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Abstract— This paper investigates the distributed feedback
optimization problem of nonlinear multi-agent systems. In
such systems, each agent can measure the relative outputs
between itself and its neighbors but lacks access to their
absolute states and internal controller states. By combining
distributed optimization and singular perturbation methods, a
novel distributed controller design is presented, that relies solely
on each agent’s real-time gradient values of its local objective
function and its relative output measurements to neighboring
agents. The boundedness of the closed-loop signals and the
convergence of the agent outputs to the minimizer of the total
cost are proved rigorously. A numerical example is conducted
to validate the effectiveness of the proposed approach.

I. INTRODUCTION

In recent decades, research on multi-agent systems has
rapidly expanded [1], [2]. In such systems, agents work
together to facilitate the achievement of a common objective
for the entire system through the collection of partial infor-
mation and the exchange of information with neighboring
agents.

Within the realm of multi-agent systems, consensus and
distributed optimization are two popular topics. The consen-
sus problem aims to bring the outputs of all agents to a com-
mon point using the exchanged information [3]. In contrast,
distributed optimization focuses on a more challenging issue
where the desired common point that all agents converge
to is the minimizer of a total objective function. However,
each agent can only access its corresponding local objective
function, which constitutes a portion of the total objective
function [4], [5]. To address the distributed optimization
problem, researchers have developed various discrete-time
[6] and continuous-time [7] distributed algorithms, general-
izing the dynamics of each agent from first-order to higher-
order models [8], [9].
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Another prominent topic in the field of multi-agent sys-
tems that has gained considerable attention in recent years
is distributed feedback optimization. Feedback optimization
addresses the challenge of guiding a physical system’s output
towards the solution of an optimization problem without
prior knowledge of the explicit optimal solution [10], [11].
A key feature of feedback optimization is that the designed
algorithm relies solely on the real-time value of the objective
function’s gradient at the plant’s output, rather than the
analytic expression of the gradient function. Distributed
feedback optimization broadens the scope of feedback opti-
mization to multi-agent systems, where agents are expected
to reach a consensus on the minimizer of the total objective
function by utilizing the real-time gradient values of local
objective functions. Various distributed feedback optimiza-
tion algorithms have been developed for power systems [12],
[13], general linear systems [14], [15], [16], and nonlinear
systems [17], [18].

This paper focuses on solving the distributed feedback
optimization problem, where each agent can only measure
the real-time gradient values of its local objective function
and its relative outputs to neighboring agents. The motivation
for this study comes from cooperative exploration tasks [19],
where the gradient function of an environmental field is
unknown and sharing state information across the network
is more costly than measuring relative positions of nearest
neighbors. Unlike existing consensus research [20], [21],
this study also requires that the consensus point minimizes
the total objective function. Additionally, unlike previous
works focusing on agents with specific forms [22], [23], [24],
this paper explores multi-agent systems with more general
dynamics, offering increased applicability and flexibility.

This paper proposes a novel distributed feedback optimiza-
tion algorithm by integrating distributed optimization results
and the singular perturbation method [25]. In this algorithm,
each agent only needs to measure the real-time gradient
value of its local objective function and the relative outputs
between itself and its neighbors. Notably, both the agents
and the distributed feedback optimization algorithm are not
required to have exponentially stable equilibria. As a result,
existing stability analysis results for singularly perturbed
systems cannot be directly applied. To address this issue, we
rigorously analyze the solution of the closed-loop system
with a specific initial condition using Barbalat’s lemma.
We show that if each agent’s dynamics are output strictly
passive, local objective functions exhibit strong convexity
with Lipschitz continuous gradients, and the information
exchange graph is strongly connected and weight-balanced,
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then suitable controller parameters can be chosen to ensure
that all signals in the closed-loop system remain bounded and
the outputs of all agents converge to the optimal solution
of the total objective function. The paper also discusses
the significance of the initial condition requirement and
the generalization of the proposed method to time-varying
digraphs.

