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Abstract— The equivalence between local and global char-
acteristics of Lur’e systems is investigated. Historically, such
problems date back to Vyshnegradskii’s conjecture on Watt
governors and Eden’s conjecture on Lorenz attractors. In the
present paper, we develop a unified framework for stability
and dimension analyses. This is motivated by the recent works
on hidden oscillations and their relations with absolute stability
theory. We combine an energy perspective in Lyapunov analysis
and a linearization approach in contraction analysis to study
global stability and Lyapunov dimension. Notably, we allow a
gap between the storage function and the Lyapunov function
by utilizing what we call a differential Lyapunov function of
the Leonov form. Our framework is also less conservative in
the sense that the exact global stability condition and the exact
Lyapunov dimension can be characterized. The effectiveness of
our method is demonstrated through the Lorenz attractor.

I. INTRODUCTION

Global stability of Lur’e systems has long been studied
in the control community (see Fig. 1). In particular, the
classical conjectures by Aizerman and Kalman in the ab-
solute stability problem have led to the developments of the
celebrated Popov and circle criteria. Today, global stability of
Lur’e systems can be analyzed via the so-called IQC theory
[1]. On the other hand, hidden oscillations have recently
attracted attention in connection with counterexamples to the
Aizerman and Kalman conjectures [2], [3]. In these works,
it was shown that a hidden attractor may not be detected
by the describing function method, which is a well-known
approximate method. Moreover, the IQC theory is difficult
to apply in the analysis of periodic and chaotic oscillations.
These facts motivated us to develop a unified framework
for studying stable and unstable feedback systems. In this
paper, we consider global stability and Lyapunov dimension
of Lur’e systems. The latter one is related to the existence
or absence of oscillations.

Historically, global stability of control systems was first
investigated by Vyshnegradskii. According to the recent
survey [4], in the paper published in 1877, Vyshnegradskii
studied a mathematical model of Watt governors and derived
a sufficient condition for stability of the linearized system.
Besides, it was conjectured that the same condition is also
sufficient for convergence of all solutions to the equilibrium.
This problem was positively solved by Andronov and Mayer
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Fig. 1. Lur’e system

around 1945 (see [4] for the list of references). In general
circumstances, we need to justify such a linearization ap-
proach for global stability analysis. Even if some additional
requirements are imposed as in the Aizerman, Kalman, and
Markus–Yamabe conjectures, local stability does not imply
global stability. Recently, since the landmark paper [5],
contraction analysis has attracted much attention. Namely,
global stability is guaranteed if the symmetrized Jacobian
matrix of a vector field is uniformly Hurwitz. As shown
in [6], contraction analysis can also be studied by the Lya-
punov function method. However, the differential Lyapunov
framework in that paper is based on a different idea from
the Barbashin–Krasovskii theorem and LaSalle’s invariance
principle. Thus, there is a limited perspective on the relation
between Lyapunov analysis and contraction analysis.

As regards unstable systems, after the discovery of chaotic
phenomena by Ueda and Lorenz, strange attractors became
an active research area. To calculate the fractal dimension
of a strange attractor, Kaplan and Yorke first introduced the
concept of Lyapunov dimension by some formula involving
Lyapunov exponents [7]. However, the definition by Kaplan
and Yorke cannot be used to estimate the attractor dimension.
At almost the same time, an upper estimate of the Hausdorff
dimension was obtained by Douady and Oesterlé based on
the so-called singular value functions [8]. On the other hand,
Eden suggested a local estimation of Lyapunov dimension
[9], [10], [11], [12]. In particular, Eden conjectured that the
Lyapunov dimension of the Lorenz attractor coincides with
the local Lyapunov dimension at one of the equilibria. If this
conjecture is true, then it is not difficult to obtain the exact
value of Lyapunov dimension. The validity of the conjecture
for the Lorenz attractor was proved by Leonov in [13].

Here, we focus on the analogy between Vyshnegradskii’s
conjecture on the equivalence between local and global
stability and Eden’s conjecture on the equivalence between
local and global Lyapunov dimensions. An interesting fact
is that both conjectures are devoted to the local dynamics at
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an equilibrium even in the presence of nonlinearity. Thus, it
is meaningful to develop a unified framework on global sta-
bility and Lyapunov dimension for feedback systems in the
Lur’e form, which have an equilibrium at the origin. In this
paper, we derive conditions for which local characteristics
at the origin (local stability or local Lyapunov dimension)
coincide with global characteristics of invariant sets (global
stability or global Lyapunov dimension). Note that hidden
oscillations can be analyzed by Lyapunov dimension com-
pared with the describing function method.

