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Abstract—Advanced driver assistance systems are critically
dependent on reliable and accurate information regarding a
vehicles’ driving state. For estimation of unknown quantities,
model-based and learning-based methods exist, but both suffer
from individual limitations. On the one hand, model-based
estimation performance is often limited by the models’ accuracy.
On the other hand, learning-based estimators usually do not
perform well in “unknown” conditions (bad generalization),
which is particularly critical for semitrailers as their payload
changes significantly in operation. To the best of the authors’
knowledge, this work is the first to analyze the capability of
state-of-the-art estimators for semitrailers to generalize across
“unknown” loading states. Moreover, a novel hybrid Extended
Kalman Filter (H-EKF) that takes advantage of accurate
Artificial Neural Network (ANN) estimates while preserving
reliable generalization capability is presented. It estimates
the articulation angle between truck and semitrailer, lateral
tire forces and the truck steering angle utilizing sensor data
of a standard semitrailer only. An experimental comparison
based on a full-scale truck-semitrailer combination indicates
the superiority of the H-EKF compared to a state-of-the-art
Extended Kalman Filter and an ANN estimator.

I. INTRODUCTION

RELIABLE and accurate information about a vehicles’
driving state is crucial for safe Advanced Driver As-

sistance Systems (ADAS) in automotive applications. In this
light, model-based and learning-based estimation algorithms
are employed to infer unknown quantities. To condition
these algorithms for a specific system, an initial training
process (learning-based estimation) or a model identification
procedure (model-based estimation) based on a representative
training data set is usually conducted. However, obtaining an
extensive training data set that covers the whole operation
region is difficult and sometimes impossible. Reasons can
be that exhaustive driving tests are too expensive, not all
use cases are reproducible in laboratory conditions, or that
unforeseen situations may occur during the life cycle of a
product (e. g., changing system parameters or environmental
conditions). In this context, reliable estimation in “unknown”
situations (i. e., when the current inputs and measurements
differ from the training data distribution) is critical. In the
following, we will refer to the capability to generalize in these
situations as “out-of-distribution” generalization. In contrast,
we use the term “in-distribution” evaluation, if estimation
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ŷANNk

τk

x̂−
k x̂k

z−1

Fig. 1: Hybrid estimation scheme for reliable combination
of model-based and learning-based estimators, using the
confidence τk in the learning-based method. The confidence
τk in the learning-based estimate ŷANNk

is determined by
the similarity between the current operation point and the
training data set. z−1 denotes a delay by one time instant.

