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Abstract—This research paper addresses the topics of the
environment perception domain to realise the solution for
connected autonomous mobility by using simulation softwares
and real life sensors in tandem. The camera and lidar sensor
simulation is performed for a specific scenario arising in the
environment and the simulation results, sensor readings and
the binary occupancy grids received from sensor simulations
are analysed. The RealSense Depth Camera is used to perform
visual mapping of the static environment for static obstacle
perception and map generation whereas the SICK 2D lidar
is used to create a dynamic probabilistic occupancy grid for
perceiving the dynamic obstacles in the environment. The results
from the sensors in simulation and real life are compared,
analysed and validated. The dynamic probabilistic occupancy
is used as a foundation to further develop an occupancy
prediction model which predicts the future occupancy of any
dynamic obstacle based on its velocity and direction of motion.
Furthermore, a framework is conceptualised for the Vehicle
to Everything (V2X) communication system which includes the
identification and determination of the essential communication
infrastructure, type of data, recipients, rate of data transfer and
ROS communication nodes.

I. INTRODUCTION

Autonomous Driving has always been a subject of evolu-
tion since the landmark autonomous vehicle was introduced
in the 1980s, by Carnegie Mellon University’s Navlab [1] and
ALV [2] projects funded by the Defense Advanced Research
Projects Agency (DARPA) of the United States of America
originating in 1984 and Bundeswehr University Munich’s
EUREKA Prometheus Project and Mercedes-Benz in 1987
[3].

Due to the risk of collisions in terms of driving, integra-
tion of autonomous driving solutions with communication
between different entities in the environment forms an im-
portant parameter for sustainable connected mobility through
V2X. V2X can be described as the mode of technology
that facilitates the communication between a vehicle and
different entities like vehicles, pedestrians and infrastructure
in its environment [9]. One of the major standards for V2X
information exchange is Dedicated Short Range Communi-
cation (DSRC) developed in the USA [6]. Vehicle to Vehicle
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by the Thüringer Ministerium für Wirtschaft,Wissenschaft und Digitale
Gesellschaft for the project Hochschulübergreifende Forschergruppe Vernet-
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(V2V) allows vehicles in proximity to form a mesh network
and exchange data which helps to make better decisions
using data exchange among the existing nodes [7]. This
industrial standard of communication further helps to develop
the data transfer framework for the vehicle Onboard Units
(OBU) in this paper. The DSRC roadside stationary units
and its integration with Wi-Fi, Worldwide Interoperability
for Microwave Access (WiMAX), and Long Term Evolution
(LTE) network creates a heterogeneous wireless network
for Connected Vehicle Technology applications [10]. These
existing protocols lay the foundation to the development of
the Roadside Stationary Unit (RSU) data transfer framework
and data processing in this paper. As the communication
protocol is effectively defined, there are few state of the art
resources published in [14] regarding the type of data which
is supposed to be transferred in a connected environment.
This research paper presents a novel approach for the type
of data to be transferred between the vehicles and their
connected environment infrastructure. Initially, the individual
autonomous vehicle’s environment data processing is taken
into consideration. The next section gives an idea of the
dynamic occupancy grid mapping technique which is the base
towards identifying the pedestrian occupancies in real time
and creating an occupancy prediction model for detecting the
pedestrian’s future occupancy.

II. FUNDAMENTALS

In the research as per [4], a Bayesian filtering technique is
used for environment representation and a machine learning
approach is adopted for long term prediction of dynamic
obstacles. The dynamic occupancy grid mapping solution
is based on Sequential Monte Carlo Filtering technique.
This grid is given as a generic data input to the particle
filter which estimates the spatial occupancy and velocity
distribution. For each particular cell, a quasi time continuous
probability PO(k) is extracted. According to [4], the desired
prediction result

PO(k) = (PO(1), PO(2), PO(3), ...)

where k defines the time step for each sequence element.
Furthermore, this sequence is segmented in static and dy-
namic parts.
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The probability equation is updated and can be described
by

PO(k) = PO,s + (PO,d(1), PO,d(2), PO,d(3), ...)