The paper contributions are summarized as follows. We
investigate global stability and Lyapunov dimension of Lur’e
systems in a unified manner. Our results are largely inspired
by the recent works on Lur’e systems in [14], [15]. However,
our method combines an energy perspective in Lyapunov
analysis and a linearization approach in contraction analy-
sis. This idea comes from Leonov’s method in dimension
theory [16]. First, we derive sufficient conditions for global
stability in terms of the existence of a dissipated energy-like
function and a constraint on the nonlinearity. It is shown
that these conditions are also necessary for global stability
in some sense. Notably, we allow a certain gap between
the storage function for the LTI system and the Lyapunov
function for the closed-loop system. Some connection with
the differential Lyapunov framework developed in [6] is
also discussed. In particular, we introduce what we call a
differential Lyapunov function of the Leonov form. Then,
we naturally extends the stability result to estimation of
Lyapunov dimension. We also provide conditions for which
the Eden conjecture is valid and those for which there is no
sustained oscillation.

Notations: Let A be a real n × n matrix. We denote
by σ1(A), . . . , σn(A) the singular values of A arranged in
decreasing order. For a real number d ∈ [0, n], we define

ωd(A) :=

{
1 if d = 0,

σ1(A) · · ·σj(A)σj+1(A)s otherwise,

where j ∈ {0, 1, . . . , n − 1} and s ∈ (0, 1] are chosen such
that d = j + s. The function ωd is called the singular value
function of order d.

II. PRELIMINARIES

This section provides some preliminary results and useful
facts from the theory of dynamical systems.

A. Dynamical Systems and Contraction Analysis

Consider an autonomous differential equation

ẋ = f(x), (1)

where f : Rn → Rn is a C1-function. Assume that for
every initial state x0 ∈ Rn, a unique solution ϕ(t, x0) to
(1) exists on R+. Under this hypothesis, the one-parameter
transformation defined by φt(x0) := ϕ(t, x0) satisfies the
semigroup property:

φ0(x0) = x0, x0 ∈ Rn;

φt+s(x0) = φt(φs(x0)), t, s ∈ R+, x0 ∈ Rn.

Hence, the equation (1) defines the (semi)flow {φt}t∈R+ .
The linearization of the nonlinear system (1) along the

trajectory starting from x is described by

δẋ = J(φt(x))δx, (2)

where J(x) := Df(x) denotes the Jacobian matrix of f at x.
Note that Dφt(x) is a fundamental matrix of (2) and satisfies
the (multiplicative) cocycle property:

Dφt+s(x) = Dφt(φs(x))Dφs(x), t, s ∈ R+, x ∈ Rn.

Thus, the variational equation (2) defines a linear cocycle.
Consider the product of the two systems (1) and (2):{

ẋ = f(x),

˙δx = J(x)δx.

In the differential Lyapunov framework proposed in [6], the
product system mentioned above is analyzed instead of the
original nonlinear system. In recent years, a similar frame-
work was generalized to systems with inputs and outputs
in [17], where analogues of storage functions and supply
rates were introduced. Such frameworks were further studied
together with the Nyquist criterion and the KYP lemma
[14], performance analysis with general incremental notions
[18], and Hausdorff dimension estimates of interconnected
systems [19]. The following proposition is a natural conse-
quence of contraction analysis [5], [20].

Proposition 1: Suppose that there exist constants C ≥ 1
and λ > 0 such that

∥Dφt(x)∥ ≤ Ce−λt

for all t ∈ R+ and all x ∈ Rn. Then,

∥φt(x1)− φt(x0)∥ ≤ Ce−λt∥x1 − x0∥

for all t ∈ R+ and all x0, x1 ∈ Rn.
The condition in Proposition 1 means that the largest Lya-

punov exponent is uniformly negative among all trajectories.
The concept of Lyapunov dimension to be introduced can
be regarded a natural generalization of the result mentioned
above. In contrast to searching a Lyapunov function, it is
reasonable to consider contraction analysis since the stability
condition can be derived in terms of linear matrix inequalities
or logarithmic norms (see [21]). However, such a condition
is usually conservative, and how to reduce conservativeness
of contraction analysis is an essential problem.

