
Model-Free Control for Drop-on-Demand Droplet Generation
Using Reinforcement Learning

Mikhail Vulf1, Anton Bolychev2, Dmitry Kolomenskiy3 and Pavel Osinenko4

Abstract— Recently we have developed a Drop-on-Demand
droplet generator which allows to generate coarse suspension
droplets in a wide range of sizes (from 0.75 to 4.40 mm).
However, there is a common problem that it is difficult for
different liquids to generate one drop of the desired size. To
solve this problem, an auto-calibration and dynamic control
box is being developed. In the present work, we simulate the
dynamics of a hydraulic part of the droplet generator by an
experimentally verified model. This simulation is used as a
black box for model-free control developed by reinforcement
learning approach. The obtained results are consistent with
previous droplet generation experiments. The proposed model-
free control method can be used for automatic parameter
adjustment for generating a single drop of different liquids.

I. INTRODUCTION

In droplet-based 3D-printing and Coating, there are two
basic methods of droplet generation: Continuous Inkjet (CIJ)
and Drop-on-Demand (DoD) [1]. In this paper, we will
consider the latter. There are a lot of relevant application
examples of DoD droplet generator, such as Spheroid Bio-
printing [2], [3], Suspension Ceramic 3D-Printing [4], Sand
Molds 3D-printing [5], Metal Droplet Printing [6], etc.

In these systems, a droplet size control complexity prob-
lem becomes critical when the temperature changes, when
liquids with different viscosity, surface tension and density
are used, and when suspensions with high particle sedimen-
tation speed (vpart) are applied (thus particle concentration
φ(τ) changes rapidly in a droplet during formation). This
problem is relevant due to a large number of parameters
influencing on droplet size (d0), initial droplet velocity after
detaching (v0) and number of satellites (Fig. 1).

Recalibrations are required for nozzle clogging and the
wear of moving elements, since droplet size variation and
the formation of satellites lead to reduced printing quality.
Also, the lack of automatic size adjustment limits the printing
speed. Switching between the generation of small droplets to
obtain precise geometry and the generation of large droplets
to fill the printed layer would greatly speed up the printing
process.
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Suspension parameters affecting 
the droplet formation process:
• Liquid temperature, 𝑻𝐥
• Viscosity, 𝝁(𝑻𝐥)
• Surface tension, 𝝈(𝑻𝐥)
• Particle/Liquid density ratio, 𝝆𝐩𝐚𝐫𝐭

𝝆𝐥
• Particle size, 𝒅𝐩𝐚𝐫𝐭
• Particle concentration, 𝝓(𝝉)
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Fig. 1: Droplet formation parameters. vp is a particle sedi-
mentation speed; d0 and v0 are the droplet size and initial
droplet velocity after detaching respectively.

To solve the problem of adjusting the size for coarse
suspensions droplets, Vulf et al. [7] have developed the
suspension DoD droplet generator. This droplet generator
consists of the piezoelectric injector and the hydraulic ma-
chinery (Fig. 2). The latter includes a container with a
hydraulic liquid and a container with a working liquid.
Impulses to the working liquid are transmitted by pistons
with rods.

Hydraulic Channel

Pistons with Rods

Working LiquidWorking
Container

Hydraulic
Container

Piezoelectric
Injector

Hydraulic
Machinery

Hydraulic Liquid
Injector Tip
Recoil Spring

Piezoelectric Element

Injector Housing

Hydraulic Liquid Inlet
Electrical Connector

Fig. 2: Droplet generator cut-section [7].

By the container separation, this laboratory prototype
allows to generate a coarse suspension and emulsion droplets
(max tested particle size was 0.3 mm) in a wide range of
droplet sizes (starting from 0.27 mm for pure water and from
0.75 mm for water suspensions and up to 4.40 mm), and of
generation rate (from ”on demand” to 1200 drops per minute)
with a high droplet size repeatability (min-max range of the
droplet sizes was ±5.0%). However, it is difficult to adjust
the parameters for generating a single drop of the desired
size for different liquids. Manual recalibration takes a lot of
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time.
To solve this problem, an auto-calibration and dynamic

control box is developing (Fig. 3). Camera images of the
generated drops are processed to determine their number and
size. Based on the divergence from the desirable size, the
microcontroller changes parameters of the voltage impulse
UMCU(τ). This impulse is amplified and supplied to the
piezoelectric element Upiezo(τ).
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Fig. 3: Auto-calibration and dynamic control box. MCU
is microcontroller unit; UDC is voltage from DC Voltage
Source; UMCU is voltage impulse from MCU; Upiezo is
amplified piezoelectric voltage impulse.

