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Abstract— It is well known that ignoring the presence of
stochastic disturbances in the identification of stochastic Wiener
models leads to asymptotically biased estimators. On the other
hand, optimal statistical identification, via likelihood-based
methods, is sensitive to the assumptions on the data distri-
bution and is usually based on relatively complex sequential
Monte Carlo algorithms. We develop a simple recursive online
estimation algorithm based on an output-error predictor, for the
identification of continuous-time stochastic parametric Wiener
models through stochastic approximation. The method is appli-
cable to generic model parameterizations and, as demonstrated
in the numerical simulation examples, it is robust with respect
to the assumptions on the spectrum of the disturbance process.

I. INTRODUCTION

Online system identification is a classical problem in
the Systems and Control literature. Several methods and
algorithms were developed in parallel to the development
of adaptive control techniques; see [1], [2]. Apart from its
direct interest, online identification has close connections to
nonlinear filtering and learning & adaptation; see [3]–[5].
Recursive algorithms are also useful for offline identification
when the data sets are large.

The majority of classical prediction error methods (PEM)
were designed for linear stochastic models, or nonlinear
deterministic models, with disturbances or noise solely at
the output, [6, Ch. 11], [3, Ch. 8]. For general nonlinear
stochastic discrete-time state-space models, likelihood-based
estimators such as the maximum-likelihood estimator or
the maximum-a-posteriori estimator are usually used. Both
offline and online implementations of such estimators rely
on (particle) sequential Monte Carlo approximations, see for
example the survey [7] and the references therein. Similar
algorithms for continuous-time nonlinear time-series models
were proposed as offline methods using sampled measure-
ments [8] and as online algorithms using continuous-time
observations [9]. Unfortunately, besides the computational
challenges, the maximum-likelihood estimator deviates from
its optimal asymptotic properties when there are discrepan-
cies in the data distribution [10].

Most of the existing methods have only asymptotic guar-
antees, mainly due to the intractability of the finite-sample
distributions of the estimators. Some major advantages of
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efe.balta@inspire.ch

asymptotic analysis are the applicability to common model
parameterizations in both continuous- and discrete-time, and
the ability to work with model misspecification under weak
assumptions; a clear drawback is the lack of finite-sample
guarantees. System identification of linear systems from
a single input-output trajectory using linear least-squares
estimators with non-asymptotic guarantees has been stud-
ied in [11] and [12]. Most of the existing work employs
stochastic input sequences from a predetermined distribu-
tion to provide convergence guarantees; see [13] for an
overview of recent results. Generalized linear, nonlinear [14],
and piecewise-affine systems [15] have also been studied.
However, existing algorithms often focus on discrete-time
dynamics and are not easily adaptable to continuous-time.

In this work, we focus on the online estimation prob-
lem of continuous-time stochastic parametric Wiener mod-
els using noisy samples of the output signal. A Wiener
model comprises a linear dynamical model, followed by a
static nonlinearity at its output. It has found application in
different scientific and engineering domains [16] as it can
approximate a large class of nonlinear systems. Because
the dynamic component is linear, exact time-discretization is
possible when the inter-sample behavior of the input signal
is known. Moreover, the stability of the model is dictated
by the stability of the linear component. Previous work on
recursive online identification of Wiener models, as in [17],
has only considered the deterministic case in discrete time.
In [18], an online PEM algorithm for deterministic nonlinear
continuous-time models is given using Euler discretization.

We propose a simple online parameter estimation algo-
rithm for the class of continuous-time stochastic Wiener
models. We utilize an output-error predictor and adopt an
input-output approach, accommodating a sampled data sce-
nario with additive output measurement noise. The algorithm
is developed using an online prediction error framework.
Through numerical simulation examples, we showcase the
algorithm’s performance, especially in cases where the dis-
turbance model is incorrectly specified. It should be noted
that even though we consider continuous-time models, the
approach is directly applicable to discrete-time models.