B. Lyapunov Dimension

We introduce the definitions of local and global Lyapunov
dimensions. Our definitions are based on those in [11], but
we follow the terminologies in the recent book [22]. In
particular, Eden used the term Douady–Oesterlé dimension
instead of Lyapunov dimension in [11]. We refer to [22,
Chap. 6] for relations between various definitions of Lya-
punov dimension in the literature. In what follows, let K
denote a compact invariant set of the flow {φt}t∈R+ . We note
that the Lyapunov dimension is an invariant of the dynamical
system [23], and its value is independent of the geometric
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complexity of K. The following two definitions are adopted
from [11].

Definition 1: The local Lyapunov dimension of the flow
{φt}t∈R+

at x is the number

dimL({φt}t∈R+
, x)

:= inf

{
d ∈ (0, n] : lim sup

t→∞

1

t
lnωd(Dφt(x)) < 0

}
.

Definition 2: The global Lyapunov dimension of the flow
{φt}t∈R+

with respect to K is the number

dimL({φt}t∈R+
,K)

:= inf

{
d ∈ (0, n] : lim

t→∞

1

t
ln sup

x∈K
ωd(Dφt(x)) < 0

}
.

Remark that the limit in the latter definition exists because
K is an invariant set. The following relations between local
and global Lyapunov dimensions play a fundamental role in
this paper [11, Prop. 5.3].

Lemma 1: Let K be a compact invariant set. Then, the
following statements are true:

1) dimL({φt}t∈R+
, x) ≤ dimL({φt}t∈R+

,K) for all x ∈
K.

2) There exists a point x∗ ∈ K such that

dimL({φt}t∈R+
, x∗) = dimL({φt}t∈R+

,K).

The above lemma indicates that there is a critical point
at which the local Lyapunov dimension coincides with the
global Lyapunov dimension. Such a point is not necessarily
an equilibrium and is in general unknown. The expectation
that the local Lyapunov dimension at an unstable equilibrium
coincides with the global Lyapunov dimension with respect
to the global attractor is known as the Eden conjecture [9].
This conjecture is valid for some well-known models (see
[22, Chap. 6]). If the Eden conjecture is valid, then it is
fairly easy to calculate the exact Lyapunov dimension.

C. Leonov’s Method

Before presenting our results, we recall Leonov’s method
in dimension theory [16]. In this paper, we investigate global
stability and Lyapunov dimension of Lur’e systems through
Leonov’s method.

Proposition 2 (Leonov [24]): Let K be a compact invari-
ant set. For a positive-definite matrix P , let λ1(x) ≥ · · · ≥
λn(x) be the n solutions to the characteristic equation

det(J(x)TP + PJ(x)− 2λ(x)P ) = 0.

Suppose that there exist a C1-function v : Rn → R and a
constant d ∈ (0, n] such that

λ1(x) + · · ·+ λ⌊d⌋(x) + (d− ⌊d⌋)λ⌊d⌋+1(x) + v̇(x) < 0

for all x ∈ K. Then, dimL({φt}t∈R+ ,K) < d.
It is a noteworthy fact that Leonov’s method is closely

related to LaSalle’s invariance principle. Note that we can
assume that v̇(x) ≤ 0 for all x ∈ Rn. This means that by
multiplying v with a large constant, the term v̇(x) can be
made arbitrarily small as long as it is strictly negative. As a

result, the inequality in Proposition 2 is satisfied whenever
v̇(x) is strictly negative. On the other hand, the function v
can be considered as a Lyapunov-like function in LaSalle’s
invariance principle. Thus, every solution converges to the
region where v̇(x) = 0.

III. MAIN RESULTS

In this section, we investigate global stability and Lya-
punov dimension for the Lur’e system in Fig. 1. Particularly,
our framework is based on a dissipated energy-like function
and contraction analysis.