The injector tip postion proportional to the piezoelectric
voltage (xth(τ)∼Upiezo(τ)). It defines the output throttle area
between the injector tip and injector housing as the cylinder
side surface area with injector tip diameter (Dth):

Ath(τ) = πDthxth(τ) (1)

Through this output throttle area, hydraulic liquid flows
under the pressure difference.

This paper views only the hydraulic machinery part of the
controlled droplet generator (which includes the container
with hydraulic liquid, the container with working liquid and
pistons with rods). Hydraulic and working liquids are pure
water for this research. Hydraulic machinery dynamics is
quite complicated, so let us consider the model-free approach
to control the hydraulic machinery.

Nowadays, the proposed model-free control for DoD
droplet generator based on reinforcement learning has scien-
tific novelty. The most relevant works are devoted to the use
of reinforcement learning for droplet microfluidics control
[8], [9].

II. MODELS

The models below describe the piston dynamics in hy-
draulic machinery and the droplet detaching condition when
droplet detaches from the liquid jet.

A. State Dynamics Function
The calculation scheme of the hydraulic machinery system

is introduced in Fig. 4. The system state parameters are the
throttle position (xth [µm]), piston position (xp [µm]) and
piston velocity (vp [µm/s]):

x =

xth
xp
vp

 (2)

The injector tip position setting (xact
th [µm]) is considered

as the action to the hydraulic machinery, since the injector
tip position (xth) cannot be changed immediately:

u = xact
th (3)

The injector tip position is a non-negative value with
upper-bound xmax

th = 20.0 [µm]. To model the injector tip
position dynamics, constant injector tip velocity is introduced
(vmax

th = 104 [µm/s]). This velocity corresponds to the opening
time of 2 ms (that is more than 1.5 ms, obtained in [10]).
Jet length xjet will be described in secion II-B. Micrometers
are used to increase computational efficiency. Other values
are in SI.
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Fig. 4: Hydraulic machinery system calculation scheme.
D• and p• denote diameter and pressure respectively; used
indexes are: ”th” – throttle (refers to equation (1)), ”hydr” –
hydraulic, ”work” – working; lexit, Dexit are orifice length
and diameter respectively; xjet is the current jet length
(observation).

The piston moves by the action of the gravity (mpg),
hydraulic (Fhydr) and friction (Ffr) forces. Piston mass mp =
0.2 ·10−1 kg (from the droplet generator prototype [7]). Let
us consider hydraulic and working containers with liquid
column heights 10−2 [m]. Then the hydrostatic pressure can
be neglected. Movement starts when the acting force is larger
than the friction force. The state dynamics function is thus
as follows:

∂x
∂τ

=

ẋth
ẋp
v̇p

 , ẋp = vp, x̂th = clip
xmax

th
0 (xth),

ẋth =

{
sign(xact

th − x̂th) · vmax
th , if |xact

th − x̂th|> εact
th

0, otherwise
,

v̇p =


g+ 1

mp
(Fhydr(xp,vp, x̂th)+Ffr(vp,Fhydr)),

if |vp|> 0 or |Fhydr +mpg|> |Ffr|
0, otherwise

,

(4)

where εact
th = 0.1 is some tip position threshold when the tip

position is in satisfactory neighborhood of the setting (xact
th ).
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Let us consider the hydraulic and friction forces separately.
1) Hydraulic force: The hydraulic force is the result of a

pressure difference acting on the piston:

Fhydr(xp,vp,xth) = Ahydr phydr(xp,vp,xth)−
−Awork pwork(xp,vp),

(5)

where Ahydr, Awork are cross-sectional areas of the hydraulic
and working containers respectively, determined by container
diameters (Dhydr,Dwork):

Ahydr =
πD2

hydr

4
, Awork =

πD2
work
4

(6)