II. PROBLEM FORMULATION

We consider the following class of Wiener models

dw(t) = A(θ)w(t) dt+B(θ) dβ(t),

x(t) = G(p; θ)u(t) + C(θ)w(t),

y(t) = f(x(t); θ),

(1)
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where G(p; θ) is a single-input single-output continuous-
time transfer operator, p is the differential operator, f(·; θ)
is a static parametric function, θ ∈ Θ ⊂ Rd is a parameter
vector, u(t) ∈ R is the input signal, y(t) ∈ R is the output
signal, x(t) ∈ R is a latent signal, and w(t) ∈ Rnw is
a disturbance driven by a Wiener process β(t) ∈ Rnw .
Additionally, A(θ), B(θ), C(θ) are parametric matrices of
appropriate sizes. We assume the output is measured at
discrete-time instances tk with additive measurement noise,

yk = y(tk) + vk, k = 1, 2, 3, . . . (2)

To simplify the exposition, we confine our discussion to a
constant sampling period ∆. However, the suggested method
is applicable to the more general case with irregular sampling
times. Without loss of generality, we assume that vk has a
zero-mean value for all k (non-zero constant mean values can
be included in the parameterization of f ). We also assume
that the input signal is known exactly as a continuous-time
signal, and therefore the data set available at time tN is

DN :=
{
(yk, u(t)) : k = 1, . . . , N, t ∈ [t1, tN ]

}
.

Moreover, the data is collected open-loop so that u is inde-
pendent of w and v. To ensure that the data collection process
is well-posed, model (1) is assumed to be (asymptoticaly)
stable for all θ ∈ Θ. The choice of a transfer operator
parametrization is

G(p; θ)=

∑m
j=0 cjp

j

pn +
∑n−1
j=0 djp

j
, (3)

where m ≤ n, θG := [c0 . . . cm d0 . . . dn−1]
⊤ ∈ RdG and

dG = n + m + 1. Other parametrizations, e.g., state space
(canonical or not), are also possible.

The parametrization of the Itô stochastic differential equa-
tion used to model the disturbance w is done separately from
G and f , allowing for the possibility of misspecification
only in the disturbance model. The matrices A(θ), B(θ),
and C(θ) assume a state-space parametrization that should
be identifiable from the marginal second-order moments of
y. This typically means that only a few parameters in one of
the matrices can be estimated. Nevertheless, the proposed ap-
proach can naturally handle cases where G, f , and the model
of w are jointly parameterized (see Section IV-A) when the
parameterization is identifiable. We order the entries of the
parameter vector as θ = [θ⊤G θ⊤w θ⊤f ]

⊤, where θw ∈ Rdw are
parameters appearing in the disturbance model, and θf ∈ Rdg
are parameters of f . The main objective of the paper is the
construction of an online estimation algorithm for θ that,
based on the knowledge of the inter-sample behavior of u,
maps the current measurement yk to an estimate θ̂k. When
the system is time-invariant, an appropriate algorithm design
ensures the almost sure convergence to a subset of Θ.

III. PROPOSED APPROACH

The Output-Error Quadratic PEM (OE-QPEM) [19] esti-
mator based on DN is defined as the minimizer of

VN (θ) :=
1

N

N∑
k=1

1

2

(
yk − E

[
yk|(u(s))tks=t1 ; θ

])2
, (4)

over a suitable compact subset Θ ⊂ Rd. The expectation
operator is with respect to the process disturbance w and
the measurement noise v, and is conditioned on the known
input signal u. The OE-QPEM estimator provides a com-
putationally simpler alternative to likelihood-based methods,
as it does not require the computation (or approximation)
of the predictive densities p(yk|y1, . . . , yk−1, (u(s))

tk
s=t1 ; θ)

of the model’s output. The loss of statistical efficiency is
often outweighed by the computational simplicity it offers
(as shown e.g. in [19] and [20]), and the applicability to
complex models; see e.g., [21].