The remainder of this paper is structured as follows:
Section II outlines the problem under investigation. Section
III presents the main result, which is verified through a nu-
merical simulation in Section IV. Finally, Section V provides
concluding remarks.

II. PROBLEM FORMULATION

Consider a heterogeneous multi-agent system with the
dynamics of agent i ∈N = {1,2, . . . ,N} described by

ẋi = fi(xi,ui), (1)
yi = gi(xi), (2)

where xi ∈ Rni , ui ∈ Rm, yi ∈ Rm, fi : Rni ×Rm → Rni and
gi : Rni → Rm are the state, control input, output, dynamics
and output map, respectively. The dimensions of the state
and input, together with the dynamics and output map, can
vary among agents. It is assumed that the functions fi and
gi are locally Lipschitz.

This paper aims to design distributed controllers for the
multi-agent system (1)–(2) such that all signals in the closed-
loop system are bounded, and

lim
t→∞

yi(t) = arg min
s∈Rm ∑

j∈N
c j(s), (3)

for all i ∈N , where the local objective functions ci : Rm→
R, i ∈N are assumed to be continuously differentiable. In
the distributed controllers, agent i uses the real-time gradient
value ∇ci(yi) as feedback, rather than the gradient function
∇ci. Furthermore, agent i is only able to measure the relative
outputs yi − y j with respect to its neighboring agents j ∈
N . In this setting, it is not feasible to achieve the control
objective (3) by first obtaining the optimal solution of the
optimization problem offline and then adjusting the outputs
of the agents to the optimal solution.

The information exchange topology of the multi-agent
system is described by a directed graph G = (N ,E ,A ).
Each element of the node set N = {1,2, . . . ,N} represents
an agent. An edge (i, j) with i, j ∈ N of the edge set E
means that agent j can receive information from agent i.
The adjacency matrix A ∈ RN×N consists of nonnegative
entries ai js’ which satisfy a ji = 1 if (i, j) ∈ E , and a ji = 0 if
(i, j) /∈ E . The digraph G is called strongly connected, if for
any ordered pair of nodes i, j ∈N , there exists a path from
i to j. Its Laplacian matrix L is a matrix of dimension N×N
with the elements defined as li j = −ai j for i, j ∈N , i 6= j,
and lii = ∑ j∈N ai j for i ∈N . Clearly, L1N = 0 holds. The
graph is called weight-balanced if 1T

NL = 0.
The following assumptions are made regarding the dynam-

ics of the agents, the convexity and smoothness of the local
objective functions and the connectivity of the digraph.

Assumption 1: For each i∈N , there exist a continuously
differentiable function Vi : Rni ×Rm→ R+, class K∞ func-
tions ϕ1,ϕ2 : R+→R+, and positive constants γ and ζ such
that

ϕ1(|xi|)≤Vi(xi,0)≤ ϕ2(|xi|), (4)

∇
T
xi

Vi(xi,ui) fi(xi,ui)≤−γ|gi(xi)−ui|2, (5)

|∇uiVi(xi,ui)| ≤ ζ |gi(xi)−ui|, (6)

for all xi ∈ Rni and ui ∈ Rm.
Remark 1: The condition (4) and the continuity of Vi

implies that if Vi(xi,ui) and ui are bounded, then xi is
also bounded. The conditions (5) and (6) indicate that the
system (1)–(2), augmented with an integrator u̇i = ri, is
output strictly passive with ri as the input and ∇uiVi(xi,ui)
as the output [26, p. 236]. When ui is a constant vector,
the conditions (4) and (5) imply that yi will converge to
ui. It is important to note that if (1)–(2) does not satisfy
Assumption 1, but the cascaded system formed by combining
(1)–(2) with a controller that has a reference input wi does
satisfy Assumption 1 with ui replaced by wi, then our method
can still be used to generate the newly introduced reference
input wi; see Section IV for a numerical example. Compared
to the assumptions used in [22], [23], [24] that also tackle
distributed feedback optimization problems using only rel-
ative outputs, Assumption 1 allows for the more complex
agent dynamics, e.g., agents with parametric uncertainties,
resulting in a more flexible framework.

