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Abstract— We study a linear quadratic regulation problem
with a constraint where the control input can be nonzero
only at a limited number of times. Given that this constraint
leads to a combinational optimization problem, we adopt a
greedy method to find a suboptimal solution. To quantify the
performance of the greedy algorithm, we employ two metrics
that reflect the submodularity level of the objective function:
The submodularity ratio and curvature. We first present an
explicit form of the optimal control input that is amenable to
evaluating these metrics. Subsequently, we establish bounds on
the submodularity ratio and curvature, which enable us to offer
a practical performance guarantee for the greedy algorithm.
The effectiveness of our guarantee is further demonstrated
through numerical simulations.

I. INTRODUCTION

A signal is termed sparse if most of its values are exactly
zero. In control systems, a sparse control input means the
input takes zero—the controller can remain turned off for the
majority of the operational duration. The design of sparse
control signals has attracted much research attention due
to its energy-saving potential. For example, in the control
of railcars, leveraging inertia to move without any external
driving force is an effective strategy to reduce power con-
sumption. Moreover, sparse control plays an important role
in networked control systems by minimizing network usage.
Such a reduction is crucial for battery-powered devices and
facilitates efficient network sharing among multiple nodes.
The seminal paper [1] has introduced a framework termed
maximum hands-off control: In this approach, the control
input remains at zero for as long as possible under a
constraint on the terminal state. A number of subsequent
studies [2]–[5] building on this foundation have followed.

In the above literature, the authors have focused on maxi-
mizing sparsity with limited attention to control performance.
As a result, maximum hands-off control may lead to un-
desirable transient phenomena. The present paper aims to
establish a methodology that takes into account both transient
performance and input sparsity. Several papers have studied
optimal control with a limited number of control actions.
In [6], the authors have examined a threshold-based control
strategy that is optimal when the control objectives ignore
the energy of the control input. For the case of including the
quadratic form of the input, a convex relaxation approach
[7] has been proposed. In addition, a suboptimal method in
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which the control inputs are applied at the beginning of the
control horizon [8] has also been investigated.

Aside from these approaches, the greedy algorithm has
been recognized as a practical approach to determine the
actuation timings [9]. In addition to its simplicity in im-
plementation, a notable feature of the greedy algorithm is
that it offers theoretical performance guarantees. While such
guarantees were traditionally associated with submodular
objective functions [10], recent studies have been extending
these guarantees to non-submodular functions [11], which
are prevalent in control problems [12]–[16].

This paper addresses the design of the optimal control
input that minimizes the standard quadratic cost subject to a
sparsity constraint. A greedy algorithm is employed to obtain
an approximate solution. In line with [11], we investigate the
degree of submodularity of the objective function through the
submodularity ratio [17] and generalized curvature [11]. To
evaluate these metrics, we structure the objective function by
solving a least squares problem, while the dynamic program-
ming approach has been used in [7]–[9]. Numerical examples
demonstrate that our result provides a tighter guarantee than
those found in [9].

The rest of the paper is organized as follows. In Section
II, we formulate the considered problem as a cardinality-
constrained optimization problem. Next, we provide prelim-
inary results on the set function maximization in Section
III. We then present the optimal control input for the LQR
problem in Section IV and provide a performance guarantee
for the greedy algorithm in Section V. We illustrate our
performance guarantee in Section VI. Finally, we conclude
our results in Section VII. Due to space limitation, the
technical proofs are omitted and we refer to [18].

Notation: We denote the set of real numbers and non-
negative integers as R and Z+, respectively. The n × n
identity matrix is denoted by In, and diag{d1, . . . , dn}
represents a diagonal matrix where the diagonal elements are
dis. For a matrix A, [A]i,j means the (i, j) element of A.
The spectral norm of A is denoted by ∥A∥. For a symmetric
matrix S ∈ Rn×n, its eigenvalues arranged in descending
order are given by λ1(S) ≥ · · · ≥ λn(S). The symbol ⊗
denotes the Kronecker product. For a finite set X , |X |
and 2X denote the cardinality and the power set of X ,
respectively.

II. PROBLEM FORMULATION

We investigate a discrete-time feedback system depicted
in Fig. 1. The plant is modeled as a linear time-invariant
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Fig. 1. Feedback system

system given by

xk+1 = Axk +Buk, (1)

where xk ∈ Rn and uk ∈ Rm are the state and the control
input, respectively. At each time step k ∈ Z+, the controller
observes the state xk and determines the control input uk.
Notably, the control input is a sparse signal, taking non-zero
values at most d times within an N -step control interval
T := {0, 1, . . . , N − 1}.