A. Proposed identification method

We propose an online implementation of the OE-QPEM
estimator. In a similar vein to (4), we seek to minimize
V (θ) = 1

2E[ε
2
k(θ)], where εk(θ) := yk−E

[
yk|(u(s))tks=t1 ; θ

]
is the prediction error, using stochastic approximation. Let us
denote the predictor and the gradient vector of the prediction
error with respect to θ as

ŷk(θ) = E
[
yk|(u(s))tks=t1 ; θ

]
, ψk(θ) = − d

dθ
ŷk(θ),

respectively. Then V ′(θ) = E [ψk(θ) (yk − ŷk(θ))], where
we have allowed the interchange of expectation and differ-
entiation. Notice that the outer expectation pertains to the
underlying probability space of the data (unknown), while
the inner expectations, defining ŷk(θ) and ψk(θ), are with
respect to the Wiener process β(t) in (1). Then, minimizing
V (θ) can be achieved by solving the system of equations

E
[
ψk(θ)(yk − E

[
yk|(u(s))tks=t1 ; θ

]]
= 0. (5)

Applying the Robbins-Monro stochastic approximation
scheme [22], we obtain the following recursion

θ̂k = θ̂k−1 − γkψk(θ̂k−1)
(
yk − ŷk(θ̂k−1)

)
, (6)

in which γk are positive scalars tending to zero sufficiently
slowly as k grows. There are two primary challenges in
computing the OE predictor ŷk(θ̂k−1) and the gradient vector
ψk(θ̂k−1). The first is the evaluation of the expected values
with respect to β, and the second is doing so online in
a recursive manner. The solution to the first challenge is
generic in nature, while the second naturally depends on the
choice of model class and parameterization.

The main idea of our approach is to compute the OE
predictor ŷk(θ̂k−1) and the corresponding prediction error
gradient vector ψk(θ̂k−1) in (6) by simulating (1) and its
output gradient filters using two independent Wiener pro-
cesses β(y)(t) and β(ψ)(t), respectively, at θ = θ̂k−1.

The outputs of these two simulations, denoted y1,k(θ̂k−1)
and ψ1,k(θ̂k−1), are unbiased estimators of ŷk(θ̂k−1) and
ψk(θ̂k−1), and are independent by construction. This impor-
tant property means that the vector

ψ1,k(θ̂k−1)
(
yk − y1,k(θ̂k−1)

)
(7)

is an unbiased estimator of the estimating function in (5).
While only two Wiener processes are needed, the perfor-
mance of the algorithm may be improved by considering the
average of M ≥ 1 independent simulations:
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ȳk(θ̂k−1) =
1

M

M∑
m=1

ym,k(θ̂k−1),

and similarly for ψ̄k(θ̂k−1). These unbiased estimators can
be thought of as “measurements” of ŷk(θ̂k−1) and ψk(θ̂k−1),
respectively. With this in mind, an approximation of (6) is

θ̂k = θ̂k−1 − γkψ̄k(θ̂k−1)
(
yk − ȳk(θ̂k−1)

)
.

Note that M can be either fixed or changed with k, and could
be thought of as a tuning parameter of the algorithm.

To further improve the convergence properties, a stochastic
Newton direction can be used. For a fixed θ, the Hessian
V ′′(θ) = E[ψk(θ)ψ⊤

k (θ)] can be determined as the solution
R of E[ψk(θ)ψ⊤

k (θ) − R] = 0 where the expectation is
with respect to the data distribution. Using the ideas outlined
above, we arrive at the following algorithm

Rk = Rk−1 + γk

[
ψ̄k(θk−1)

[
ψ̄k(θk−1)

]⊤ −Rk−1

]
,

θ̂k =
[
θ̂k−1 − γkR

−1
k ψ̄k(θ̂k−1)

(
yk − ȳk(θ̂k−1)

)]
Θ
,

where [ · ]Θ is a projection operator. A particularly simple
implementation defines [ θ ]Θ := θ if θ ∈ Θ, otherwise
[ θ ]Θ = θ̂k−1 (see [6, (11.50)]). The only issue with this
algorithm is that it is not recursive. The estimates of the OE
predictor and its gradient vector at time tk are the outputs of
filters with infinite impulse responses, and hence they rely
on all past data in general. This issue is fixed below using
approximation processes similar to those used in classical
online PEM algorithms.