= PO,s + PO,d(k)

• PO(k) = Total Probability of Occupancy;
• PO,s = Probability of Static Occupancy (Constant);
• PO,d(k) = Probability of Dynamic Occupancy (Vari-

able);
The equation above has two parts. PO,s which is the constant
occupancy probability of static environment whereas PO,d(k)
is a sequence which describes the occupancy probability
of dynamic objects over several time steps. In the absence
of dynamic objects, the probability of occupancy PO(k)
is always equal to the static environment occupancy PO,s.
When a dynamic obstacle moves in the environment, the
corresponding dynamic cell occupancy probability value at
the particular time instant PO,d(k) increases. This in turn
increases the total occupancy probability value PO(k). When
object leaves the grid cell, the occupancy probability value
decreases and becomes equal to the probability of static occu-
pancy [4]. The following section describes the development
and implementation of the Dynamic Occupancy Grid using
lidar data.

III. IMPLEMENTATION

A. Dynamic Occupancy Grid Implementation

The entire implementation process is carried out in the
ROS Noetic environment on Linux 20.04. The 2D lidar is
used for dynamic occupancy grid generation to make sure
that the dynamic object occupancy gets detected adequately
to form a probabilistic occupancy distribution. This acts as a
local map which updates over time to create real-time occu-
pancy grids for dynamic path planning. For implementing this
part, the Gmapping algorithm is used due to its familiarity,
ease of operation and understanding [11]. The default Gmap-
ping node allows the user to represent the occupancies in a
binary format. If the occupancy probability threshold is over
25%, then the pixel is considered occupied. The occupied
grid cells publish a value of 100 in the map data whereas the
unoccupied grid cells return a value of -1. To increase the
scope of the occupancy distribution, it is important to convert
this binary occupancy grid into a probabilistic occupancy grid
[11]. In a probabilistic occupancy grid, the occupancy values
from 0 to 100 % are divided into range of probability values.

Table 1: Probabilistic Occupancy Data
Probability of
Occupancy

Colour in
B/W

Colour in
Costmap

Exported Value
to map data

0.0 White Black -1
0.1 - 0.2 Light

Gray
Blue 20

0.2 - 0.4 Gray Purple 40
0.4 - 0.75 Dark Gray Red 70
0.75 - 0.1 Black Pink 100

The table 1 shows the percentage occupancy and the
corresponding probabilities, colours in Black & White and
cost map channels along with the exported map data values.
This improves the performance of the occupancy grid and
improves the understanding by providing a much compre-
hensive set of data as well as visualisation.

B. Occupancy Prediction Model Implementation

Consider a scenario in which a car approaches a cross
walk and a pedestrian is about to cross or two cars are
approaching a junction. If the vehicle relies on the sensors
alone to sense the pedestrian or the car, it wont be able to
detect the obstacle until the car or the pedestrian is in the
sensor range. In such a case, the ego vehicle would require
to make an abrupt maneuver or braking action. To avoid such
a scenario, the velocity and direction of the pedestrian or the
car can be recorded and its movement can be predicted to
give an estimate of the probability of future occupancy in
the next time instants. Through this prediction model, the
approaching ego vehicle can estimate the future probability
of occupancy of the approaching pedestrian or vehicle and
apply the necessary control action smoothly. The map grid
in RViz is split according to the set resolution of 0.05 ppi.
According to the velocity of the object, the number of grid
cells it will cover in the next instance can be given by

P =
2V

0.1

where P is the number of cells the object will cover in 1
second. The velocity V is assumed constant and the direction
of travel is in one direction. This occupancy prediction
model’s considerations are basic and further improvements
can be made by following a more advance approach as
per [15]. Depending on the distance of the object from
the lidar sensor, the initial occupancy information can be
received from the data projected in the lidar visualization
and subsequently the initial occupancies can be shown on the
graph. For reference, the pedestrian crossing the side walk
is considered. The pedestrian is assumed to have a constant
velocity of 0.1 m/s in the right direction as viewed from
the ego vehicle waiting for the pedestrian to cross the zebra
crossing. According to the defined occupancies ranges in the
previous section, the similar colour scheme is used in the
graphical representation to represent the particular occupancy
probabilities. Initially at t = 0, the pedestrian occupies the
the given spaces and a range of occupancy probability regions
are provided around it indicating its potential movement
in the next instance of time. The next section provides an
overview on the type of data to be transferred and the V2X
framework to realize the same.