methods are employed in situations, when the current inputs
and measurements are similar to the training data set.
Good generalization capability of estimation methods “out-
of-distribution” is especially relevant for commercial vehi-
cles, e. g., semitrailers, as (i) the payload varies significantly
during operation and (ii) driving tests are associated with
great effort and expensive. Existing works for estimation in
truck-semitrailer combinations can be categorized in model-
based, learning-based and combined model- and learning-
based (hybrid) approaches.
For model-based estimation in truck-semitrailer combina-
tions, most previous works rely on nonlinear Kalman filter-
ing. The authors of [1] use an Extended Kalman Filter (EKF)
[2] for estimation of lateral dynamic quantities, validating
their method by means of a detailed simulation with a single
loading state. In [3], an EKF is applied for estimation in
a real-world truck-semitrailer combination. The authors em-
ployed a single-track model of the lateral dynamics and iden-
tified it for one particular payload. A more elaborate approach
based on a two-track model and an Unscented Kalman Filter
(UKF) [2] is presented in [4]. Here, three distinct loading
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states are used for model identification and the experimental
results are carried out for in-distribution scenarios. Although
model-based methods usually have good generalization capa-
bility out-of-distribution, existing works do not exploit this
advantage for estimation in truck-semitrailer systems.
On the other hand, learning-based methods can yield ex-
cellent estimation results. In the context of truck-semitrailer
systems, a Recurrent Neural Network (RNN) is used in [5]
for estimation of the articulation angle and the steering angle.
Experimental data of a single loading state is considered for
training and evaluation of the RNN. While the learning-based
estimator in [5] can outperform an EKF in-distribution, it
remains an open question, whether its generalization capa-
bility to other conditions (e. g., other payloads) is sufficient
for reliable operation, as pointed out by the authors.
Hybrid model-based and learning-based estimation
schemes attempt to combine the advantages of both ap-
proaches. In [6], the side-slip angle in a car is estimated
by an Artificial Neural Network (ANN) whose input features
are generated from partial physical model knowledge. The
approach yields better estimation accuracy than a solely
learning-based estimator, but has difficulties to generalize
robustly to different road-tire friction conditions.
Other works augment (nonlinear) derivates of the Kalman
Filter with learning-based methods [7]–[9]. An overview can
be found in [7]. A particularly interesting hybrid approach is
the confidence-based hybrid estimation scheme presented in
[10], in which sensor information is preprocessed by an ANN
to obtain estimates of a car’s roll angle. A confidence measure
in the ANN estimate is computed based on the similarity
between current input data and training data. Considering
this confidence, the “soft measurements” are used in a UKF
[10], [11]. In the context of truck-semitrailer systems, various
hybrid estimation architectures combining ANN and UKF are
designed and evaluated in [12] based on an extensive real-
world data set with different semitrailer loading states. In the
paper, it is found that the best scheme for this application
case and data set is an ANN that corrects the estimates of
a UKF. However, as pointed out in [12], the robustness to
changed conditions (e. g., different payloads) is limited and
requires further investigation.
In the literature, few works analyze and improve the reli-
ability of estimation methods out-of-distribution. For truck-
semitrailer combinations, no work is concerned with general-
ization capability regarding payload variation, and no existing
methods allow for well-generalizing learning-based or hybrid
estimation across various unknown payloads. In this light, the
current work is concerned with the generalization capability
of estimators out-of-distribution. The research is conducted
for a truck-semitrailer system, as the variation of payload
is a good example for out-of-distribution problems, but the
algorithms may be utilized in other applications as well. In
the current problem setup, we aim to estimate the articulation
angle between truck and semitrailer, lateral tire forces and
the truck steering angle utilizing sensor data of a standard
semitrailer only.
In particular, the contributions of this work are: (i) an

extensive experimental analysis of state-of-the-art estimation
methods in- and out-of-distribution using a real-world data
set, (ii) a novel hybrid Extended Kalman Filter (H-EKF) for
truck-semitrailer combinations (see Fig. 1), enabling accurate
estimation in-distribution and ensuring reliable generalization
out-of-distribution, (iii) extending the confidence-based es-
timation framework [10] regarding multidimensional ANN
estimates and (iv) a novel K-Nearest-Neighbors (KNN)-
based approach for determination of the confidence τk.
The paper is structured as follows. Sec. II is concerned with
modeling of the truck-semitrailer system. In Sec. III, existing
estimation methods are revisited, and the H-EKF estimation
scheme is discussed in detail. An extensive experimental
analysis based on real-world data in- and out-of-distribution
is presented in Sec. IV. Last, a conclusion and an outlook
are given in Sec. V.

II. MODELING A TRUCK-SEMITRAILER COMBINATION

The model-based EKF in this work relies on a nonlinear
single-track model of a truck-semitrailer combination’s lateral
dynamics. The original model is derived and presented in
detail in [3]. For better generalization capability across vari-
ous loading states, some enhancements are introduced in this
contribution. To retain a concise presentation of the findings,
we focus on the adjusted model parts in the following.
The system model is derived from rigid body dynamics and
contains two subparts, the truck and the semitrailer, which
are linked by a constraint equation and denoted by subscripts
i = 1 for the truck and i = 2 for the semitrailer. From the
governing equations in lateral direction, expressions for the
lateral velocities vyi

and the yaw rates ψ̇i can be obtained [3].
The articulation angle between the truck and the semitrailer
obeys θ̇ = ψ̇2 − ψ̇1. Besides, the model is influenced by the
steering angle of the truck’s first axle δ1 and the longitudinal
velocity vx2

.
Moreover, the lateral tire forces Fyij

need to be considered
in the lateral dynamics model. In this contribution, the basic
tire model used in [3] is replaced by the Magic Formula Tire
Model (MFTM) [13] to increase accuracy. Thus, the lateral
tire forces are modeled by the differential equations

Fyij +
lij
vxi

Ḟyij
= µmaxFzij sin (Cij arctan (Bij tan (αij))) ,

(1)