B. Recursive computation of the OE predictor

We construct a natural recursive approximation ȳk of
ȳk(θ̂k−1). Define z(t; θ) = G(p; θ)u(t), zk(θ) = z(tk; θ).
For the sake of clarity, we let the input be constant over the
sampling interval. The sampled-data transfer function1 is then

G∆(z−1; θ) := (1− z−1)Z
{
L−1

{
G(p; θ)

p

}
t=k∆

}
=:

∑n
r=1 br(θ)z

−r

1 +
∑n
r=1 ar(θ)z

−r

When the input is not constant over the sampling interval,
and/or the sampling times are irregular, the model is dis-
cretized exactly by using the knowledge of the inter-sample
behaviour (see Section IV-A). For any fixed θ, the recursion

zk(θ) =− a1(θ)zk−1(θ)− · · · − an(θ)zk−n(θ)

+ b1(θ)uk−1 + · · ·+ bn(θ)uk−n.

holds exactly. A recursive approximation zk of zk(θ̂k−1) is
then obtained with the current estimate θ̂k−1, using previous
values of zk as initial values. We denote the approximation
of zk(θ̂k−1) compactly by

zk = φ⊤
k−1η(θ̂k−1), (8)

where φk−1 =
[
−zk−1 . . . − zk−n uk . . . uk−n

]⊤
, and

η(θ̂k−1) =
[
a1(θ̂k−1) . . . an(θ̂k−1) b1(θ̂k−1) . . . bn(θ̂k−1)

]⊤
.

1This is simply zero-order hold sampling. L−1{·} is the inverse Laplace
transform, Z{·} is the Z-transform, and z is the Z-transform variable.

Likewise, a recursive approximation, denoted as wm,k, is
derived for wm(tk; θ̂k−1). Because the model of w is linear,
it can be sampled exactly (in the sense that the statistical
properties of the sampled model are identical to that of the
continuous-time one at the sampling times; see e.g., [23,
Ch.3, Sec.10, pages 82-83]) to get

wm,k+1(θ) = A∆(θ)wm,k(θ) +B∆(θ)β
(y)
m,k,

β
(y)
m,k

iid∼ N (0, Inw)
(9)

where A∆(θ) = eA(θ)∆ and B∆(θ) is a square root
of

∫∆

0
eA(θ)sB(θ)B⊤(θ)eA

⊤(θ)s ds. The approximation pro-
cess is then computed recursively as

wm,k = A∆(θ̂k−1)wm,k−1 +B∆(θ̂k−1)β
(y)
m,k (10)

where at time tk we only need to store {wm,k}Mm=1. The
random variables β

(y)
m,k are sampled in run-time and not

stored. Finally, we define

ȳk =
1

M

M∑
m=1

f
(
zk + C(θ̂k−1)wm,k ; θ̂k−1

)
which only requires storing φk, {wm,k}Mm=1, and θ̂k at tk.

C. Recursive computation of the gradient vector

Define xm(t; θ) = z(t; θ)+C(θ)wm(t; θ), where wm(t; θ)

is driven by β(ψ)
m . Applying the chain rule,

∂θj [xm(t; θ)] = ∂θj [z(t; θ)] + Cj(θ)wm(t; θ)

+ C(θ)∂θj [wm(t; θ)],
(11)

where Cj(θ) is the entry-wise derivative of C(θ) with respect
to θj . Similarly, we have

∂θj [ym(t; θ)] = ∂θj [f(a; θ)]
∣∣
a=xm(t;θ)

+ ∂x[f(x; θ)]
∣∣
x=xm(t;θ)