Assumption 2: For each i ∈N , ci is ω-strongly convex,
and ∇ci is ϑ -Lipschitz. Namely, there exist positive constants
ω and ϑ such that

(∇ci(ζ1)−∇ci(ζ2))
T (ζ1−ζ2)≥ ω|ζ1−ζ2|2, (7)

|∇ci(ζ1)−∇ci(ζ2)| ≤ ϑ |ζ1−ζ2|, (8)

for any i ∈N and ζ1,ζ2 ∈ Rm.
Assumption 3: The digraph G is strongly connected and

weight-balanced.
Assumptions 2 and 3 are widely used in the study of

distributed optimization problem [27], [5] and distributed
feedback optimization problem [22], [23], [24]. Note that
Assumption 2 guarantees the uniqueness of the solution to
the optimization problem mins∈Rm ∑ j∈N c j(s) [28, p. 460].
Define y∗ = argmins∈Rm ∑ j∈N c j(s). Then, by [28, p. 140],
it follows that

∑
j∈N

∇c j(y∗) = 0. (9)

III. MAIN RESULTS

For the multi-agent system (1)–(2), we design the follow-
ing distributed feedback optimization algorithm:

u̇i = ε(−α∇ci(yi)−β ∑
j∈N

ai j(yi− y j)−qi), (10)

q̇i = εαβ ∑
j∈N

ai j(yi− y j), (11)

for i ∈N , where [uT
i ,q

T
i ]

T ∈ R2m is the state, and ε,α,β
are positive constants to be determined later.
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Remark 2: The design of algorithm (10)–(11) is inspired
by ideas in feedback optimization, distributed optimization,
and singular perturbation, where the feedback information
used for each agent i is the gradient value ∇ci(yi) at the
real-time output yi and its relative output measurements to
neighboring agents. If yi ≡ ui for all i ∈ N and ε = 1,
algorithm (10)–(11) is reduced to the one proposed in [27],
where the convergence of ui to the optimal point y∗ is
demonstrated. However, for the system (1)–(2) with complex
dynamics, e.g., systems featuring nonlinear, uncertain, and
other characteristics, the condition yi ≡ ui generally does not
hold. Thus, the closed-loop multi-agent system, consisting
of (1)–(2) and (10)–(11), is essentially an interconnected
system, but its stability and convergence properties are not
guaranteed. To address this challenge, this paper introduces
a constant ε . By defining a new time scale τ = εt [25],
the stability and convergence properties of the closed-loop
system are ensured.

Remark 3: Following the framework of singular pertur-
bation [25], the transformed system (10)–(11), obtained by
the transformation τ = εt and substitution yi ≡ ui, can be
considered as the slow model, while the system (1)–(2),
with a constant ui, can be regarded as the fast model.
Since the slow model does not have an isolated equilibrium,
and the fast model may not have an exponentially stable
equilibrium, the singular perturbation results presented in
[25], [26] cannot be directly applied to the convergence
analysis of the closed-loop multi-agent system. To solve
this issue, Barbalat’s lemma will be employed to provide
a rigorous convergence analysis for each possible trajectory.

In the distributed feedback optimization algorithm (10)–
(11), agent i can measure the relative output yi − y j to
its neighbor j. The structure of the closed-loop system is
depicted in Fig. 1.

Fig. 1. Structure of the closed-loop multi-agent system.

By defining

u = [uT
1 ,u

T
2 , . . . ,u

T
N ]

T , q = [qT
1 ,q

T
2 , . . . ,q

T
N ]

T , (12)

y = [yT
1 ,y

T
2 , . . . ,y

T
N ]

T , c̃(y) = ∑
i∈N

ci(yi), (13)

the compact form of the distributed feedback optimization
algorithm (10)–(11) is

u̇ = ε(−α∇c̃(y)−βLy−q), (14)

q̇ = εαβLy, (15)

where L = L⊗ Ip.