In equation (5), phydr stands for pressure in hydraulic
container:

phydr(xp,vp,xth) =



pl− vp|vp|
max(cth,xth)2

ζthρhydrD4
hydr

32D2
th

,

if xth > 0
phydr

∣∣
xth>0+

+

(
xp

∣∣
xth>0
xp
−1

)
1

βVhydr
,

otherwise

, (7)

where pl = 0.25 ·106 [Pa] is absolute hydraulic liquid pres-
sure before throttling (used in experiments [7]); ζth = 5.0 is
local hydraulic resistance coefficient (taken as for a valve and
can be determined experimentally); ρhydr = 103 [kg/m3] (for
water) is hydraulic liquid density; βVhydr =− 1

V
∂V
∂ p = const =

0.49 · 10−9 [Pa−1] (for water) is coefficient of hydraulic
liquid compressibility; phydr

∣∣
xth>0, xp

∣∣
xth>0 are last hydraulic

pressure and piston position when the throttle was opened;
term vp|vp| allows to consider the sign of the flow through the
throttle; Dhydr = 0.2 ·10−1 [m]; Dth = 0.2 ·10−3 [m]; cth = 0.5
is some backlash of the injector tip position. If throttle is
opened, tip position is not less than cth. This trick allows to
prevent dividing on a small value, when xth is closed to zero.

Equation (7) was derived based on the Darcy–Weisbach
equation and equation (1) for the open throttle (xth > 0) and
on the isothermal compressibility of the hydraulic liquid for
the closed throttle (xth = 0).

In equation (5), pwork is the pressure in the working
container:

pwork(xp,vp) = patm + pcap(xp)+ vp|vp|
ζexitρworkD4

work

2D4
exit ·1012 ,

pcap(xp) = sign(xp− xp0) ·min
(

4σwork

Dexit
, pcompr(xp)

)
,

pcompr(xp) =

∣∣∣∣xp− xp0

xp

∣∣∣∣ 1
βVwork

,

(8)

where patm = 0.1 · 106 [Pa] is atmosphere pressure; xp0 =
103 [µm] is initial pistion position; pcap is capillary pres-
sure in assumption that liquid-air surface is flat (curvature
equals to zero) when xp = xp0 (thus pcap = 0), and cap-
illary pressure modular increases by liquid compressibility
(pcompr(xp)) until it reaches value

(
4σwork
Dexit

)
when jet extracts

from the orifice (experimentally validated in [11]); ρwork =

103 [kg/m3], σwork = 0.73 ·10−1 [N/m] (for water) are work-
ing liquid density and surface tension respectively; βVwork =
0.49 · 10−9 [Pa−1] (for water) is coefficient of working
liquid compressibility; ζexit =

1
C2

D
, CD = 0.827− 0.0085 lexit

Dexit

is discharge coefficient [12, P. 8-9]; lexit = 0.85 · 10−2 [m],
Dexit = 0.33 · 10−3 [m] are text container orifice length and
diameter respectively; Dwork = 0.2 ·10−1 [m]; coefficient 1012

appears since vp is in µm/s. All sizes are taken from the
droplet generator prototype [7].

2) Friction force: Friction force is estimated by the
mechanical efficiency approach. When the piston does not
move, it must overcome the Coulomb friction force (FC)
to start moving. When piston moves, friction force is the
maximum between Coulomb friction force and hydraulic
force losses determined by the mechanical efficiency η =
0.7:

Ffr(vp,Fhydr) =


−sign(vp) ·max(FC,(1−η)Fhydr),

if |vp|> 0
−sign(Fhydr +mpg) ·FC,

otherwise

(9)

where FC = pC max(Ahydr,Awork), pC = 104[Pa] is pressure
difference, which is necessary to overcome the dry friction.

B. Droplet Detaching Condition

According to linear stability analysis and experiments
conducted by Grant and Middleman [13], there is a critical
(breakup) jet length (xjet = lcrit [mm], Fig. 4), after which
the drop separates. This critical jet length may be defined by
Reynolds number (Re) and Weber number (We):

lcrit

Dexit
= 19.5 ·103 We0.5(1+3Oh)0.85,

We =
ρworkv2

j Dexit

106σwork
, Oh =

√
We

Re
,

Re =
ρworkvjDexit

103µwork
,

(10)

where µwork = 10−3 [Pa · s] (for water) is the dynamic
viscosity of the working liquid; vj = 0.2 · 103 [mm/s] is jet
velocity (empirically estimated in [7]); coefficients 106 and
103 appear since jet velocity is in mm/s. Other values are in
SI.