∂θj [xm(t; θ)] ,
(12)

and ∂θj [z(t; θ)] = G′
j(p; θ)u(t), 1 ≤ j ≤ dG with

G′
j(p; θ) =


pj

pn+
∑n

j=1 djp
j , 1 ≤ j ≤ m+ 1

−pj−m−1

pn+
∑n

j=1 djp
jG(p; θ)u(t), m+ 2 ≤ j ≤ dG

The gradient filters G′
j(p; θ) can be discretized similarly to

G(p; θ), based on the inter-sample behaviour of u(t), to get

G′
j(z

−1; θ) :=

∑nj

r=1 b
(j)
r (θ)z−r

1 +
∑nj

r=1 a
(j)
r (θ)z−r

,

in which nj = n for 1 ≤ j ≤ m + 1, while nj = 2n for
m+2 ≤ j ≤ dG. Analogous to (8), a recursive approximation
z
(j)
k of ∂θj [z(tk; θ)] is defined as

z
(j)
k = [φ

(j)
k−1]

⊤ηj(θ̂k−1),

in which φ(j)
k−1 =

[
−z(j)k−1 . . . − z

(j)
k−nj

uk−1 . . . uk−nj

]⊤
,

ηj(θ̂k−1)=
[
a
(j)
1 (θ̂k−1) . . . a

(j)
nj (θ̂k−1) b

(j)
1 (θ̂k−1) . . . b

(j)
nj (θ̂k−1)

]⊤
.

On the other hand, the gradients ∂θj [wm(t; θ)], denoted as
w

(j)
m (t; θ) in the sequel, are obtained by differentiating the
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stochastic integral equations defining wm(t; θ) with respect
to θ. It can be shown that they satisfy

dζ(j)(t; θ) = F (j)(θ)ζ(j)(t; θ) dt+ L(j)(θ) dβ(ψ)
m (t) (13)

in which ζ(j)(t; θ) =
[
[wm(t; θ)]⊤ [w

(j)
m (t; θ)]⊤

]⊤
, with

the following drift and dispersion matrices

F (j)(θ) =

[
A(θ) 0
Aj(θ) A(θ)

]
, L(j)(θ) =

[
B(θ)
Bj(θ)

]
.

Here, Aj(θ) and Bj(θ) are defined similarly to Cj(θ). Notice
that β(ψ)

m in (13) and β(y)
m in (10) are independent processes

by definition. The sampled versions of ζ(j)(t; θ) are

ζ
(j)
m,k+1(θ) = F

(j)
∆ (θ)ζ

(j)
m,k(θ) + L

(j)
∆ (θ)β

(ψ)
m,k

β
(ψ)
m,k

iid∼ N (0, I2nw),

where F
(j)
∆ (θ) = eF

(j)(θ)∆, and L
(j)
∆ (θ) is a square root

of
∫∆

0
eF

(j)(θ)sL(j)(θ)[L(j)(θ)]⊤e[F
(j)(θ)]⊤s ds. For irregular

sampling times, ∆ is simply replaces by ∆k = tk+1 − tk.
The approximation process is then computed as

ζ
(j)
m,k+1 = F

(j)
∆ (θ̂k−1)ζ

(j)
m,k + L

(j)
∆ (θ̂k−1)β

(ψ)
m,k,

wm,k = [ζ
(j)
m,k]1:nw

, w
(j)
m,k = [ζ

(j)
m,k]nw:2nw

.

Notice that, (i) wm,k here is driven by β(ψ)
m,k and is indepen-

dent of that in (10), and (ii) wm,k is the same for all j. The
recursive approximations of (11) and (12) are

x
(j)
m,k = z

(j)
k + Cj(θ̂k−1)wm,k + C(θ̂k−1)w

(j)
m,k,

y
(j)
m,k = ∂θj [f(a; θ)]

∣∣∣a=xm,k

θ=θ̂k−1

+ ∂x[f(x; θ̂k−1)]
∣∣
x=xm,k

x
(j)
m,k.

