)
is called an admissible control input.

Next, a modified policy iteration (PI) procedure is formu-
lated as Algorithm 1. Note that an admissible control input
µ0 is necessary for the initialization of the PI procedure. To
obtain a proper µ0, many techniques can be applied, such as
pole-placement, feedback linearization and linear quadratic
regulator (LQR).

B. Robust Adaptive Dynamic Programming
We next develop a robust ADP approach based on Algo-

rithm 1 to execute its corresponding PI procedure. For this
purpose, we consider the following system:

ẋ(t) = f(x(t)) +M(x(t))(µ0(x(t)) + ζ(t)), (11)

where µ0 : Rn → Rm+q is an admissible control input for
the system (4). ζ : R+ → Rm+q is a suitable exploration
noise to further ensure the persistence excitation (PE) [18],
which is a commonly-used condition to guarantee that iter-
ation parameters can be continuously updated and then the
functions can converge to their optimal values eventually.

Let v = µ0 − µ+ ζ. The system (11) can be written as

ẋ = f(x) +M(x)µ+M(x)v. (12)

For each integer i ≥ 0, taking the time derivative of Vi(x)
along the trajectory of the system (12) yields that

V̇i(x) = −Γ(x, µi) + V >xiM(x)vi. (13)

By integrating (13) over an arbitrary time interval [r, s] with
0 ≤ r < s, we have

Vi(x(s))− Vi(x(r))

= −
∫ s

r

Γ(x, µi) dt+

∫ s

r

V >xiM(x)vi dt.
(14)

According to the universal approximation property provided
in [19], smooth functions on compact sets can be approxi-
mated by infinite series of basis functions. Consequently, for
each integer i ≥ 0, we can approximate Vi(x), Vxi(x) and
µi(x) by

V̂i(x) = C>v|iφv(x),

V̂xi(x)> = C>p|iφp(x),

µ̂i(x)> = C>u|iφu(x).

(15)

φv ∈ RNv , φp ∈ RNp×n and φu ∈ RNu×(m+q) in (15) are
the linearly independent basis functions defined on X with
φv(0) = 0Nv×1, φp(0) = 0Np×n and φu(0) = 0Nu×(m+q),
where Nv > 0, Np > 0 and Nu > 0 are sufficiently large
integers. Cv|i ∈ RNv , Cp|i ∈ RNp and Cu|i ∈ RNu are three
weight vectors. Substituting (15) into (14) yields that

C>v|i (φv(x(s))− φv(x(r)))− C>p|i
∫ s

r

φp(x)M(x)v̂i dt

= −
∫ s

r

(
q(x) + U(µ̂i) + P (x) +W (x)

)
dt,

where µ̂0 = µ0 and v̂i = µ0 − µ̂i + ζ. Let z = 1, 2, ..., Z.
Denote T (x, µ0, ζ, [rz, sz]) as Z feasible trajectories of the
system (11) over a time interval [rz, sz] with 0 ≤ rz < sz .
Hence, we can define Z error functions for each i ≥ 0 as

C>v|i
(
φv(x(sz))− φv(x(rz))

)
− C>p|i

∫ sz

rz

φp(x)M(x)v̂i dt

+

∫ sz

rz

(q(x) + U(µ̂i) + P (x) +W (x)) dt =: eiz,

and hence Cv|i and Cp|i can be solved by minimizing the

term
Z∑
z=1
‖eiz‖2. Combined with (9) and (15), we have

ûi = −λ tanh

(
1

2λ
R−1g(x)>φp(x)>Cp|i

)
,

ŵi = − 1

2ρ2
k(x)>(In − g(x)g+(x))>φp(x)>Cp|i,

(16)

C>u|iφu(x) = [û>i , ŵ
>
i ]. (17)

Furthermore, there exist integers i∗ > 0, N∗v > 0, N∗p > 0
and N∗u > 0 for an arbitrary threshold ε > 0, if Nv > N∗v ,
Np > N∗p , and Nu > N∗u , then