Let S ⊆ T be the set of time instants at which the
control input is allowed to be a nonzero value. The objective
of control is formally stated as the following minimization
problem.

minimize
u0, . . . , uN−1,S

x⊤
NQNxN +

N−1∑
k=0

x⊤
k Qkxk + u⊤

k Rkuk,

subject to uk = 0 (∀k /∈ S ),

|S | ≤ d.
(2)

Here, Qk ⪰ 0 for all k ∈ T ∪ {N}, and Rk ≻ 0 for all
k ∈ T . Problem (2) entails a joint design of the control
inputs u0, . . . , uN−1 and the actuation timing S . Once a
timing set S is established, the optimal control inputs are
determined by a solution of the standard LQR problem. We
define the optimal LQ cost as

J(S ) = min
u0(S ),...,uN−1(S )

[
x⊤
NQNxN

+

N−1∑
k=0

(
x⊤
k Qkxk + uk(S )⊤Rkuk(S )

)]
, (3)

where we use the notation uk(S ) to emphasize that the
control inputs must satisfy the sparsity constraint: uk = 0
when k ̸∈ S . Consequently, the original problem (2) can be
transformed into the subsequent combinatorial optimization
problem:

minimize
S ⊆ T

J(S ),

subject to |S | ≤ d.
(4)

Given that an efficient method for this problem has yet
to be established, we adopt the greedy algorithm as an
approximation technique.

Algorithm 1 The greedy algorithm for Problem (5).
Input: Finite discrete set T , set function f , integer d

S0 ← ∅
for i = 1, · · · , d do

ω∗ ← arg max
ω∈T \Si−1

f(Si−1 ∪ {ω})− f(Si−1)

Si ← Si−1 ∪ {ω∗}
end for

Output: S g ← Sd

III. GREEDY ALGORITHM AND (NON-)SUBMODULAR
FUNCTION MAXIMIZATION

In this section, we provide preliminary results for the
optimization of set functions. Let us consider the following
problem:

maximize
S ⊆ T

f(S ),

subject to |S | ≤ d,
(5)

where f : 2T → R is a set function. The brute-force search
over the feasible solutions becomes quickly intractable even
for moderately sized problems.

The greedy algorithm, as shown in Algorithm 1, is one
of the most common approximation methods for the afore-
mentioned problem. Algorithm 1 can yield a solution in
polynomial time, which often performs well empirically.
Moreover, it is important to note that bounds exist on the
deviation of greedy solutions from the optimal.

To describe a performance guarantee for the greedy al-
gorithm, we now introduce fundamental notions associated
with a set function.

Definition 1: A set function f : 2T → R is monotone
nondecreasing if for all subsets A ,B that satisfy A ⊆ B ⊆
T , it holds that

f(A ) ≤ f(B).

Let us denote the marginal gain of a set Ω ⊆ T with
respect to a set S ⊆ T by

ρΩ(S ) := f(S ∪ Ω)− f(S ).

Definition 2 ( [10]): A set function f : 2T → R is sub-
modular if for all subsets S1,S2 ⊆ T (S1 ⊆ S2) and all
elements ω /∈ S2, it holds that

ρ{ω}(S1) ≥ ρ{ω}(S2).

We use the following measures to quantify how close a
non-submodular function is to being submodular.

Definition 3 ( [17]): The submodularity ratio of a non-
negative set function f is the largest scalar γ such that∑

ω∈Ω\S

ρ{ω}(S ) ≥ γρΩ(S ), ∀Ω,S ⊆ T . (6)
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Definition 4 ( [11]): The curvature of a nonnegative set
function f is the smallest scalar α such that

ρ{j}(S \{j} ∪ Ω) ≥ (1− α)ρ{j}(S \{j}),
∀Ω,S ⊆ T , ∀j ∈ S \Ω. (7)

For a nondecreasing set function, it holds that γ ∈ [0, 1]
and α ∈ [0, 1] [11].

Let S g be the solution to Problem (5) obtained by
Algorithm 1, and S ∗ be the optimal solution. With γ and
α, the greedy algorithm provides an approximation guarantee
for Problem (5).