Bij = c1ij sin
(
2 arctan

(
Fzij/c2ij

))
/ (CijDij) , (2)

where all quantities with two scalar subscripts □ij refer to the
j-th axle in rigid body i, and the tire model parameters Cij ,
Dij , c1ij , c2ij and lij can be obtained from identification. αij

are the slip angles, and µmax is the maximum road friction
coefficient.
As can be seen in (1), the lateral tire forces are dependent
on the vertical axle forces Fzij , which are assumed fixed in
the original model [3]. In contrast, different loading states of
the semitrailer, and thus varying vertical axle forces Fz2j , are
considered in this contribution. The vertical axle forces are
modeled by an equal force distribution

Fz2j = Fz2/3, (3)
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based on the overall axle load Fz2 , which is determined from
serial air suspension pressure measurements. Besides, a static
vertical model of the semitrailer is used to represent the
relationship between Fz2 , the semitrailer’s mass m2, and its
center of gravity along the longitudinal axis l2,COG as

m2 = lAggFz2/l2,COG, (4)

where lAgg is the longitudinal distance from the connection
point between truck and trailer (king pin) to the center of the
running gear. The resulting state space model features the
state vector xSSM ∈ RnSSM with

x⊤
SSM =

[
vy1 , ψ̇1, vy2 , ψ̇2, θ, Fy11 , Fy12 , Fy21 , Fy22 , Fy23

]
.

(5)
In total, the physical model exhibits 15 parameters to be
identified, most of which are tire parameters from (1). The
parameter identification is performed using a Particle Swarm
Optimization (PSO) [14] following the lines of [3], [4]. The
associated cost function is the Normalized Mean Squared Er-
ror (NMSE) between model simulation results and available
ground truth state measurements in the test vehicle.

III. ESTIMATION METHODS FOR A TRUCK-SEMITRAILER
COMBINATION

The traditional methods EKF (model-based) and ANN
(learning-based) form a basis for the presented hybrid EKF.
Thus, we briefly revisit both estimation schemes in the con-
text of the current truck-semitrailer system in Sec. III-A and
III-B, taking into account previous results [3], [5]. Thereafter,
the hybrid EKF is introduced and explained in detail.
As stated in the introduction and following the lines of
previous publications [3]–[5], [12], the problem setting is to
estimate the articulation angle between truck and semitrailer
θ, the lateral tire forces Fy2j

and the truck steering angle δ1
utilizing sensor data of a standard semitrailer only.

A. Model-based Estimation

For reliable estimation based on standard semitrailer sen-
sors only, information regarding the current loading state
(i. e., information about the semitrailer’s vertical axle forces
Fz2j , its mass m2, and the center of gravity l2,COG) is crucial.
In this light, conventional semitrailers are equipped with an
air suspension and an air braking system, both controlled by
onboard computing units. The corresponding pressure sensor
information is used in this contribution to determine the
current summed axle forces of the semitrailer Fz2 . Taking
into account (4), the mass m2 can be calculated based on an
assumption about the center of gravity position l2,COG, which
is obtained by estimation in this contribution. It is worth
mentioning that the estimated Center Of Gravity (COG) and
the resulting semitrailer mass m2 are only auxiliary quantities
which are not necessarily physically meaningful. However,
estimating l2,COG adds a degree of freedom, which can
account for changed loading conditions and increase overall
estimation accuracy. Moreover, the steering angle input δ1
needs to be estimated, as it is not available from sensor
measurements in a standard semitrailer.

An ad-hoc approach for practical estimation of unknown pa-
rameters and inputs is to model the unknown quantities with
a random walk and to augment the state vector accordingly
[2], [15]. Thus, the extended state vector x ∈ Rn and the
input vector u ∈ Rm for model-based estimation read

x⊤ =
[
x⊤
SSM δ1 l2,COG

]
, (6)

u⊤ =
[
vx2

Fz2

]
, (7)

respectively. For purely model-based estimation, a single
measurement y = yEKF = ψ̇2 is available1. Because the
subsequent filtering equations are relevant for the hybrid
EKF with an augmented measurement vector yHEKF as well
(see Sec. III-C), the general multidimensional equations are
introduced in the following.
Using the original derivation in [3] together with the pre-
sented modeling choices, a discrete-time state space repre-
sentation