Research of pneumatic DoD generator, conducted by
Cheng and Changra [11], showed that jet critical length
estimation (10) may be used also as the single droplet
detaching criterion: droplet detaches from jet if xjet ≥ lcrit.
However, Cheng and Changra [11] noticed that the longer the
jet length, the more satellites are formed. Thus, our control
goal is as follows:

xjet↘ lcrit (11)

This means that the jet length should be above the critical
jet length, but converge to it.

The size of the detached droplet Dd [mm] can be estimated
by [11]:

Dd

Dexit
= 103(1.5π

√
2+3Oh)1/3 (12)
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Thus, for the sizes of the droplet generator prototype
described previously, lcrit = 1.92 [mm] and Dd = 0.622 [mm].
Droplet diameter is in the range obtained experimentally in
the droplet generator prototype research [7].

C. Observations

Let us assume, that camera in Fig. 3 allows to retrieve
current jet length (xjet [mm]) and calculate jet velocity
(vjet [mm/ms]) as system observations with noise:

y =
[

xjet
vjet

]
, εx ∼N (0,σ2

x ), εv ∼N (0,σ2
v ),

x̂jet = 10−3 D2
work

D2
exit

(xp− xp0), v̂jet = 10−6 D2
work

D2
exit

vp,

xjet = x̂jet + lcritεx, vjet = v̂jet +10−3 lcrit

∆τ
εv,

(13)

where εx, εv are random noise values sampled from normal
distributions with standard deviations σx = 0.05, σv = 0.01
respectively; x̂jet, v̂jet are real jet length and jet velocity
without noise, 10−3 and 10−6 here are used to convert [µm]
to [mm] and [µm/s] to [mm/ms] respectively. We convert
them for computational efficiency. ∆τ is a control time step
duration, which is described in section IV.

The models from this section are used only for the en-
vironment simulation. The reinforcement learning algorithm
have no access to the system state. Only observations are
used for the learning procedure as control input.

III. REINFORCEMENT LEARNING PROCEDURE

Let us proceed to the Model-free control approach im-
plemented in this paper. REINFORCE Algorithm with base-
line [14] was used to train weights θ of the stochastic control
policy model ρθ (u | y).

A. Policy Model

The policy model treats as a normal probability distribu-
tion, so actions are sampled from this distribution:

u∼ ρ
θ (u | y) = pdfN (λ µθ (y)+β ,λ 2σ2)(u), (14)

where pdfN (•1,•2) refers to the normal probability density
function with mean •1 and (co)variance •2; β = Umin+Umax

2 ,
λ = Umax−Umin

2 ; Umin, Umax are the minimum and maximum
action respectively. In our simulations we put σ = 0.01.

Let us choose Umin, Umax in such a way, that:

Umin < (xmin
th = 0),

Umax > (xmax
th = 20.0 [µm])

(15)

This approach allows to consider negative actions as a total
closure of the throttle and actions larger than xmax

th as full
throttle opening. It is important, since the policy model must
learn to close the throttle after reaching the critical jet length.
In this paper the following limits are used: Umin =−20 [µm];
Umax = 30 [µm]. System limits action to possible injector tip
position range [0, 20.0] µm (see x̂th in equation (4)).

In equation (14), µθ (•) is a perceptron with weights θ :

µθ (y) : y→ Linear(2, 2)→ LeakyReLU(0.2)→
→ Linear(2, 2)→ LeakyReLU(0.2)→
→ Linear(2, 1)→ (1−3σ) tanh

(•
L

) (16)

where hyperparameter L is merely a tuning parameter and
does not posess a physical meaning. In our simulations we
put L = 10.