The main results of this paper are summarized in the
following theorem.

Theorem 1: Consider the multi-agent system (1)–(2). Un-
der Assumptions 1, 2 and 3, there exist positive constants α ,
β , ε , φ , σ , ε1 and ε2 such that

φ +1 > 4ϑ , ρ > 0, η1 > 0, η3 > 0, η4 > 0, (16)

where

ρ = α
2(φ +1)ω +9λ2βαφ −4α

2(ωϑ +(φ +1)2), (17)

η1 = min
{

7
16

,
ρ

9

}
− 1

2
ε1|P|2ε

2, (18)

η2 =
1

2ε1
(α2

β
2|L|2 +2α

2
ϑ

2 +2β
2|L|2), (19)

η3 = γ− 1
2

ε2ζ
2− 5

2ε2
ε

2(β 2|L|2 +α
2)−ση2, (20)

η4 = ση1−
5

2ε2
ε

2 max{α2
ϑ

2 +β
2|L|2,1}, (21)

and λ2 is the second smallest eigenvalue of (L + LT )/2.
Moreover, for any initial conditions xi(0) ∈ Rni , ui(0) ∈
Rm and qi(0) ∈ Rm satisfying ∑i∈N qi(0) = 0, i ∈N , the
optimization objective (3) can be achieved by the distributed
feedback optimization algorithm (10)–(11) with any α , β

and ε satisfying (16).
Proof: The proof initially demonstrates the existence

of the parameters satisfying (16), and subsequently analyzes
the attainment of the optimization objective.

The parameters α , β , ε , φ , σ , ε1 and ε2 can be selected
by the following procedure:

1) choose any positive constants α and ε1;
2) choose positive constants φ and ε2 such that

φ +1 > 4ϑ , ε2 < γ/(2ζ
2); (22)

3) choose β such that

β >
α(4ωϑ +4(φ +1)2− (φ +1)ω)

9λ2φ
; (23)

4) choose σ > 0 such that σ < γ/(4η2);
5) choose ε > 0 such that

ε
2 <min

{
2

ε1|P|2
min

{
7
16

,
ρ

9

}
,

ε2γ

10(β 2|L|2 +α2)
,

2σε2

5max{α2ϑ 2 +β 2|L|2,1}
η1

}
. (24)

It can be checked that all the inequalities in (16) are satisfied.
Define y0 = 1N ⊗ y∗. Then, with the state transformation

ū = u− y0 and q̄ = q+α∇c̃(y0), the system (14)–(15) with
∑i∈N qi(0) = 0 can be rewritten as

˙̄u = ε(−αδ (ū+ y0,y0)−βLū− q̄−βLe

−αδ (e+ ū+ y0, ū+ y0)), (25)
˙̄q = ε(αβLū+αβLe), q̄(0) = q(0)+α∇c̃(y0), (26)

where the function δ is defined as δ (y,y0) =∇c̃(y)−∇c̃(y0),
and e = y− ū− y0.
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For the system (25)–(26), define Z = [ūTU, q̄TU ]T , and
consider a Lyapunov function candidate

VZ(Z) =
1
2

ZT PZ, (27)

where U = [U1,U2]⊗ Im is an orthogonal matrix with U1 =
1N/
√

N, and

P =


α(φ+1)

9 0 0 0
0 α(φ +1)IN−1 0 IN−1
0 0 1 0
0 IN−1 0 IN−1

α

⊗ Im. (28)

We can check that P is positive definite. When Assumptions
2 and 3 are satisfied, the time derivative of VZ(Z) along the
solutions of the system (25)–(26) satisfies

V̇Z(Z)≤− ε min
{

7
16

,
ρ

9

}∣∣[ūTU, q̄T (U2⊗ Im)]
T ∣∣2

+ εZT P
[

αδ (y,u)+βLe
αβLe

]
. (29)