xk = fd(xk−1,uk−1) + vk−1, vk−1 ∼ N (0,Q) , (8a)
yk = gd(xk) +wk, wk ∼ N (0,R) , (8b)

of the truck-semitrailer system is obtained, where fd : Rn×
Rm → Rn is the state transition function, gd : Rn → Rp is
the output function and yk ∈ Rp is the vector of system
outputs at time step k. vk and wk are additive process and
observation noise which are assumed to be drawn from zero
mean, independent Gaussian distributions with covariance
matrices Q and R, respectively. In this contribution, the
covariance matrix R is determined based on measurements
and the state error covariance matrix is tuned heuristically.
A standard approach for recursive Bayesian state estimation
in real-world applications is Kalman filtering. In linear sys-
tems with Gaussian noise, the method provides a closed-
form solution to the optimal filtering equations [2]. Despite
its simplicity, Kalman filtering provides remarkable accuracy
in a wide range of applications. In a prediction step, a
priori information about inputs and states is used together
with the system model to predict the system state and its
error covariance in the next time instant. In a subsequent
correction step, evidence about the true system behavior
(i. e., measurements) is incorporated using Bayes’ rule to
determine an a posteriori state and error covariance estimate
[2]. A recursive algorithm is obtained by employing the
estimates as the prior for the next time instant.
To deal with nonlinear systems, various derivates of the
Kalman filter, such as the EKF or the UKF, are available [2].
In this work, an EKF is employed, given that previous results
have shown its applicability in the current nonlinear system
[3]. The EKF accounts for nonlinearities by linearizing the
system model in each time step k at the current operation
point. The discrete time EKF equations in the presence of
additive noise are

x̂−
k = fd(x̂k−1,uk−1), (9a)

P−
k = AkP k−1A

⊤
k +Q, (9b)

1In operation, the yaw rate ψ̇2 is computed from wheel speed and wheel
speed difference of left and right wheels at the semitrailer’s middle axle.
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for the prediction step and

Kk = P−
k C

⊤
k

(
CkP

−
k C

⊤
k +R

)−1

, (10a)

x̂k = x̂−
k +Kk

(
yk −Ckx̂

−
k

)
, (10b)

P k = (I−KkCk)P
−
k , (10c)

for the correction step [2]. The superscripts □− denote
quantities computed in the prediction step. x̂k ∈ Rn is the
estimated state vector at time step k. P k is the estimated error
covariance matrix, and the Kalman gain is denoted Kk. The
identity matrix of suitable dimension is I.
The momentary state transition matrix Ak and the state
decoupling matrix Ck are obtained by linearization at the
current operation point from

Ak =
∂fd

∂x

∣∣∣∣
x̂k−1,uk−1

, Ck =
∂gd

∂x

∣∣∣∣
x̂−

k

. (11)

B. Learning-based Estimation

Apart from purely model-based algorithms, estimation can
be conducted using learning-based approaches as well. The
learning-based approach in this contribution relies on an
RNN. These ANN structures are widely used for estimation
in dynamical systems due to their capability to learn subtle ef-
fects and patterns in time series data. However, RNN require
special attention regarding their training, which can become
unstable [16]. Modern RNN structures, like Long Short-Term
Memory (LSTM) cells and Gated Recurrent Units (GRU),
have been designed to mitigate these difficulties [17].
In this contribution, we use a specific RNN structure,
a Nonlinear Autoregressive Exogenous Neural Network
(NARX-NN), as this structure has been successfully utilized
for state estimation in the truck-semitrailer system in a
previous work [5]. In NARX-NN, recurrence is induced by
feeding the ANN outputs of the last time instant back to
the input in the current time step, resulting in a recursion
loop. For training of NARX-NN, it is convenient to apply
two phases, first in open loop setting and second in closed
loop configuration [5].
In the current setting, the inputs uANN and the outputs ŷANN

(i. e., the learning-based estimates) of the NARX-NN are

uANN =
[
vx2

Fz2 ψ̇2

]⊤
, (12)

ŷANN =
[
ψ̇1 θ Fy21

Fy23
δ1
]⊤
, (13)

respectively. To capture more information contained in con-
secutive time steps, two input and two feedback delays are
used, which is a typical modification for sequence estimation
with ANN [16].
The training procedure starts with one epoch in open-loop
setting and continues with a maximum of 1000 epochs in
closed loop, following the lines of [5]. The configuration of
the ANN is found by a grid search between one and three
layers and up to 30 neurons in total. Tangent hyperbolicus
activation functions are chosen for all hidden layers, and the
output layer has a linear activation. The employed optimiza-
tion algorithm is Bayesian regularization backpropagation.
A separate ANN is trained for each estimated variable to

keep the complexity of the networks and the training process
low and to reduce possible negative cross-effects.