C. V2X Framework Implementation

The vehicle Onboard Unit’s ROS communication frame-
work is divided into three sections to process the inputs and
derive the necessary outputs for the Roadside Stationary Unit
as illustrated in Figure 1. The first section receives GPS
coordinates in the nav_odom topic from the GPS sensor
of the vehicle.
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Fig. 1. Onboard Unit Data Transfer Framework

This topic is subscribed to by the
geo_nav_transform_node to convert it into local
coordinates. This node publishes the coordinates in
the geo_nav_odom message. This message is further
subscribed by the custom node created to convert the local
coordinates to the global coordinates. These coordinates
are then given to the RSU. The second section involves
data from the radar sensor. The radar sensor data is
accessed by the radar_sensor_msgs node and
publishes several message topics in which Image.msg,
RadarReturn.msg and Range.msg are the three
messages in consideration. The Image.msg provides the
object dimensions in terms of height and width as a float32
variable. The RadarReturn.msg provides the velocity of
the object in the doppler_velocity topic and position
of the object as a float64 variable type. The Range.msg
provides the range of the sensor as a float32 variable. This
range and position data is received as a reference to the local
frame of the ego vehicle as the sensor is added to the tf tree
of the vehicle. The third section provides RealSense camera
parameter transfer. Here, the camera provides the camera
feed to the realsense2_camera node which publishes
the image_raw topic. This image_raw topic is used
as an input to the YOLO V5 algorithm which detects the
object and its depth data. It outputs the class of the object
and its corresponding depth in meters. This depth is aligned
with respect to the ego vehicle local coordinates as the
camera is also added in the tf tree. These local coordinates
of the objects are converted into global coordinates and are
transmitted with their class in the form of an object list
to the RSU through Wifi, WiMAX or LTE communication
[10]. The communication rate is a function of the vehicle
velocity as formulated in [12].

Based on the data received, the traffic optimizer operates
the traffic signals to ensure sustainable traffic flow in the
environment. The traffic optimizer is also responsible for
providing the necessary input to the Traffic Navigation Rec-

ommender. This unit sends further recommendations to the
vehicle OBUs for efficiently navigating through the traffic
[12]. Subsequently, the RSU sends a filtered object list to
specific vehicle OBU depending on the objects in close
proximity to that vehicle. This logic is implemented by first
converting the radar detection range which is in the global
frame from cartesian global coordinates to parametric coor-
dinates in the form of radius r and angle θ. Then the vehicle
global coordinates and the object global coordinates are also
converted to the parametric form. The object list and the cor-
responding object parametric coordinates are added together
in the same array whereas the parametric range coordinates
and vehicle coordinates are combined in a single array. The
parametric coordinates of the object and the parametric range
coordinates are compared to check which objects are within
range of the sensor. These object classes are filtered and the
condensed object list and the corresponding object parametric
coordinates are published. These parametric coordinates are
converted to global cartesian coordinates and then converted
to the local coordinates and transmitted to the specific OBU.
The RSU receives this data from all OBUs in the environment
and publishes a unique filtered object list for the vehicle in
the specified range via DSRC in tandem with Wifi, WiMAX
and LTE technology [10]. This communication framework
developed in this section as well as the dynamic occupancy
grid and prediction model developed in the previous sections
need sensor perception data from individual vehicles. This
perception data development is explained in the next section.

IV. DEVELOPMENT AND RESULTS

A. Development Approach

In the case of this research paper, an environment per-
ception solution is developed for a pedestrian crossing in
front of the vehicle. The sensor simulation data collection and
analysis is a part of the Software in Loop phase. The sensor
readings and occupancy data received from the simulations in
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Fig. 2. Roadside Stationary Unit Data Transfer Framework

Carla create a base to further evaluate the data received from
physical sensors. The Hardware in Loop phase introduces
the RealSense Depth Camera and SICK 2D lidar. After
the development of the algorithm for occupancy data, it is
tested by mounting the sensor setup on the Pioneer 3DX
mobile robot. The sensor data and algorithm functionality for
the particular scenario perception is recorded. The software
and hardware solutions are then validated and verified by
Software in Loop and Hardware in Loop methods.