A. Problem Formulation

In the state-space formulation, the G-block in Fig. 1 is
represented by {

ẋ = Ax+Bu,

y = Cx,
(3)

where A, B, and C are n × n, n × m, and p × n matri-
ces, respectively. The ϕ-block in Fig. 1 describes nonlinear
feedback of the form

u = ϕ(y), (4)

where ϕ : Rp → Rm is a C1-function such that ϕ(0) = 0
and Dϕ(0) = 0. The last assumptions are not restrictive if
the Lur’e system has at least one equilibrium. Further, we
assume that the G-block in Fig. 1 is M -dissipative, i.e., there
exists a positive-definite matrix P such that[

ATP + PA PB
BTP 0

]
−

[
C 0
0 I

]T
M

[
C 0
0 I

]
⪯ 0, (5)

where M is a given symmetric matrix. In what follows, we
employ the following notation:

Φ(x) := CT

[
I

Dϕ(Cx)

]T
M

[
I

Dϕ(Cx)

]
C. (6)

Following [14], we now consider the prolonged system[
ẋ
δẋ

]
= (A⊕A)

[
x
δx

]
+ (B ⊕B)

[
u
δu

]
,[

y
δy

]
= (C ⊕ C)

[
x
δx

]
,

where ⊕ is the direct sum. In the terminology of differential
dissipativity theory [17], the above assumption indicates that
the G-block is differentially dissipative with the storage

S(x, δx) = δxTPδx (7)

and the supply rate

s(u, δu, y, δy) =

[
δy
δu

]T
M

[
δy
δu

]
.

In other words, the following differential dissipation inequal-
ity holds: Ṡ(x, δx) ≤ s(u, δu, y, δy). Note that the associated
feedback is given by[

u
δu

]
=

[
ϕ(y)

Dϕ(y)δy

]
.
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Then, we have the following relation:

δxTΦ(x)δx =

[
δy
δu

]T
M

[
δy
δu

]
. (8)

To analyze stability and dimension, we provide an appropri-
ate constraint in terms of Φ(x) defined in (6).

B. Global Stability of Lur’e Systems

First, we identify global stability conditions for the Lur’e
system in Fig. 1. The following result is related to both the
classical absolute stability theory and the recent contraction
theory.

Theorem 1: Suppose that the following conditions hold:
1) There exists a bounded C1-function v : Rn → R such

that

v̇(x) ≡ ⟨∇v(x), Ax+Bϕ(Cx)⟩ ≤ 0

for all x ∈ Rn.
2) There exists a constant ε > 0 such that

Φ(x) ⪯ −εI

for all x ∈ Rn with v̇(x) = 0.
Then, the origin is globally asymptotically stable.

Our result can be interpreted within the differential Lya-
punov framework [6]. In particular, we employ the following
differential Lyapunov function:

V (x, δx) = p(x)2δxTPδx, (9)

where the positive-definite matrix P is given in (5) and the
positive function p is given by the formula v(x) = 2 ln p(x).
We call the function (9) a differential Lyapunov function of
the Leonov form because the original idea was proposed by
Leonov [24]. In our framework, we can admit a certain gap
between the storage function (7) for the LTI system and the
Lyapunov function (9) for the closed-loop system. Note that
the derivative of V is given by

V̇ (x, δx) = 2p(x)2δxTPδẋ+ v̇(x)p(x)2δxTPδx

= 2p(x)2δxTPδẋ+ v̇(x)V (x, δx).

Hence, the term v̇(x) partly serves as the decay rate of the
differential Lyapunov function. Recall that the function v
is not necessarily a Lyapunov function. The introduction of
such a dissipated energy-like function is, however, useful to
define a nonconstant contraction metric [5].

The existence of v in Theorem 1 is not only sufficient but
also necessary for global stability in some sense. To confirm
this, we now assume that the origin is globally asymptotically
stable. From the converse Lyapunov theorem, there exists a
positive-definite function v such that v̇ is a negative-definite
function. In that case, v̇(x) = 0 implies x = 0. Thus, since
Dϕ(0) = 0, the condition 2) reads as follows:[

C
0

]T
M

[
C
0

]
≺ 0.

This is just a constraint on the supply rate for the LTI system.
It follows that for such a dissipative LTI system, the two
conditions in Theorem 1 are necessary for global stability.

In the following, we state some technical remarks.
Remark 1: How to find v in the condition 1) is out of

the scope of this paper. However, the IQC theory would be
helpful to construct a function v such that the condition 1)
is valid for some class of nonlinearities. Notice that v is
not necessarily a positive-definite function and that we can
always choose v as a constant function so that the condition
1) is satisfied. Also, the assumption on the boundedness of v
can be removed if the system has a bounded absorbing set.