Finally, with ψm,k = −
[
y
(1)
m,k y

(2)
m,k . . . y

(d)
m,k

]⊤
,

ψ̄k =
1

M

M∑
m=1

ψm,k

which provides a recursive approximation of ψ̄k(θ̂k−1). It
only requires storing {φ(j)

k }j and {ζ(j)m,k}m,j at tk.

D. Algorithm Summary

A summary of the estimation algorithm is collected in
Algorithm 1. It starts from a given parameterization as in
(1), and considers the general case of estimating parameters
in G, f , and the disturbance model. The algorithm is started
with an initial value θ̂0 ∈ Θ that can be obtained by an a
priori offline/patch identification, or using prior knowledge.
The initial regressors φ0 and {φj0} can be obtained from
previous input-output data or simply set to zero.

Notice that, at each iteration, Lines 6 and 8 in Algorithm 1
require the discretization of the transfer functions G(p; θ̂k−1)
and G′

j(p; θ̂k−1). Likewise, Lines 5 and 10 require the
discretization of the Itô stochastic differential equation of
w and its gradient with respect to θ. For irregular sampling
times and general inputs, the discretization is to be done
exactly by using the knowledge of the inter-sample behaviour
of the input.

Algorithm 1: OE-QPEM online estimator

output: Sequence of estimates {θ̂k}k≥1

input : Gain sequence {γk}k≥1, M ≥ 1, initial parameter
θ̂0, sampling period ∆, initial Hessian R0 = cI
(for relatively large c > 0), initial regressors φ0,
{φj0}

nG
j=1, parameter vectors η(θ̂0), {ηj(θ̂0)}nG

j=1.

1 Set wm,0 = 0 and ζ(j)m,0 = 0 for all m and j
2 Set index k ← 1 and collect data point (y1, u1)
3 while true do
4 β

(y)
m,k

iid∼ N (0, Inw ), m = 1, . . . ,M

5 wm,k = A∆(θ̂k−1)wm,k−1 +B∆(θ̂k−1)β
(y)
m,k

6 zk = φ⊤
k−1η(θ̂k−1)

7 ȳk = 1
M

∑M
m=1 f

(
zk + C(θ̂k−1)wm,k ; θ̂k−1

)
8 z

(j)
k = [φ

(j)
k−1]

⊤ηj(θ̂k−1)

9 β
(ψ)
m,k

iid∼ N (0, I2nw ), m = 1, . . . ,M

10 ζ
(j)
m,k = F

(j)
∆ (θ̂k−1)ζ

(j)
m,k−1 + L

(j)
∆ (θ̂k−1)β

(ψ)
m,k

11 wm,k = [ζ
(j)
m,k]1:nw

12 w
(j)
m,k = [ζ

(j)
m,k]nw :2nw

13 x
(j)
m,k = z

(j)
k + Cj(θ̂k−1)wm,k + C(θ̂k−1)w

(j)
m,k

14 y
(j)
m,k = ∂θj [f(a; θ)]

∣∣∣a=xm,k

θ=θ̂k−1

+ ∂x[f(x; θ̂k−1)]
∣∣
x=xm,k

x
(j)
m,k

15 ψm,k = −
[
y
(1)
m,k y

(2)
m,k . . . y

(d)
m,k

]⊤
16 ψ̄k = 1

M

∑M
m=1 ψm,k

17 εk = yk − ȳk
18 Rk = Rk−1 + γk

[
ψ̄kψ̄

⊤
k −Rk−1

]
19 θ̂k =

[
θ̂k−1 − γkR−1

k ψ̄kεk
]
Θ

20 store φ0, {φj0}
nG
j=1 and {wm,k}, {ζ(j)m,0} ∀m, j

21 set index k ← k + 1, and collect data (yk, uk)
22 φk = [−zk [φk−1]

⊤
1:n−1 uk [φk−1]

⊤
n+2:2n−1]

⊤

23 φ
(j)
k =[−z(j)k [φ

(j)
k−1]

⊤
1:n−1 uk [φ

(j)
k−1]

⊤
n+2:2n−1]

⊤

24 end

E. Theoretical Motivation

The validity of the stochastic approximation step is
achieved by the simulation of (1) using independent Wiener
processes. Indeed, under this setting (and open-loop opera-
tion), (7) is an unbiased estimator of (5).