By the definition of c̃(y) and (9), (UT
1 ⊗ Im)∇c̃(1N⊗y∗) = 0

holds. Thus, (26) and the requirement ∑i∈N qi(0)= 0 implies
(UT

1 ⊗ Im)q̄(0) = 0. By Assumption 3, it holds that 1T
NL = 0,

which, together with (26), leads to

(UT
1 ⊗ Im) ˙̄q = 0. (30)

Then, for all t ≥ 0, we have

(UT
1 ⊗ Im)q̄(t) = 0, (31)

and thus, with the definition of the Euclidean norm of
vectors, (29) can be rewritten as

V̇Z(Z)≤− ε min
{

7
16

,
ρ

9

}
|Z|2

+ εZT P
[

αδ (y,u)+βLe
αβLe

]
. (32)

Using Young’s inequality [29], the Lipschitz property of ci
given in Assumption 2 and the definitions of δ (y,u) and Z,
we further have

V̇Z(Z)≤−η1 |Z|2 +η2|e|2. (33)

Now, consider the closed-loop system composed of (1)–
(2) and (25)–(26) with the relationship u = ū + y0. It is
clear that the closed-loop system has an unique solution
[xT

1 (t), . . . ,x
T
N(t),Z(t)]

T in a domain D ⊆ [0,∞) for any
specific initial condition xi(0) ∈ Rni , i ∈N , ū0 ∈ RNm and
q̄(0) = q(0)+α∇c̃(y0). Define the following function:

W (t) = ∑
i∈N

Vi(xi(t),ui(t))+σVZ(Z(t))≥ 0. (34)

The time derivative of W satisfies

Ẇ =W (x1, . . . ,xN ,Z)

:= ∑
i∈N

V̇i(xi,ui)+σV̇Z(Z)

= ∑
i∈N

(∇T
x Vi(xi,ui) fi(xi,ui)+∇

T
u Vi(xi,ui)u̇i)+σV̇Z(Z)

≤− γ|e|2 + ε2

2
ζ

2|e|2 + 1
2ε2
|u̇|2 +σ(η2|e|2−η1 |Z|2),

(35)

where we have used Young’s inequality, Assumption 1, (33)
and the definition e = y−u to get the inequality.

By the definition of ū above (25), we get ˙̄u= u̇. From (25),
Cauchy-Schwarz inequality and the Lipschitz properties of
cis’ given in Assumption 2, it follows that

|u̇|2 ≤5ε
2(α2

ϑ
2|ū|2 +β

2|L|2|ū|2 + |q̄|2

+β
2|L|2|e|2 +α

2|e|2). (36)

Substituting (36) into (35) leads to

Ẇ ≤−η3|e|2−η4|Z|2, (37)

which means that W is decreasing on D. Note that by (34),
we have W ≥ 0. Thus, on D, W is bounded, which, together
with (34) and (4) in Assumption 1, implies that xi, i ∈N
and Z are bounded too, i.e., there exists constants Mx,MZ > 0
such that |xi| ≤Mx, i∈N , |Z| ≤MZ . Then, D = [0,∞). Since
W is decreasing and is bounded on D, limt→∞ W (t) exists
and is finite. It follows from (1)–(2), (25)–(26) and the
boundedness of xi, i ∈N and Z that ẋi and Ż are bounded
on D, and thus, xi, i ∈N and Z are uniformly continuous
on D. By (35), (25)–(26) and Assumptions 1 and 2, W
is a continuous funcion of xi, i ∈ N and Z. Thus, W is
uniformly continuous on {[xT

1 , . . . ,x
T
N ,Z

T ]T : |xi| ≤ Mx, i ∈
N , |Z| ≤MZ}. Then, Ẇ in (35) is uniformly continuous on
D. By Barbalat’s lemma [26, p. 323],

lim
t→∞

Ẇ (t) = 0, (38)

which, together with (37) and the positiveness of η3 and η4,
means

lim
t→∞

e(t) = 0, lim
t→∞

Z(t) = 0. (39)