C. Hybrid Estimation

A combination of model- and learning-based methods
for state estimation can be advantageous to increase esti-
mation accuracy while preserving reliability and physical
interpretability [10], [11]. Therefore, we employ NARX-NN
to estimate ŷANN and consider the estimates as “soft mea-
surements”. The original measurement vector y is extended
such that additional information based on the NARX-NN
is provided in the correction step of the H-EKF. Thus,
the H-EKF measurement vector for estimation in the truck-
semitrailer system is

yHEKF =
[
y ŷ⊤

ANN

]⊤
. (14)

Based on [10], [11], the confidence τk in the “soft measure-
ments” is used to dynamically adjust their impact on the
current H-EKF estimate. For instance, the confidence in a
“soft measurement” sample ŷANNk

is assumed high if the
input data uANNk

in time instance k is similar to the training
data. In turn, if the current input data is not similar to the
training data, the confidence τk is low. An overview of the
H-EKF can be seen in Fig. 1.
To calculate the confidence, a histogram approach is proposed
in [10], [11]. Following this approach, the input training data
{utr

ANNj
}Ntr
j=1, utr

ANNj
∈ RmANN , is binned to (ngrid)

mANN

subspaces, and the resulting bin count is used to reason about
the confidence in the ANN at different points in the input
space. Please note, the superscript □tr is used for quantities
that are employed in ANN training. Depending on τk, the
matrices Qk,UKF and Rk,UKF of an UKF are adjusted in
[10] to incorporate more or less knowledge from the “soft
measurements”, respectively.
However, the binning approach employs distinct bound-
aries in the input data space which leads to discontinuous
confidence jumps, i. e., data points opposite to each other
just at the border between two bins may vary significantly
in confidence regardless of their similarity. Preferably, the
confidence should vary smoothly. To achieve this, a KNN-
based approach is exploited here (see Fig. 2).
KNN is a supervised machine learning technique for clas-
sification of data. In the method, a labeled training data set
Dd = {sdj , ldj }

Nd
j=1 with sample points sdj and labels ldj is

compared with an unlabeled query point sk which should be
classified. The query point’s K nearest neighbors in Dd are
found, and the most probable label for sk is inferred from
the training data labels [18]. In the context of the estimation
task, the training data set

Dtr =
{
utr
ANNj

,ytr
ANNj

}Ntr

j=1
, (15)

is compared to the current ANN input in operation uANNk
.

The K nearest neighbors in the standardized data set are
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Fig. 2: ANN training inputs {utr
ANNj

}Ntr
j=1 (blue) and evaluation inputs (red, orange) from raw data set (left) and excerpt of

standardized data set (right) around new evaluation input ūANNk
(orange) with KNN-search for K = 25. The evaluation

data of loading states “full load”, “partial load 1”, and “no load” is in-distribution regarding the training data. The evaluation
data of loading state “partial load 2” is out-of-distribution regarding the training data.

found, and the corresponding mean squared Euclidean dis-
tance dk is computed according to

dk =
1

K

K∑
j=1

∥∥∥ūtr
ANNj

− ūANNk

∥∥∥2
2
, (16)

where the bar symbol □̄ denotes a standardized quantity. The
confidence τk in the “soft measurement” ŷANNk

is computed

τk =

{
(dmax − dk)/dmax, if dk ≤ dmax,

0, otherwise,
(17)

where the maximum distance dmax is a threshold above
which no confidence in the “soft measurements” is present.
During operation of the H-EKF, the current confidence τk is
used to compute the measurement noise covariance matrix
Rk. A quadratic mapping between τk and R0 yields good
experimental results for the current application to a truck-
semitrailer system. Thus, we choose

Rk =
(
c (τk − 1)

2
+ 1

)
·R0, (18)

for the subsequent findings, where c is a parameter that deter-
mines the measurement noise covariance at zero confidence.
For tuning, the covariance matrices of the H-EKF are de-
termined initially with all “soft measurements” available
(i. e., τk = 1 ∀ k) such that the filter is stable, and the H-EKF
results follow ŷANNk

closely. The resulting covariance ma-
trices are stored as Q and R0.