Proposition 1 ( [11]): Let f be a monotone nondecreas-
ing set function with submodularity γ ∈ [0, 1] and curvature
α ∈ [0, 1]. Then, Algorithm 1 enjoys the following approxi-
mation guarantee for solving Problem (5):

f(S g)− f(∅) ≥ 1

α

(
1− e−αγ

)
(f(S ∗)− f(∅)). (8)

Proposition 1 generalizes a well-known result [10] avail-
able for submodular functions to non-submodular functions.
For the case of γ = 1 and α = 1, i.e., when f is submodular,
the coefficient in (8) is equal to 1− e−1, which corresponds
to the classical approximation factor given in [10].

Note that computing γ and α directly by Definitions 3
and 4 is intractable because the constraints in (6) and (7)
are combinational. Therefore, we consider deriving bounds
on γ and α and using them to establish a guarantee. In the
following section, we derive an explicit form of the optimal
control input for Problem (2) and rewrite the objective func-
tion J(S ) to evaluate its submodularity ratio and curvature.

Remark 1: Recently, Harshaw et al. [19] have shown that
no polynomial algorithm can achieve a better performance
guarantee than (8) for a nonnegative non-submodular func-
tion maximization with a cardinality constraint. Thus, we use
Proposition 1 as an approximation guarantee for the greedy
algorithm.

IV. EXPLICIT FORM OF THE OPTIMAL CONTROL INPUT
AND THE OPTIMAL COST

We here present an explicit form of the optimal control
in preparation for deriving our main result. Let us define
S̃(S ) ∈ R|S |×N as the matrix created by removing the ith
rows that hold ui−1 = 0 from IN for all i = 1, . . . , N . For
a given S , let t1 < t2 < · · · < t|S | be the elements of S
in ascending order. Then, S̃ is formally defined as follows:[

S̃(S )
]
i,j

=

{
1 j − 1 = ti,

0 otherwise.

The number of rows of S̃(S ) implies how many control
inputs are allowed to be nonzero. Using S̃(S ), we define
the matrix S(S ) ∈ R|S |m×Nm as follows:

S(S ) := S̃(S )⊗ Im. (9)

In addition, let I(i)N be the N ×N matrix where [I
(i)
N ]i,i = 1

and the other elements are zero. For simplicity of notation,

we write S̃(S ) and S(S ) as S̃ and S respectively in the
subsequent text.

From (9) and properties of the Kronecker product, the
following lemma holds.

Lemma 1: Given a set S ⊆ T , it holds that

S⊤S =
∑
i∈S

(
I
(i+1)
N ⊗ Im

)
.

Let U := [u0(S )⊤, . . . , uN−1(S )⊤]⊤ be a control input
associated with a feasible set S satisfying the constraint
in Problem (2). Then, the possibly nonzero inputs in U
are given as SU = [u⊤

t1 , . . . , u
⊤
t|S |

]⊤. Let also U∗ =

[u∗
0(S )⊤, . . . , u∗

N−1(S )⊤]⊤ be the optimal control giving
(3).

The following proposition shows the possibly nonzero
values of the optimal input SU∗ and the optimal cost J(S )
associated with S .

Proposition 2: Given a set S ⊆ T , it holds that

SU∗ = −(SR̄S⊤ + SB̄Φ⊤Q̄ΦB̄S⊤)−1SB̄⊤Φ⊤Q̄Ψx0,
(10)

where

Q̄ = diag{Q1, · · · , QN}, R̄ = diag{R0, · · · , RN−1},

Φ =


In 0 · · · 0
A In · · · 0
...

...
. . .

...
AN−1 AN−2 · · · In

 , Ψ =


A
A2

...
AN

 ,

B̄ = IN ⊗B.

Furthermore, the optimal cost J(S ) is given by

J(S ) = tr
[
L(INn +K(S ))−1

]
+ c, (11)

where

L = Q̄1/2Ψx0x
⊤
0 Ψ

⊤Q̄1/2,

K(S ) = Q̄1/2ΦB̄S⊤SR̄−1S⊤SB̄⊤Φ⊤Q̄1/2,

c = x⊤
0 Q0x0.

The optimal control input (10) can be derived by solving a
least-squares problem with respect to SU . The corresponding
cost (11) is obtained by (10) and the Woodbury matrix
identity.

Remark 2: We emphasize that within the trace operator
of the optimal cost expression (11), a positive semidefinite
matrix L is present. This inclusion introduces a technical
complexity when assessing the submodularity ratio and cur-
vature of J . It is noted that in the existing work [12], which
also utilizes Proposition 1, the objective function is described
solely in terms of the inverse of a positive definite matrix.