B. Software Execution

A road network contains the necessary geometric mesh
data [.fbx file] as well as the OpenDRIVE data [.xodr file]
which gives information on the direction of travel allowed
in particular lanes and junctions. The .xodr file contains
all the motion and maneuverability information as well as
road section details which is exported to Carla [13]. Carla
executes a powerful Python API which facilitates the users to
control various aspects in relation with simulation including
traffic generation, weather, sensors and pedestrian behaviors.
The sensors used in simulation include a DVS camera and
3D lidar. Dynamic Vision Cameras calculate the changes of
intensity in the form of a stream of events, which encode
per-pixel brightness changes instead of capturing images
at fixed instant. They can provide better quality of visual
information in high-speed dynamic scenarios acting in high-
dynamic range environments due to higher dynamic range,
no motion blur and high temporal resolution. The 3D lidar
sensor generates a 3D point cloud of the objects in the
surrounding which is essential for environment perception.

C. Simulation Results

The simulation results for the scenario consisting of the
pedestrian crossing in front of the ego vehicle are elabo-
rated in this section. As defined in the implementation, this
scenario is created in Carla and simulated to receive the
mentioned sensor simulation data. The constructed simulation
and the sensor results are illustrated in Figure 3. For the
scenario, we spawn the vehicle at a spawn point near the
zebra crossing. The top left window represents the 3D lidar
feed whereas the top right window represents the DVS
camera feed. The pedestrian behaviour is of two types namely
the group of pedestrians which are static and are standing

on the zebra crossing and the group of pedestrians walking
across on the crosswalk both depicted together in Figure 3.
This approach verifies whether the sensors are capable of
perceiving the static and dynamic behaviour of the pedes-
trians and representing it in the form of a dynamic binary
occupancy grid at a particular time instant. One key point
of address is that standing pedestrians on the zebra crossing
are not visible as effectively in the DVS camera feed. On
the contrary, the 3D lidar point cloud data captures standing
as well as walking pedestrians as seen in the lidar feed and
correspondingly in the binary occupancy grid represented in
the top centre window.

Fig. 3. Sensor Simulation Result

D. Hardware Execution
The sensor setup includes the RealSense depth camera and

SICK 2D lidar mounted on the robot frame. All the sensors
are connected to the vehicle OBU where the data is analysed
and algorithms are implemented on ROS Noetic. The robot is
two wheeled with a differential drive steering system. Further
details are provided in [5]. The RealSense depth camera is
used for static environment mapping due to the detailed RGB
and depth data of the environment. For the visual mapping
of the test environment, the Real Time Appearance Based
Mapping (RTAB) algorithm is selected due to the utilisation
of the visual characteristics of the camera. To implement
visual mapping using the RTAB algorithm, the steps are
followed as per [8].
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E. Experimental Results
After the installation of all the necessary nodes and

dependencies, the camera is setup for performing visual
mapping. The environment in consideration is a closed
environment used for testing this mapping algorithm. This
environment is chosen as the task here is to statically map
the environment and do not allow any dynamic obstacles
to enter the camera frame. The RTAB algorithm allows the
environment representation in different ways [8]. Out of all
these different interpretations, three of them represent the
environment comprehensively if considered together and give
some key features if considered individually. The 2D binary
occupancy grid provides a 2D black and white occupancy
representation of the target environment as shown in Figure
4. Even though the 2D occupancy grid creation takes the 3D
information of the object and maps it on a 2D surface, it
fails to show the 3D orientation and structure of the object
in the map. The 3D probabilistic colour occupancy grid in
Figure 4 allows the representation of the environment and its
3D information in the form of a colour occupancy zone with
each zone representing a range of occupancy probability.

Fig. 4. Static Environment Representation

The only drawback of this representation is that even
though the occupancies are effectively represented, the ap-
pearance of the object still remains unknown in the map
representation. To tackle this shortcoming, a 3D point cloud
map is considered. From the point cloud map, the appearance
of the object can be figured out. The drawback of this type of
map representation is that it does not provide any occupancy
information. The environment representations are illustrated
in Figure 4. After launching the lidar node, the Gmapping
node is launched. When the Gmapping node is launched,
it provides a link between the map and the odom link.
A static transform link is implemented between the laser
mount link and the map link to pass on the laser scan input.
The lidar is now set to detect the dynamic movement of
the pedestrian crossing. After detecting the pedestrian, the

algorithm creates a range of occupancy probabilities in the
grid cells around this object. As seen in the Figure 5, the
pedestrian is represented accurately in terms of a probabilistic
occupancy grid at its starting position and is featured by a
rectangular box in both the figures.