IV. EXPERIMENTAL RESULTS

The performance of the H-EKF (Sec. III-C) in- and out-of-
distribution is compared to state-of-the-art estimation meth-
ods for truck-semitrailer systems, i. e., the purely model-based
EKF (Sec. III-A) and the learning-based ANN (Sec. III-B),
using an extensive experimental data set of a truck-semitrailer
combination with different loading states. The data set and
the parameterization procedure are described first. Second,
the experimental results are presented and discussed.

TABLE I: Measurements available in Test Vehicle and Stan-
dard Product (S denotes Semitrailer, T denotes Truck)

Origin Measured variable Symbol Available in
standard product

S longitudinal velocity vx2 Yes
S yaw rate ψ̇2 Yes
S summed vertical axle force Fz2 Yes
S lateral tire force Fy21 No
S lateral tire force Fy23 No
S/T articulation angle θ No
T longitudinal velocity vx1 No
T yaw rate ψ̇1 No
T steering angle δ1 No

A. Data Set and Parameterization

For model identification and training of the ANN, exten-
sive driving experiments are carried out with a real-world
truck-semitrailer combination. The experimental vehicle is
similar to the one presented in [3]–[5], [12]. In particular, to
measure the lateral tire forces Fy21

and Fy23
, the first and the

third axle of the experimental semitrailer have been equipped
with a calibrated and verified test setup based on strain
gauges. The available sensor measurements in the test vehicle
and in an off-the-shelf three-axle semitrailer are summarized
in Tab. I for an overview. The only signals used for estimation
are the semitrailers’ longitudinal velocity vx2

, yaw rate ψ̇2

and the summed vertical axle force Fz2 , which are available
in a standard semitrailer. All other signals defined in Tab. I
are used for ANN training and model identification only.
The driving maneuvers in the training and identification
data set are selected to be specifically exciting to the lat-
eral dynamics of the truck-semitrailer combination, which
includes sinusoidal, step and ramp steering angle inputs
(up to ± 30◦) at different velocities (3 to 22 m/s) and
with different loading states. The different loading states
correspond to multiple payloads with individual mass and
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Fig. 3: Measurements and estimates of articulation angle θ (top) and lateral tire force Fy21 (middle) with ANN estimation
errors and current confidences (bottom). Excerpts from evaluation data of loading state “full load” (left) and “partial load
2” (right). The ANN performs well if the evaluation data is close to the training data (i. e., the confidence τ is high) and
shows large errors if the confidence is close to 0. The H-EKF incorporates ANN estimates and improves estimation accuracy
reliably by taking the confidence into account.

spatial distribution. Specifically, the training data Dtr com-
prises three full sets of similar driving maneuvers for the
loading states “full load” (payload 21, 600 kg), “partial load
1” (payload 16, 000 kg) and “no load” (payload 0 kg) with
different spatial distributions of the payload.
For evaluation of the estimation methods, additional ma-
neuvers covering a broad area in the operation space are
available. These maneuvers are carried out while the semi-
trailer is loaded as for acquisition of the training data (in-
distribution evaluation). A fourth maneuver is performed with
a different loading state “partial load 2” (payload 16, 000 kg)
featuring a changed payload distribution. With this maneuver,
we evaluate the estimation performance in operational areas
that are not covered in the training data Dtr (see Fig. 2, left).
Thus, the generalization error and reliability in “unknown”
scenarios can be tested (out-of-distribution evaluation).

B. Experimental Estimation and Generalization Analysis

For illustration of the generalization capability, Fig. 3
depicts the estimation results of all methods for two eval-
uation maneuvers of different loading states in- and out-of-
distribution. The qualitative comparison in Fig. 3 is under-
scored by quantitative results for all evaluation maneuvers
and for all variables of interest (see Tab. II).
In Fig. 3, the plots show measurements and estimates of
the articulation angle θ between truck and semitrailer (top)
and the lateral tire force Fy21

(middle), respectively. The
bottom plots depict the confidence τk in the ANN estimates
according to (17).
The left plots illustrate the estimation performance in-
distribution, as the maneuver is of loading state “fully
loaded”. As expected, all estimators perform well. The ANN
estimates are more accurate than the EKF estimates, which

461



TABLE II: Root Mean Squared Error (RMSE) of the estimates tested with evaluation data in- and out-of-distribution regarding
the training data set Dtr.