‖C>v|i∗φv(x)− V ∗(x)‖ ≤ ε,
‖C>p|i∗φp(x)− V ∗x (x)>‖ ≤ ε,
‖C>u|i∗φu(x)− µ∗(x)>‖ ≤ ε

are satisfied for all x ∈ X , and the convergence derives the
approximate optimal functions V̂ (x), V̂x(x) and µ̂(x). Note
that the convergence verification is similar to Theorem 2 in
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Fig. 2: The evolution of the dynamics of the DRAS. (a) the angular velocity of two EMAs; (b) the angular rotation of two
EMAs; (c) the linear velocity and displacement of the load.

[17], and is omitted here due to space limitation. Next, we
establish an optimization framework as follows:

min ‖A>i Ci − bi‖2, (18)

where for i = 0, 1, ...,

Ai =



φv(x(s1))− φv(x(r1))
...

φv(x(sZ))− φv(x(rZ))

−
∫ s1
r1
φp(x)M(x)(µ0 + ζ − µ̂i) dt

...

−
∫ sZ
rZ

φp(x)M(x)(µ0 + ζ − µ̂i) dt


,

Ci =
[
Cv|i, Cp|i

]
, bi =

−
∫ s1
r1

Γ(x, µ̂i) dt
...

−
∫ sZ
rZ

Γ(x, µ̂i) dt

 ,
µ̂>i = C>u|iφu(x) and µ̂0 = µ0. Hence, Cu|i is derived from
(17) via Z collected data. Base on the above analysis, we
summarize the modified robust ADP approach in Algorithm
2. From Algorithm 2, we can obtain the approximate optimal
control policy µ̂∗. Based on Theorem 1, the component û∗

in µ̂∗ can ensure the system (3) to be AS.

IV. SIMULATION VERIFICATION

In this section, we show a simulation verification for the
proposed robust ADP approach applied to the reset control
of the aforementioned DRAS model.

The parameters of the DRAS (1) are provided in Table. I,
and the weight matrices in the value function are designed
as follows: Q = I6, R = I5, and ρ = 1. Let λ = 60 and
ε = 0.0001. Because w is an auxiliary input, the exploration
noise is set as

ζ(t) =

[
sin(50t) + 0.5e−0.04t sin(2t) + 0.1 sin(10t)

0.1 sin(50t) + 0.7e−0.04t sin(2t) + 0.1 sin(10t)

]
,

and the initial admissible control input is chosen as u0(x) =
−Kx, where

K =

[
1.1491, 3.6542, 0.1098, 2.7729, 0.3198, −3.0940

0.1098, 2.7729, 1.1491, 3.6542, 0.3198, −3.0940

]
.

Algorithm 2: Robust ADP Algorithm
Input: An initial admissible control input µ0(x); a proper

exploration noise ζ(t); and a threshold ε > 0.
Output: The approximate optimal value function V̂ ∗(x) and the

approximate optimal control input µ̂∗(x).
Apply µ(x) = µ0(x) + ζ(t) as the control input to the system (4)
during a sufficiently long time interval to collect necessary data.
Set i = 0.
while i ≥ 0 do

Generate Ai and bi in (18).
Obtain Ci by solving the optimization problem (18).
Calculate ûi and ŵi by (16) using the collected data.
Obtain Cu|i by solving (17).

if i ≥ 1 and ‖Ci − Ci−1‖2 ≤ ε then

V̂ ∗(x) = C>v|iφv(x),

µ̂∗(x) = φu(x)>Cu|i

else
Set i = i+ 1.

end
end

TABLE I: Parameters of the DRAS

Symbol Value Unit Symbol Value Unit

J 4.55× 10−2 kg · m2 γ1 0.5 −
M 3710 kg γ2 10 −
l 0.01 m γ3 1 −
k 4.5× 104 N/m γ4 0.5 −