Then, by the definitions of y, e, ū and Z, we have

lim
t→∞

(y(t)− y0) = lim
t→∞

(e(t)+ ū(t)) = 0. (40)

This ends the proof.
Remark 4: The requirement of ∑i∈N qi(0) = 0 on the

initial condition of qi is indispensable for Theorem 1. In-
deed, for any initial state [xT

i (0),u
T
i (0),q

T
i (0)]

T ∈ Rni+2m,
i ∈N , under the assumptions of Theorem 1, [yT ,uT ,qT ]T

will converge to the initial-condition-dependent point
[ŷT ,1T

N ⊗ ûT
∗ , q̂

T ]T satisfying ŷ = 1N ⊗ û∗, α ∑i∈N ∇ci(û∗) =
∑i∈N qi(0) and q̂ = α∇c̃(1N ⊗ û∗). The existence and
uniqueness of such a point [ŷT ,1T

N⊗ ûT
∗ , q̂

T ]T can be derived
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by repeating the discussion below Assumption 2 for the
optimization problem

min
û∈Rm

α ∑
i∈N

ci(û)− ∑
i∈N

qT
i (0)û. (41)

Thus, to guarantee û∗ = y∗, we need ∑i∈N qi(0) = 0. The
proof of Theorem 1 employs Barbalat’s lemma to provide
a rigorous convergence analysis for each trajectory starting
from the specific initial condition.

Remark 5: Following a similar analysis to that presented
in this paper, one can easily extend Theorem 1 to the
case with time-varying digraph G(t) = (N ,E (t),A (t)).
Specifically, suppose that the time-varying digraph G(t)
satisfies Assumption 3 at any time instant t ∈ [0,∞) and
the adjacency matrix A (t) is piecewise constant with the
entries ai j(t) ∈ {0,1} on [0,∞). Then, the number of all
possible Laplacian matrices L(t)s’ is finite. For a Laplacian
matrix L(t), define λ2(t) as the second smallest eigenvalue
of (L(t)+L(t))/2. Then, with Assumptions 1 and 2 satisfied,
all the conclusions of Theorem 1 also hold after modifying
λ2 to min{λ2(t), t ∈ [0,∞)}.

IV. A SIMULATION EXAMPLE

This section aims to validate the efficacy of the proposed
method and Remark 4 by simulation.

Consider a multi-agent system with the dynamics of agent
i ∈N = {1,2, . . . ,6} described by

ṗi = vi +hi(pi)θi, (42)
yi = pi, (43)

where pi ∈ R is the state, yi ∈ R is the output, vi ∈ R is the
control input, hi : R→R is a locally Lipschitz function, and
θi ∈ R is an unknown parameter.

Note that the system (42)–(43) does not satisfy Assump-
tion 1, and therefore, Theorem 1 cannot be directly applied.
To overcome this obstacle, we employ the well-known adap-
tive backstepping method [29] to design a controller vi for
agent i ∈N , enabling it to track a reference input ui. The
controller vi is defined as

vi =−ki(yi−ui)−hiθ̂i, (44)
˙̂
θi = hi(pi)(yi−ui), (45)

where ki is any positive constant. Then, the system (42)–(45)
is in the form of (1)–(2) with the definition

xi =

[
pi

θi− θ̂i

]
, gi(xi) = [1,0]xi, (46)

fi(xi,ui) =

[
−ki hi([1,0]xi)

−hi([1,0]xi) 0

]
xi +

[
ki

hi([1,0]xi)

]
ui.

(47)

Define

Vi(xi,ui) =
1
2

∣∣xi− [1,0]T ui
∣∣2 . (48)

Then, direct calculation gives

Vi(xi,0) =
1
2
|xi|2, (49)

∇
T
xi

Vi(xi,ui) fi(xi,ui) =−ki|gi(xi)−ui|2, (50)

|∇uiVi(xi,ui)|= |gi(xi)−ui|, (51)

which means that Assumption 1 is satisfied with ϕ1(s) =
ϕ2(s) = s2/2, γ = min{ki : i ∈N } and ζ = 1 for s ∈ R+.