The development in Section III-A implicitly assumes that
{εk(θ)} is independent and weakly stationary. This does
not need to be the case: the validity of the stochastic
approximation can be established for a more general class of
(ergodic) statistically dependent prediction error processes;
see [24]. This in particular means that the convergence of
the algorithm can be established even for cases with under-
modelling/misspecification, such that θ̂k → ϑ almost surely
as k → ∞ where ϑ is the set of roots of (5). Moreover, under
mild regularity assumptions and an identifiability condition
implying ϑ = {θ◦}, the asymptotic distribution

√
k(θ̂k− θ◦)

can be characterized; see [6, App.11A].
Additionally, interchanging the order of ordinary differen-

tiation and stochastic integration can be justified (see [25]),
and therefore the gradient filters in (13) and the gradients
in (11) are well-defined. A detailed analysis of the proposed
method is deferred to a dedicated future contribution.
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IV. NUMERICAL EXAMPLES

A. Example 1

Consider the model
dx(t) = ax(t) dt+ bu(t) dt+ σ dβ(t),

y(t) = x2(t),
(14)

where the measurement yk = y(tk) + vk is recorded with
irregular sampling times: ∆k = tk+1 − tk are random with
uniform distribution over the interval [0.5, 1], and vk ∼
N (0, 0.012). Let θ =

[
a b σ

]⊤
, and notice that the plant

and disturbance models are jointly parameterized. Consider a
case where the data is generated by (14) when the known in-
put is a sum of 10 sinusoids: u(t) =

∑10
ℓ=1Aℓ cos(ωℓt+ϕℓ),

with Aℓ = 6 for all ℓ, frequencies ωℓ in {π5 ,
2π
5 , . . . , 10π}

selected uniformly at random, and Schroeder phases ϕℓ =
ℓ(ℓ−1)

10 π. The true parameter θ◦ =
[
−1 1 1

]⊤
, and the

constraint set Θ := {θ = [a b σ]⊤ ∈ R3 : a < 0};
namely, only a is constrained to guarantee stability. We
applied Algorithm 1 to ten independent data sets, using zero
initial parameters, zero initial regressors φ0, with R0 = 5I ,
a gain sequence γk = 1/k0.9 and constant M = 100.

The results are shown in Figure 1 indicating the successful
convergence of the algorithm; at the end of one of the runs
θ̂=

[
−1.01 −1.00 −1.05

]⊤
. Note that b and σ are iden-

tifiable only in magnitude due to the quadratic nonlinearity.
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Fig. 1: Ten MC simulations of Algorithm 1 applied to (14)

B. Example 2

Consider now the model given by

dw(t) = σ dβ(t)

x(t) =
c

p2 + ap+ b
u(t) + w(t)

y(t) =
1

1 + |x(t)|α

(15)

and let θ =
[
a b c σ α

]
. The static nonlinear function

in (15) is known as the Hill function and is commonly used
in biochemistry, particularly in pharmacology, to describe the
dose-response relationship [26].

Suppose the measurements yk = y(tk) + vk are recorded
with a constant sampling period ∆ = 0.5, vk

iid∼ N (0, 0.052),
and that the underlying data-generating system is given with
the true parameters a◦ = 1.2, b◦ = 0.27, c◦ = 1, and the
Hill coefficient α◦ = 1.7. The set Θ only constrains a and
b such that the model is stable.