Σa 4× 104 kg · m2/s2 γ5 10 −
η 0.9 − γ6 0.1 −

Note that K is obtained by the LQR approach with Q = I6
and R = I5, and hence u(x) = u0(x) + ζ(t). Because
the matrix M(x) is not full-rank (rank = 3), a dimen-
sionality reduction is needed. We reset the control input as
µ(x) = [u(x)>, w3(x)]>, and basis functions φv(x), φp(x)
and φu(x) are chosen as

φ>v (x) = [x21, x1x2, x1x3, x1x4, x1x5, x1x6, x
2
2, x2x3,

x2x4, x2x5, x2x6, x
2
3, x3x4, x3x5, x3x6, x

2
4,

x4x5, x4x6, x
2
5, x5x6, x

2
6].

φ>p (x) = φ>u (x) =

 x1 x2 x3 x4 x5 x6 01×6 01×6
01×6 x1 x2 x3 x4 x5 x6 01×6
01×6 01×6 x1 x2 x3 x4 x5 x6

 ,
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Fig. 3: The evolution of the approximated value function and
control inputs.

which is ensured that φv and φp are full column rank and
then the optimization problem (18) is feasible.

System trajectories are collected off-line with the total
time ts = 8 s, the sampled time ∆t = 0.04 s, and the
initial state x0 = [0, 19.9π, 0, 20π, 0, 0.1]>. According to
Algorithm 2, three weight vectors are calculated as C>v =
[Cv1, Cv2, Cv3, Cv4], C>p = [Cp1, Cp2, Cp3, Cp4] and C>u =
[Cu1, Cu2, Cu3, Cu4], where

Cv1 =
[
0.0724 0.3960 0.0048 0.4190 0.0552 −0.3793

]
,

Cv2 =
[
4.8869 0.5502 7.0477 1.4294 −7.6902 0.0631

]
,

Cv3 =
[
−0.1466 0.0118 −0.1942 2.6494 0.6357

]
,

Cv4 =
[
−6.0503 0.2902 −0.7490 4.9597

]
,

Cp1 =
[
−0.0790 −0.2934 −0.0268 −0.2506 −0.0266

]
,

Cp2 =
[
0.2621 0.0537 −0.1224 −0.1098 −0.1482

]
,

Cp3 =
[
−0.0142 0.1323 5.7972 10.0510 −1.6816

]
,

Cp4 =
[
10.8945 1.7375 −9.1733

]
,

Cu1 =
[
−0.4106 −1.1366 0.0383 −0.7500 −0.0956

]
,

Cu2 =
[
0.9073 −0.2858 −1.2658 −0.2871 −1.7205

]
,

Cu3 =
[
−0.1458 1.4292 0.2885 0.5887 −0.0805

]
,

Cu4 =
[
0.6303 0.1366 −0.5199

]
,

with the number of iterations i = 52, and thus

V̂ (x) = C>v φv(x), µ̂(x)> = C>u φu(x).

The simulation time is set as t = 12 s, and the derived
results are shown in Fig. 2-Fig. 3. From Fig. 2, it is verified
that the proposed approach can achieve the reset control of
the DRAS. From Fig. 3, we have ‖û1‖max = 26.02 < λ
and ‖û2‖max = 42.73 < λ, which means that all the control
constraints are satisfied, and V̂ (x) is guaranteed to be finite
and convergent eventually.

V. CONCLUSIONS

This paper established a nonlinear dynamics of the dual-
redundancy actuation systems driven by electro-mechanical
actuators, involving both control constraint and unmatched
bounded perturbation. To deal with the reset control of this

system, we transformed the robust control problem into an
optimal control problem, and then a modified robust adaptive
dynamic programming approach is applied to approximate a
numerical solution of the Hamilton-Jacobi-Bellman equation.
Finally, simulation results illustrated the efficacy of the
derived controller. Future work will aim at investigating
control synthesis of reducing the force fight in redundancy
actuation systems via adaptive dynamic programming.
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