Evaluation data Loading state RMSE of θ in rad RMSE of Fy21 in kN RMSE of Fy23 in kN RMSE of δ1 in rad
EKF ANN H-EKF EKF ANN H-EKF EKF ANN H-EKF EKF ANN H-EKF

In-distribution full load 0.020 0.016 0.016 1.693 1.570 1.491 1.950 2.282 2.264 0.035 0.031 0.031
In-distribution partial load 1 0.016 0.010 0.011 1.753 0.715 0.797 1.688 1.210 1.384 0.033 0.026 0.026
In-distribution no load 0.016 0.013 0.014 1.292 0.594 0.825 0.835 0.481 0.624 0.039 0.035 0.035
Out-of-distribution partial load 2 0.021 0.008 0.008 2.095 3.478 1.884 2.821 3.693 2.743 0.031 0.026 0.027
Mean error 0.018 0.012 0.012 1.708 1.589 1.249 1.823 1.916 1.754 0.035 0.030 0.030
Relative mean error

0 %
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100 %

0
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8
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8
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8

0
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2
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can be attributed to the high approximation capability of
the ANN and the availability of sufficient training data in
the region of the evaluation data. This is reflected by a
high confidence τ in the ANN estimates. Moreover, the
ANN estimation errors correlate with the confidence τ in
the bottom left plot. This is especially visible for the lateral
tire force Fy21

from 129 to 137 s. For the articulation angle
θ, this relationship is less visible, but the ANN estimation
error is generally low.
In this scenario, the H-EKF takes advantage of the accurate
ANN estimates because the confidence is generally high.
Thus, performance is improved compared to the purely
model-based EKF. In operation areas with low confidence,
however, the H-EKF relies primarily on its model, dismiss-
ing potentially inaccurate ANN “soft measurements”. This
behavior can be seen from 129 to 137 s in the middle left plot
of Fig. 3. Initially, the confidence τ is high, and the H-EKF
estimates are similar to the ANN “soft measurements”.
Thereafter, τ decreases sharply, causing the H-EKF to rely
more on its model-based predictions. As the confidence rises
again, the impact of the ANN estimates increases. In this way,
the H-EKF combines locally good performance of each, EKF
and ANN, and has the potential to outperform both.
On the right-hand side of Fig. 3, results based on the loading
state “partial load 2” are presented. This loading state is not
included in the training data and differs from “partial load
1” regarding the payload distribution (out-of-distribution, see
Fig. 2). In this scenario, the ANN exhibits a significantly
lower performance compared to the in-distribution evaluation,
which is presumably due to overfitting regarding the input
variable Fz2 . As expected, the large ANN estimation error
is reflected by a generally low confidence τ . Comparing the
ANN estimation errors regarding the articulation angle θ and
the lateral tire force Fy21

, the force errors deteriorate more
in the out-of-distribution evaluation. This can be attributed
to the fact that the kinematic quantity θ is less reliant on the
vertical force Fz2 than the dynamic force Fy21 .
Considering the EKF, the generalization capability out-of-
distribution is good. The H-EKF inherits this characteristic
and disregards “soft measurements” with low confidence,
resulting in an estimation performance comparable to the
purely model-based EKF. Thus, the H-EKF takes advantage

of accurate (but potentially overfitted) ANN estimates if
evaluated in-distribution and generalizes reliably if evaluated
out-of-distribution.
The previous qualitative results are underpinned quantita-
tively in Tab. II. The estimation performance of EKF, ANN
and H-EKF are compared regarding articulation angle θ,
lateral tire forces Fy21 and Fy23 , as well as steering angle
δ1. All four evaluation maneuvers are considered, including
three maneuvers in-distribution regarding the training data
Dtr and an additional maneuver out-of-distribution (loading
state “partial load 2”).
In-distribution, the ANN usually outperforms the EKF, as
expected. Only for the evaluation maneuver with full load, the
EKF yields better estimation accuracy regarding the lateral
tire force Fy23