The local objective functions are chosen as

c1(s) = c2(s) = 0.1|s−1|2, (52)

c3(s) = c4(s) = 0.1|s−3|2 + s, (53)

c5(s) = c6(s) = ln(e−0.1s + e0.3s)+0.1s2, (54)

for s ∈R. One can check that Assumption 2 is satisfied with
ϑ = 0.2 and ω = 0.1.

The information exchange topology is described by a
digraph with the positive elements of its adjacency matrix
A = [ai j] defined as a21 = a32 = a43 = a54 = a65 = a16 =
a52 = a25 = 1. It can be verified that Assumption 3 is
satisfied.

By now, all assumptions of Theorem 1 are proved to be
satisfied. Thus, for agent i, design a distributed controller
in the form of (10)–(11). In this simulation, choose h1(s) =
h2(s) = h3(s) = 0.1s2, h4(s) = h5(s) = h6(s) = 0.2s3, θ1 =
θ3 = θ5 = 1, θ2 = θ4 = θ6 = 2, k1 = k4 = k6 = 10, k2 = k3 =
k5 = 20, for s ∈ R. Then, according to the design procedure
in the proof of Theorem 1, choose

α = 0.1, β = 0.4232, ε = 0.0125. (55)

When the initial condition is r(0) = u(0) = [−2,4,2,1,2,1]T

and θ̂(0) = q(0) = [0,0,0,0,0,0]T , Fig. 2 shows that all
the outputs of the agents converge to the optimal point
−0.4688 of the optimization problem (3). Fig 3 shows that
the trajectories of inputs and states of all the agents remain
bounded. The simulation results coincide with Theorem 1.

0 2000 4000 6000 8000 10000 12000 14000 16000

-2

0

2

4

-0.4688

Fig. 2. The trajectories of the outputs of all agents with initial condition
r(0) = u(0) = [−2,4,2,1,2,1]T and θ̂(0) = q(0) = [0,0,0,0,0,0]T .

To demonstrate the importance of the requirement
∑i∈N qi(0) = 0 on the initial condition of qi, we modify the
initial condition to the case q(0) = [0.1,0,0,0,0,0]T , which
does not satisfy ∑i∈N qi(0)= 0. As observed in Fig. 4, all the
outputs of the agents converge to the point −1.2516, which is
the optimal solution of the optimization problem (41), rather
than the optimal point −0.4688 of the optimization problem
(3). The simulation results are consistent with Remark 4.

289



0 2000 4000 6000 8000 10000 12000 14000 16000

-4

-3

-2

-1

0

1

2

3

4

Fig. 3. The trajectories of the inputs and the states of all agents with initial
condition r(0)= u(0)= [−2,4,2,1,2,1]T and θ̂(0)= q(0)= [0,0,0,0,0,0]T .
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Fig. 4. The trajectories of the outputs of all agents with initial condi-
tion r(0) = u(0) = [−2,4,2,1,2,1]T , θ̂(0) = [0,0,0,0,0,0]T and q(0) =
[0.1,0,0,0,0,0]T .

V. CONCLUSIONS

This paper proposes a novel distributed feedback optimiza-
tion algorithm for nonlinear multi-agent systems, ensuring
that the outputs of all the agents converge to the minimizer
of the total objective function. It should be noted that the
proposed algorithm only needs the agents to measure the
real-time gradient values of the local objective functions
and exchange relative outputs with their neighbors. The
significance of the initial condition requirement is thoroughly
discussed. The results are applicable to both static and time-
varying digraphs.

Our future work may be directed at investigating the
distributed feedback optimization problem in more general
cases, such as where the gradients of the local objective
functions are locally Lipschitz rather than globally Lipschitz,
the dynamics of each agent is described by a hybrid system,
and the digraph is neither weight-balanced nor strongly
connected.
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