The last activation layer in the equation (16) limits the
perceptron output: µθ (y) ∈ [−1 + 3σ , 1− 3σ ]. Since the
operation (λ · [•]+β ) transforms [−1, 1] to [Umin, Umax], the
policy model ρθ (u | y) samples actions that are within action
bounds [Umin, Umax] with propability greater than 99.7% by
3σ -rule. If actions are sampled out of this bounds, we clip
them to [Umin, Umax].

B. Running Cost Function

This policy model ρθ (u | y) is trained to achieve the
control goal (11) while optimizing some running cost c(y,u):

c(xjet) =
(

1− xrel
jet

)2
,

xrel
jet =

xjet

lcrit
, vrel

jet =
vjet

lcrit
,

(17)

where xrel
jet is a relative jet length (we want to obtain xrel

jet = 1.0)
and vrel

jet [1/ms] is a relative jet velocity. Thus, the running
cost (17) penalizes the policy ρθ (u | y) for the relative differ-
ence between current jet length (xjet) and critical (breakup)
jet length (lcrit) which is necessary to achieve. We do not
penalize the model for the relative jet velocity vrel

jet and the
action u.

C. REINFORCE step

The general formula of the REINFORCE gradient step is
as follows:

θi+1← θi−αE

[
T

∑
t=1

(Ct −Bt)∇θ lnρ
θ (Ut | Yt)

∣∣
θ=θ i

]
, (18)

where Ct = ∑
T
t ′=t γ t ′c(Yt ′ ,Ut ′) are the costs-to-go; Bt is the

baseline – a random variable independent on (Yt ,Ut); γ is
a discount factor; α is a learning rate; t is a control time
step; i is an iteration step index. In our simulations, we put
γ = 1, α = 0.05. In the equation (18), we use capital letters
(Ct ,Bt ,Ut ,Yt) to emphasize that these variables are random.

Full REINFORCE Algorithm with baseline is listed below
(see Algorithm 1).

where I is the number of iterations; M is the number of
episodes; T is the number of steps inside an episode. In our
simulations we put T = 10, M = 5, I = 200. Baselines are
computed as previous means of tail objectives.

IV. SIMULATION AND DISCUSSION

We programmed the REINFORCE with baseline (Algo-
rithm 1) using the Python programming language (3.9.6).
One control time step (t, see equation (18)) is a time step
with duration ∆τ = 10−3 s. The 1 kHz control update rate is
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Algorithm 1: REINFORCE with baseline

Initialize baseline for the 1st iteration: b1← 0;
for i = 1,2, ..., I do

// i is iteration index
for j = 1,2, ...,M do

// j is episode index
for t = 1,2, ...,T do

// t is time step index

obtain observation y j
t from system;

sample action u j
t from ρθ

(
u j

t |y j
t

)
;

end
end

For all t = 1,2, ...T compute baselines
for the next iteration:

bi+1
t ← 1

M

M

∑
j=1

T

∑
t ′=t

γ
t ′c
(

y j
t ′ ,u

j
t ′

)
;

Let us denote costs-to-go as:

C j
t ←

T

∑
t ′=t

γ
t ′c
(

y j
t ′ ,u

j
t ′

)
;

Perform a gradient step:
θi+1← θi−

− α

M

M

∑
j=1

T

∑
t=1

(
C j

t −bi
t

)
∇θ lnρ

θ (u j
t | y j

t )
∣∣
θ=θ i ;

end

achieved using a line scan camera and a high-speed computer
vision algorithm to get jet observations [15], [16]. The
piezoelectric injector can also act at an operating frequency
of 1 kHz [10], [17].

Thus, at T = 10 the entire duration of the episode is
τepisode = 10 ms. During one control step with period ∆τ , the
constant action (xact

th ) sampled from the policy model (14)
is applied to the hydraulic system. The hydraulic system
dynamics (4) are modeled during this one control time step
∆τ by the adaptive Runge-Kutta method ”RK45”. The initial
conditions (with τ0 = 0) are:

xth0 = 0, xp0 = 103 [µm], vp0 = 0 (19)

The initial pressures in the containers are: phydr0 = pwork0 =
patm. The equality (pwork0 = patm) is achieved by equa-
tion (8). To obtain the equality (phydr0 = patm) for the
hydraulic container, we set as initial conditions (only for
τ = 0): phydr

∣∣
xth>0,τ=0 = patm and xp

∣∣
xth>0,τ=0 = xp0.