. This is presumably due to a suboptimally
trained ANN and needs further investigation. The H-EKF
takes into account the “soft measurements” of the ANN,
resulting in a significantly improved estimation accuracy in-
distribution compared to the purely model-based EKF. Thus,
the H-EKF is at least as good as the traditional methods EKF
or ANN and can even outperform both, see for instance, the
estimation errors of the lateral tire force Fy21

based on the
evaluation maneuver with full load (see left-hand side in Fig.
3 as well).
Out-of-distribution, the ANN estimates of the lateral tire
forces Fy21

and Fy23
are significantly worse than the EKF es-

timates, indicating overfitting on the training data. Although
the EKF shows a degradation of estimation accuracy as
well, it performs more reliable than the ANN. The H-EKF
inherits this characteristic due to low confidence levels in
the ANN estimates in the out-of-distribution scenario. For
the articulation angle θ and the steering angle δ1, which are
kinematic quantities, the ANN shows good performance even
if evaluated out-of-distribution, which is presumably due to
a low impact of the vertical force input Fz2 on the kinematic
quantities.
Thus, the experimental comparison in Tab. II suggests that
the ANN allows for accurate approximation of the semitrailer
behavior in-distribution regarding the training data set Dtr,
but suffers from overfitting. In contrast, the EKF provides bet-
ter generalization capability if evaluated out-of-distribution at
the cost of less estimation accuracy in-distribution.
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The H-EKF alleviates the limitations of both methods and
allows for accurate estimation in-distribution while reliably
generalizing out-of-distribution. Regarding kinematic quanti-
ties in the present truck-semitrailer application, the H-EKF
exhibits comparable performance as the ANN estimation.
Considering the dynamic lateral tire forces Fy21

and Fy23
,

the H-EKF clearly outperforms both comparison methods,
EKF and ANN, in the experimental analysis.

V. CONCLUSION AND OUTLOOK

In real-world systems, it is difficult to obtain training data
that spans the whole operation region of a system. Thus,
overfitting is likely to occur in learning-based estimation,
resulting in bad generalization capability out-of-distribution.
In contrast, the estimation performance of purely model-
based methods is usually limited by the model accuracy.
In this paper, we analyze model-based, learning-based and
hybrid estimation schemes regarding their accuracy and gen-
eralization capability in- and out-of-distribution. Beyond the
state of research, the comparison study is conducted using
extensive experimental data of a full-scale truck-semitrailer
combination with various loading states. To enable reliable
estimation out-of-distribution, the confidence-based hybrid
estimation framework in [10], [11] is employed and extended.
In particular, a new KNN-based scheme is proposed to
quantify the confidence in the “soft measurements” from an
ANN estimator and the scheme is enhanced for consideration
of multidimensional ANN estimates.
The experimental results show that the ANN performs best
if evaluated in-distribution but generalizes badly to other
data, indicating overfitting. The purely model-based EKF
provides reliable estimates out-of-distribution, but has a
higher estimation error level in-distribution. In comparison,
the proposed H-EKF improves estimation performance in-
distribution and provides reliable estimates (generalization)
out-of-distribution regarding the training data, suggesting that
the proposed H-EKF combines the advantages of the consid-
ered model-based and learning-based estimation schemes.
By enabling reliable estimation out-of-distribution, the
H-EKF has the potential to facilitate development of ADAS,
autonomous driving functions, and safety features in the
current application to truck-semitrailer combinations and
beyond. Future work may focus on investigating the com-
putational complexity of the H-EKF. Besides, other ANN
structures may be tailored for estimation and examined re-
garding their generalization capability. A particularly interest-
ing choice are physics-informed neural networks which allow
incorporating model knowledge and have shown promising
learning capability in physical systems with limited real-
world training data [19].

ACKNOWLEDGMENT

This work is part of the project IdenT (19|19008A,
19|19008B), which is funded by the German Federal Min-
istry for Economic Affairs and Climate Action based on a
resolution of the German Bundestag.

REFERENCES

[1] H. Ahmadi Jeyed and A. Ghaffari, “Nonlinear estimator design based
on extended kalman filter approach for state estimation of articulated
heavy vehicle,” Proc. of the Institution of Mech. Eng., vol. 233, no. 2,
pp. 254–265, 2019.
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