Finally, we give an important property of K(S ) which is
used to derive the main result shown in Section V.

Lemma 2: For any given S ⊆ T and any ω ∈ T \S , it
holds that

K(S ∪ {ω}) = K(S ) +K({ω}).

The proof is followed by Lemma 1.
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V. PERFORMANCE GUARANTEE OF THE GREEDY
ALGORITHM

We are now ready to present our main result; a perfor-
mance guarantee for the greedy algorithm to the optimal
control with a sparsity constraint. To apply Proposition 1
to Problem (4), we structure the problem as the following
maximization:

maximize
S ⊆ T

f(S ) := −J(S ) + J(∅),

subject to |S | ≤ d.
(12)

Note that the sign of the objective function is flipped and
f(∅) = 0. We seek to find a guarantee of the greedy solution
to Problem (12) via Proposition 1. As already noted in
Section III, it is computationally difficult to find the exact
values of γ and α. Therefore, our goal is to bound them with
computationally feasible values.

Let us define γ and α as follows:

γ :=
minω∈T tr[LK({ω})]{minω∈T λn[INn +K({ω})]}2

maxω∈T tr[LK({ω})]{λ1[INn +K(T )]}2
,

α := 1− γ.

Remark 3: The values γ and α are well defined if
maxω∈T tr[LK({ω})] ̸= 0. Since all eigenvalues of LK(ω)
are nonnegative for every ω ∈ T , this condition is typically
met except for uninteresting cases such as Ax0 = 0. A
detailed analysis of this point will be the subject of a future
study.

The above values represent bounds on γ and α of f(S )
in Problem (12).

Theorem 1: Suppose that there exists ω ∈ T such that
tr[LK({ω})] ̸= 0. It holds that the set function f(S )
defined in (12) is monotone nondecreasing. In addition, its
submodularity ratio γ and curvature α are bounded by

1 ≥ γ ≥ γ ≥ 0, 0 ≤ α ≤ α ≤ 1.

Let S g be the solution to Problem (12) obtained by
Algorithm 1, and let S ∗ be the optimal solution. From
Theorem 1 and Proposition 1, a performance guarantee of the
greedy solution to the problem can be obtained as follows.

Corollary 1: Consider the function f(S ) in Problem (12)
and suppose that the assumption in Theorem 1 is satisfied.
The following inequality holds:

f(S g) ≥ 1

α

(
1− e−αγ

)
f(S ∗).

Corollary 1 provides a feasible approximation factor be-
cause γ and α can be computed in polynomial time. We use
this corollary to provide the approximation guarantee with a
numerical example in the next section.

VI. NUMERICAL EXAMPLES AND COMPARISON WITH
THE EXISTING RESULTS

In this section, we validate the effectiveness of the greedy
solution to Problem (2) through a numerical example. Fur-
thermore, the conservativeness of the guarantee given in
Corollary 1 is discussed.

A. Control performance of the greedy solution

Consider a mass-spring system consisting of two masses
and three springs. Let the masses be m1 = 1 kg and m2 =
2 kg, and let the spring constants be k1 = k2 = k3 = 1 N/m.
This system is expressed by the following continuous-time
system:

ẋc(t) = Acxc(t) +Bcuc(t),

where xc ∈ R4 is the state vector consisting of the positions
and velocities of m1 and m2, and uc ∈ R2 is the forces
applied to the masses. The matrices Ac and Bc are given as

Ac =


0 1 0 0

−k1+k2

m1
0 k2

m1
0

0 0 0 1
k2

m2
0 −k2+k3

m2
0

 , Bc =


0 0
1

m1
0

0 0
0 1

m2

 .

This continuous-time system is discretized using zero-order
hold with a sample time of 0.1 s, resulting in the system
as in (1). Suppose that the discrete-time initial state is x0 =
[1, 0, 1, 0]⊤. The objective function is set as N = 100, Qk =
I4 and Rk = I2 for all k.

We investigate three methods to determine timing sets S
and evaluate the corresponding costs J(S ): The first method
is Algorithm 1—the greedy algorithm. The second method
is to randomly select time steps S subject to the sparsity
constraint and then compute the optimal control according to
Proposition 2. Among 1000 trials, the input with the lowest
cost is chosen. The last one is adopted from [8], where the
control inputs are applied during the first d time steps. We
solve the optimal control problem (4) with different values
of d ∈ [10, 100] for each method.