Fig. 5. Initial Scene with 2D Dynamic Occupancy

The distribution shows a pink grid cell area at the initial
position of the pedestrian which represents the algorithm’s
confidence in its occupancy. As seen from the Figure 5,
the occupancy data shows limitations in determining the
occupancies in front of the robot as the laser scan extends
indefinitely in the environment and cannot register object data
points. As the pedestrian walks across in front of the robot on
its designated path to cross the road, sensor registers a scan at
the intermediate positions thereby increasing the occupancy
at these locations for that time instant and decreases as the
pedestrians moves further. The laser scanner further registers
the scan at the next instances until the final position as shown
in Figure 6.

Fig. 6. Final Scene with 2D Dynamic Occupancy

By the time it reaches its final position denoted by the
rectangular box, the occupancy at the final location increases
and is represented in pink grid cells and subsequently the
occupancy decreases at the initial position as well as the
intermediate positions.
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Since, the laser cannot detect any obstacles past the pedes-
trian, the laser takes the pedestrian’s intermediate positions
into account. It creates free occupancies upto the interme-
diate scan positions even after the pedestrian is no longer
present there. Hence, in an environment with less obstacles
in the lidar range, it can provide such limited data of the
environment which makes it necessary to use it with other
sensors like camera.

F. Occupancy Prediction Results
As per the implementation section of the occupancy

prediction model, the predicted dynamic probabilistic two
dimensional occupancy of the pedestrian received from the
SICK 2D lidar and its prediction over the next 30 seconds is
represented on a 3D graph in which the X and Y axis describe
the 2D occupancy grid over time t as shown in Figure 7-

Fig. 7. Occupancy Prediction Model

As the time increases, the probability distribution moves
in the given direction with the specified shift in cells at every
time instant depending on the equation given in the imple-
mentation section. Here, the assumption is made that the
pedestrian moves in the positive Y direction with a velocity
of 0.1 m/s. Initially, the lidar can predict the probability of
occupancy with greater confidence indicating large high prob-
ability of occupancy zones. As the confidence of occupancies
is more at the first instant. The distribution at t = 0 shows
smaller blue and purple region indicating low probabilities of
occupancy. Since the movement of the pedestrian cannot be
fully confirmed to have a constant direction and velocity, the
uncertainty in the prediction of occupancies increases over
time. This means that the confidence with which the model
can predict the occupancy of the pedestrian decreases with
time. This results in the graph to show a gradual decrease
in the pink region of the highest probability over time and
increase in blue region representing a low probability of
occupancy. The degree of uncertainty in the pedestrian’s
movement leads to a greater area of occupancy probability
distribution with time as shown in Figure 7. Subsequently,
the distribution at t = 30 shows a greater blue region over
the boundaries with smaller purple and red regions indicating
a greater degree of uncertainty of occupancy. After a careful
consideration of these factors, the necessary decision making
must be performed to reduce the risk of collision thereby
creating a robust automated driving solution.

V. CONCLUSION

The involvement of visual mapping for static environment
mapping provided a detailed representation of the environ-
ment which can be used to map the target environment.
Furthermore, the lidar laser scan data helped to create a
dynamic probabilistic occupancy grid which improved the
way the ego vehicle would perceive the dynamic objects. As
a diversion from the traditional binary occupancy grid, the
probabilistic occupancy grid and its representation provided
a much improved occupancy data which formed the base to
create a prediction model to predict their future occupancy
data. The onboard sensor data collected from different vehi-
cles served as a foundation for further conducting tests on the
framework established for V2V and Vehicle to Infrastructure
(V2I) communication. The concepts described in this paper
lay the groundwork for establishing a sustainable connected
urban mobility solution that relies not only on onboard
sensor data but also on data received from the interconnected
environment.
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