Consider first the following Gaussian disturbance in
continuous-time

Case 1: dw(t) = −0.75w(t) dt+ 1.5 dβ(t)

Notice that in this case, (15) misspecifies the spectrum of
the disturbance, while it matches the true parameterization
of the plant model. We applied the proposed algorithm to
fit (15) to ten independent data sets, with random parameter
initialization (uniformly within a 50% interval of the true
values), R0 = 10I . The initial regressors were constructed
using the first two data samples, and the algorithm started
at the third sample. The gain sequence is γk = 1/k0.85 and
M = 100. In all cases, the input is pseudo-random binary
input of amplitude ±5 applied through a zero-order hold.

The results in Figure 2 show that regardless of the speci-
fication of the disturbance model, the algorithm successfully
converges to the true parameters. In particular, σ̂ converges
to the stationary marginal variance of w.
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Fig. 2: Ten MC simulations of Algorithm 1 applied to (15)
when the true disturbance model is given by Case 1. The
estimates of b and c (not shown) exhibit the same behaviour.

For comparison we also applied, to the same data set
and settings, an online OE-QPEM algorithm ignoring w(t)
completely by assuming that w(t) = 0 for all t. The results
are shown in Figure 3, where the resulting bias is clear.
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Fig. 3: Ten MC simulations of an online OE-QPEM algo-
rithm that ignores w(t). The estimates of b and c (not shown)
exhibit the same behaviour, and σ is not estimated here.

Finally, to check the performance of the algorithm for
cases under distributional misspecification we considered the
following two additional cases for the disturbance model

Case 2: dξ(t) = −0.75ξ(t) dt+ 1.5 dβ(t)
w(tk) = ξ(tk)ρk, and ρk ∼ U(0, 1)

Case 3: dξ(t) = −0.75ξ(t) dt+ 1.5 dβ(t)

w(tk) =

{
ξ(tk) with prob. 0.8
w ∼ N (0, 0.5) with prob. 0.2

These cases correspond to mixed continuous-discrete non-
Gaussian disturbances under which (15) misspecifies both the
marginal distribution and the dependence structure of w(t).
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Distributional misspecification is not accounted for by the
OE-QPEM estimator; hence, in these cases an asymptotic
bias in its estimates is inevitable. The bias depends on the
true nonlinearity, the input, and the moments of the true
disturbance process. Still, as the results given in Figures 4
and 5 show, the estimates converge to points close to the true
values for the considered cases.
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Fig. 4: Ten MC simulations of Algorithm 1 applied to (15)
when the true disturbance model is given by Case 2. The
estimates of b and c (not shown) exhibit the same behaviour.

0 0.5 1 1.5 2

·104

0

1

2

3

â
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Fig. 5: Ten MC simulations of Algorithm 1 applied to (15)
when the true disturbance model is given by Case 3. The
estimates of b and c (not shown) exhibit the same behaviour.

Applying an online OE-QPEM algorithm that ignores w
completely to these two cases yields a significant bias similar
to that observed in Case 1 (see Figure 3), and therefore the
corresponding results are omitted.

V. CONCLUSIONS
We propose a simple online identification algorithm suit-

able for the identification of stochastic continuous-time para-
metric Wiener models from discrete sampled measurements.
The proposed method is based on a stochastic approximation
that approximates online, in a recursive fashion, an output-
error quadratic PEM estimator. The simulation examples
illustrate the convergence of the algorithm as expected, even
when the disturbance model is incorrectly specified. We also
show that misspecification in the dependence structure of
the disturbance does not affect the convergence points of the
plant and nonlinearity parameter estimates.

For the sake of clarity, we used several assumptions that
are stronger than what is actually required. The restriction
to single-input single-output systems, black-box canonical
parameterization of G, uniform sampling, and the assump-
tion that the input is constant over the sampling interval
are not needed. What is required is the knowledge of the
inter-sampling behavior of the input. In addition, the main
requirement of the parameterization is its identifiability via

the second-order moments of y [19]. A detailed asymptotic
and finite-sample analysis of the proposed method is deferred
to an extended future contribution.
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