Fig. 2 compares the three cases by plotting the values of
J(S ) against the maximum number of control actions d.
We see that the greedy algorithm achieves lower costs than
the random policy and [8], especially when d is less than
30. Fig. 3 and Fig. 4 demonstrate the control inputs and the
state trajectories for the case of d = 20, respectively. The
greedy algorithm provides better transient performance than
the other two methods while maintaining the control input
sparse.

It should be noted that the feedforward control is employed
in this simulation: The control inputs for the entire horizon
are computed at the initial time depending on x0. In practical
systems, the input can be updated at each time instance based
on the latest observation and the number of times that the
input has been applied.

B. Performance guarantee of the greedy algorithm

We now illustrate how the established performance guar-
antee varies depending on the target system. In the following,
we call f(S g)/f(S ∗) the approximation ratio of Algorithm
1 for Problem (12). Since both γ and α contain the powers
of A, it is expected that singular values of A characterize
the approximation ratio. Therefore, we examine the ratio in
relation to the maximum singular value, which is the spectral
norm of A.
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Fig. 2. LQ cost defined by (3) versus the maximum number of control
actions d.

Fig. 3. Control inputs for the case where d = 20.

Consider the system (1) with n = 2 and the control
horizon of N = 5. Suppose that n = m and B = 0.1In.
Furthermore, we assume that Qk = 0.1In for all k ∈ T ∪
{N}, R0 = 10In, and Rk = 10/k2In for all k ∈ T \{0}.
The matrix A is randomly chosen as A = diag{a1, a2}
where |a1|, |a2| ≤ 1.5. The initial state x0 is also randomly
chosen so that all elements are in [−10, 10]. Fig. 5 shows the

Fig. 4. State trajectories corresponding to the control input in Fig. 3.

lower bound on the approximation ratio given by Corollary 1
in relation to ∥A∥. The solid line depicts the mean over 1000
realizations, while the shaded area represents the standard
deviation. It is observed that the approximation ratio archives
about 0.4 when ∥A∥ is around 1. On the other hand, the
bound is markedly small when ∥A∥ is closed to 0.1; the sys-
tem is highly stable in those cases. For the case where ∥A∥ >
1, the spectral radius of A can be greater than 1, that is, a
system is unstable. The instability results in the magnification
of L and K(S ), and thus maxω∈T tr[LK({ω})] becomes
much greater than minω∈T tr[LK({ω})]. Consequently, the
approximation ratio tends to decrease as ∥A∥ increases.

C. Conservativeness of the established guarantee

Finally, we analyze the conservativeness of Theorem 1.
The authors in [9] have explored an actuator scheduling
problem, aiming to select a subset of the actuators to apply
the control inputs at each time in order to minimize the
control cost. A linear deterministic system with a Gaussian
initial state is considered. The problem is formulated as
a matroid-constrained optimization problem, and a perfor-
mance guarantee of the greedy approach is derived using the
concept of α-supermodularity [20]. It is worth noting that [9]
assumes that A is full rank, which is required for applying
the results of [21].
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Fig. 5. Lower bounds on the approximation ratio versus the spectral norm
of A. The blue solid line represents the mean for 1000 simulations, and the
shadowed region around the line visualizes standard deviations from the
mean.

Theorem 1 can be modified to the case where x0 is a
random vector. In such a case, the optimal cost in Proposition
2 becomes the expectation of J(S ), which is characterized
by the covariance of x0. With these modifications, it is
possible to compare the approximation ratio in Corollary 1
with the result presented in [9]. Suppose the same scenario
as in Section VI-B except here x0 ∼ N (0, In). According
to Corollary 1, we have that f(S g)/f(S ∗) ≤ 0.264 on
average over 1000 trials, whereas the result in [9] yields
f(S g)/f(S ∗) ≤ 0.089. This comparison suggests that our
result is less conservative.

VII. CONCLUSION

In this paper, we have addressed the sparsity-constrained
LQR problem. To evaluate the approximation guarantee of
the greedy solution, we have initially derived the explicit
optimal control input by solving the least squares problem.
With the form of the optimal control, bounds on the sub-
modularity ratio and curvature of the quadratic cost function
have been derived. Those bounds have been utilized to
establish a theoretical performance guarantee of the greedy
solution. Through numerical simulations, we have illustrated
the effectiveness of the greedy solution and the performance
guarantee.
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