Remark 2: The condition 2) implies that

Φ(x) + v̇(x)P ⪯ −εI (10)

for all x ∈ Rn. Note that the two inequalities are equivalent
if Φ is bounded. The reason is because v can be multiplied by
an arbitrarily large constant. Furthermore, it is not difficult to
remove positive definiteness of P to investigate dominance
analysis as studied in [14]. In that case, the inertia of P plays
a fundamental role.

Remark 3: Assume that the pair (A,B) is controllable. By
the KYP lemma, the feasibility of the linear matrix inequality
(5) is equivalent to that the frequency-domain inequality[

G(jω)
I

]∗
M

[
G(jω)

I

]
⪰ 0

holds for all ω ∈ R. Because of the relation (8), the condition
2) can be regarded as the input/output constraint[

δy
δu

]T
M

[
δy
δu

]
⪯ −ε∥δx∥2.

Compared with the usual input/output stability theory, the
above inequality need not hold for all possible input/output
pairs (δu, δy) produced on the entire state space. We only
need to verify the condition for all input/output pairs (δu, δy)
produced on the region where v̇(x) = 0.

C. Lyapunov Dimension of Lur’e Systems

In the previous subsection, we have focused on a globally
asymptotically stable equilibrium of the Lur’e system. Next,
we investigate an unstable equilibrium which dominates the
global dynamics. The following result is based on Leonov’s
method in Proposition 2 and is able to characterize nonlinear-
ities for dimension estimates in a less conservative manner.

Theorem 2: Let λ1(x) ≥ · · · ≥ λn(x) be the n solutions
to the characteristic equation

det(Φ(x)− λ(x)P ) = 0,

where P is a positive-definite matrix in (5). Suppose that the
following conditions hold:

1) There exists a C1-function v : Rn → R such that

v̇(x) ≡ ⟨∇v(x), Ax+Bϕ(Cx)⟩ ≤ 0

for all x ∈ Rn.
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2) There exists a constant d ∈ (0, n] such that

λ1(x) + · · ·+ λ⌊d⌋(x) + (d− ⌊d⌋)λ⌊d⌋+1(x) < 0

for all x ∈ Rn with v̇(x) = 0.
Then, we have

dimL({φt}t∈R+ ,K) < d

for every compact invariant set K.
Notice that the condition 1) in Theorem 2 is the same

as the previous one. Hence, the classical absolute stability
theory is still useful to construct such a function v. Because
the system under study is unstable, the function v may take
negative values. However, it is useful to consider v as just a
dissipated energy-like function.

It is worth noting that the inequality in the condition 2)
needs to hold only on the region where v(x) is stationary.
In this sense, the use of a dissipated energy-like function is
advantageous compared with the recent related works in [14],
[15], where the nonlinearity of a Lur’e system is constrained
on the entire space. From the theoretical point of view, a
more general result can be found in [25], where the metric
tensor P in (5) is a function of x. However, it is difficult to
construct such a general metric. The merit of our method is
that we can employ the separated conditions, each of which
is easier to verify than other results.

The aforementioned result has provided an upper estimate
of the global Lyapunov dimension. Our next examination is
the validity of the Eden conjecture, which states that the local
Lyapunov dimension at an equilibrium dominates the global
Lyapunov dimension. Because the linearization at the origin
induces the linearized system ẋ = Ax, the local Lyapunov
dimension at the origin is given by

d0 := inf

{
d ∈ (0, n] : lim

t→∞

1

t
lnωd(e

tA) < 0

}
.

The following result specifies a class of nonlinearities for
which the Eden conjecture is valid.

Corollary 1: Let d0 be the local Lyapunov dimension at
the origin. If all conditions in Theorem 2 are satisfied for
any d ∈ (d0, n], then we have

dimL({φt}t∈R+
,K) = d0.

for every compact invariant set K containing the origin.
Corollary 1 provides a way to calculate the exact Lyapunov

dimension because d0 is determined only by A. In the next
section, we show that the exact Lyapunov dimension of the
Lorenz system can be obtained based on our framework.
Compared with Theorem 2, the above result requires the task
to find an appropriate function v depending on d. Whether
the existence of such a function v is necessary for the validity
of the Eden conjecture is an open problem. Nevertheless, it
is necessary for the case where d0 = 0 in the sense explained
in the previous subsection.