The simulation is carried out on a workstation that has
6 cores with 3.6 GHz CPU, 32 Gb RAM. The quality of
the policy model at each iteration is evaluated with the help
of the total cost (average by episodes), evaluated by real jet

length x̂jet(t) at the moment t (without noise):

Ctotal =
1
M

M

∑
j=1

T

∑
t=1

γ
tc
(
x̂jet(t)

)
(20)

A learning process for five seeds is introduced in Fig. 5.
This plot shows the change in the total cost from iteration to
iteration (Our controller). P-controller with P =Umax is used
as a Benchmark.
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Our controller

Fig. 5: Learning curve: total cost (20) by iteration (average
by five seeds). Regions around the charts correspond to the
standard deviations ±σ obtained on simulated seeds.

At the beginning of the learning process, the policy model
samples positive actions according to the initial random
weights (θ 0). Then the total cost begins to decrease, since
the policy model samples greater actions at the beginning
and smaller actions at the end of the episode. The former
allows to reach the critical jet length lcrit as fast as possible,
and the latter reduces the rate of jet length growth (or jet
velocity vjet) after reaching the critical jet length. Thus, the
relative jet length (xrel

jet) is getting closer to one from iteration
to iteration.

Finally, the total cost (averaged by seeds) reduces during
first 125 iterations and becomes the lowest due to setting the
maximum action at the beginning and the negative action
at the moment τ = 2 ms to stop the relative jet length
growth (Fig. 6). Let us remind that actions xact

th > 20 µm are
considered as total opened throttle (xth = 20 µm) and actions
xact

th < 0 µm – as total closed throttle (xth = 0 µm) (see black
horizontal lines on the action plot, Fig. 6; equations (4) and
(15)).

Let us discuss the obtained result and consider actions (u=
xact

th ) sampled from the policy model (ρθ (u | y)|θ=θ i) on the
last iteration (i= 200). In Fig. 6, these actions are introduced
with the relative observations: the relative jet velocity (vrel

jet)

and relative jet length (xrel
jet) (see equation (17)) depending on

time (τ). Due to the limited injector tip velocity vmax
th , the jet

stops growth only after τ = 4 ms, when the drop detaching
condition achieved (xrel

jet > 1.0). The jet with relative length
xrel

jet = 1.14 was obtained (versus 1.39 for the Benchmark).
The averaged by seeds total cost was decreased to 2.07 for
our controller, while the Benchmark average total cost is
2.46. Thus, the average total cost was reduced by more than
15%.
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Fig. 6: Simulation results at the last iteration (i = 200). The
results correspond to an arbitrary selected seed. τ is the
time in the simulation. Upper and lower black horizontal
lines on the action plot (first plot) determine the complete
opening and complete closing of the throttle respectively.
Black horizontal lines on the plots of the relative jet velocity
and the relative jet length (last two plots) show the control
goal which is necessary to achieve.

The optimized policy model keeps the throttle fully open
for ∆τ = 2 ms and total closes it at τ = 2 ms (action plot,
Fig. 6).

V. CONCLUSIONS

Thus, the optimized policy learned by a model-free ap-
proach (REINFORCE with baseline) reduced the average
total cost of the Benchmark by more than 15%. This pol-
icy can be interpreted as a single pulse with ∆τ = 2 ms
duration and xact

th = 20 µm amplitude. The droplet generation
experiments with single pulse mode were conducted in our
previous work [7]. A high speed camera (Photron Mini
UX100, Tokyo, Japan) was used to record droplet formation
process. The pulses were generated by a microcontroller unit
(Arduino UNO R3, Italy). The pulse parameters (∆τ = 4
ms duration and xact

th = 10±1 µm amplitude) were obtained
manually by observations processing after each calibration
test. Results were collected in the parametric map. The exper-

imental impulse was simulated by the hydraulic machinery
dynamics model (4) and a jet with relative length xrel

jet = 1.15
was obtained – a droplet was generated. Thus, the hydraulic
machinery dynamics model was verified.