We finally provide sufficient conditions for the absence of
closed orbits. The following result is important because the
describing function method is not sufficient for the analysis
of oscillations (see [2], [3]).

Corollary 2: If all conditions in Theorem 2 are satisfied
for d = 2, then every bounded solution converges to an
equilibrium.

IV. APPLICATION TO LORENZ SYSTEMS

We verify that the existing result on the exact Lyapunov
dimension formula of Lorenz systems [13] can be obtained
from our framework. Fortunately, we can choose the same
matrices P and M as well as the same function v as in the
meritorious paper [13] (see also [26]).

Consider the following Lorenz system:
ẋ = −σx+ σy,

ẏ = rx− y − xz,

ż = −bz + xy,

where r, b, and σ are positive parameters. As in [13], we
assume that σ + 1 ≥ b ≥ 2 and

rσ2(4− b) + 2σ(b− 1)(2σ − 3b) > b(b− 1)2.

This system can be written in the form (3) with

A =

−σ σ 0
r −1 0
0 0 −b

 , B =

1 0 0
0 −1 0
0 0 1

 , C = I.

The feedback nonlinearity (4) and its derivative are given by

ϕ(x, y, z) =

 0
xz
xy

 , Dϕ(x, y, z) =

0 0 0
z 0 x
y x 0

 .

Following [13], we let

P :=

a−2 + σ−2(b− 1)2 −σ−1(b− 1) 0
−σ−1(b− 1) 1 0

0 0 1

 ,

where a := σ/
√

rσ + (b− 1)(σ − b). By setting

M :=

[
ATP + PA PB

BTP 0

]
,

we can clearly observe that the linear matrix inequality (5)
is satisfied. The problem is to find a C1-function v such that
the conditions in Corollary 1 (Theorem 2) hold. Note that

Φ(x) =

[
I

Dϕ(x, y, z)

]T
M

[
I

Dϕ(x, y, z)

]
= [A+BDϕ(x, y, z)]TP + P [A+BDϕ(x, y, z)]

= J(x, y, z)TP + PJ(x, y, z),

where J(x, y, z) is the Jacobian matrix associated with the
closed-loop system. Thus, the numbers λ1(x), . . . , λn(x) in
Theorem 2 are the same as those in Proposition 2. As a result,
we can employ the function v obtained in [13] to satisfy the
conditions in Corollary 1. Therefore, we obtain

dimL({φt}t∈R+
,K) = 3− 2(σ + b+ 1)

σ + 1 +
√

(σ − 1)2 + 4rσ
.

In Fig. 2, we illustrate the Lorenz attractor with parameters
r = 28, b = 8/3, and σ = 10. In general, calculating
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Fig. 2. Lorenz attractor

the exact Hausdorff dimension of such a strange attractor is
hopeless, and the best known estimate is the exact Lyapunov
dimension. In the above case, we have

dimL({φt}t∈R+ ,K) = 2.401.

The Hausdorff dimension of the Lorenz attractor is known to
be about 2.062, which is a numerically derived value. It may
be difficult to reduce this gap. Furthermore, a lower bound
of the Hausdorff dimension is generally harder to obtain than
an upper bound.

V. CONCLUSIONS AND FUTURE WORK

We have revisited the classical works by Vyshnegradskii
and Eden, which came from different contexts. By focusing
on the analogy of these two problems, we have developed
a unified framework on global stability and Lyapunov di-
mension for Lur’e systems. In Theorem 1, we have studied
global stability of Lur’e systems by combining an energy per-
spective in Lyapunov analysis and a linearization approach
in contraction analysis. This result has been generalized to
dimension analysis in Theorem 2. The validity of the Eden
conjecture and the absence of oscillations have been studied
in Corollary 1 and Corollary 2, respectively. Finally, we have
verified that our result is applicable to the Lorenz system
to obtain the exact Lyapunov dimension formula due to
Leonov. In future work, it would be interesting to consider
dimension and entropy concepts for control systems [27]
(see also [28]). In particular, both Lyapunov functions and
Lyapunov exponents may play important roles in the study of
dimension-like characteristics; the latter one has been well
studied in the literature. Also, analysis of discontinuity is
important as Vyshnegradskii’s model of governors contained
discontinuous nonlinearity.
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