The optimized policy actions qualitatively coincides with
pulses applied experimentally to generate a single droplet
of water and quantitatively close to it. The area under the
simulated impulse is very close to the experimental impulse
area. However, the experiments [7] used predefined impulse
parameters and did not apply actions depending on the
observation in real-time mode. To automate the parameter
selection process, the auto-calibration and dynamic control
box is being developed. The suggested model-free control
method will be tested with the auto-calibration and dynamic
control box, mounted on the experimental facility [7]. The
proposed setup will automatically adjust the droplet genera-
tor parameters to produce a single drop of various liquids.

REFERENCES

[1] J. R. Castrejón-Pita, S. J. Willis, and A. A. Castrejón-Pita, “Dynamic
nozzles for drop generators,” Review of Scientific Instruments, vol. 86,
no. 11, nov 2015.

[2] H. Gudapati, M. Dey, and I. Ozbolat, “A comprehensive review on
droplet-based bioprinting: Past, present and future,” Biomaterials, vol.
102, pp. 20–42, sep 2016.

[3] A. Persaud, A. Maus, L. Strait, and D. Zhu, “3d bioprinting with live
cells,” Engineered Regeneration, vol. 3, no. 3, pp. 292–309, sep 2022.

[4] U. Scheithauer, “Droplet-based additive manufacturing of hard metal
components by thermoplastic 3d printing (t3dp),” 2017.

[5] M. Upadhyay, T. Sivarupan, and M. E. Mansori, “3d printing for rapid
sand casting—a review,” Journal of Manufacturing Processes, vol. 29,
pp. 211–220, oct 2017.

[6] J. Szczech, C. Megaridis, D. Gamota, and J. Zhang, “Fine-line conduc-
tor manufacturing using drop-on demand PZT printing technology,”
IEEE Transactions on Electronics Packaging Manufacturing, vol. 25,
no. 1, pp. 26–33, jan 2002.

[7] M. Vulf, V. Petrov, A. Sulimov, A. Simonova, A. Kazak, S. Chugunov,
and D. Kolomenskiy, “A novel droplet generator and a bench-testing
rig enabling research on suspension droplet wall impingement and
particle deposition,” Coatings, vol. 13, no. 1, p. 129, jan 2023.

[8] N. Gyimah, O. Scheler, T. Rang, and T. Pardy, “Deep reinforcement
learning-based digital twin for droplet microfluidics control,” Physics
of Fluids, vol. 35, no. 8, aug 2023.

[9] O. J. Dressler, P. D. Howes, J. Choo, and A. J. deMello, “Reinforce-
ment learning for dynamic microfluidic control,” ACS Omega, vol. 3,
no. 8, pp. 10 084–10 091, aug 2018.

[10] D. Branson, F. Wang, D. Johnston, D. Tilley, C. Bowen, and P. Keogh,
“Piezoelectrically actuated hydraulic valve design for high bandwidth
and flow performance,” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, vol.
225, no. 3, pp. 345–359, 5 2011.

[11] S. Cheng and S. Chandra, “A pneumatic droplet-on-demand generator,”
Experiments in Fluids, vol. 34, no. 6, pp. 755–762, 6 2003.

[12] C. T. Crowe and C. T. Crowe, Eds., Multiphase Flow Handbook. CRC
Press, sep 2005.

[13] R. P. Grant and S. Middleman, “Newtonian jet stability,” AIChE
Journal, vol. 12, no. 4, pp. 669–678, jul 1966.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: A Bradford Book, 2018.

[15] D. Jasper and S. Fatikow, “Line scan-based high-speed position
tracking inside the sem,” International Journal of Optomechatronics,
vol. 4, no. 2, pp. 115–135, 5 2010.

[16] S. Van Wolputte, W. Abbeloos, S. Helsen, A. Bey-Temsamani, and
T. Goedeme, Embedded line scan image sensors: The low cost
alternative for high speed imaging. IEEE, 11 2015.

[17] D. Roberts, H. Li, J. Steyn, O. Yaglioglu, S. Spearing, M. Schmidt, and
N. Hagood, “A piezoelectric microvalve for compact high-frequency,
high-differential pressure hydraulic micropumping systems,” Journal
of Microelectromechanical Systems, vol. 12, no. 1, pp. 81–92, 2 2003.

2532


