
Achieving Velocity Tracking Despite Model Uncertainty for a Quadruped
Robot with a PD-ILC Controller

Manuel Weiss1,2⇤ , Andrew Stirling3⇤ , Alexander Pawluchin1, Dustin Lehmann4, Yannis Hannemann5,
Thomas Seel2, Ivo Boblan1

Abstract— In this study, we introduce a control strategy that
combines Proportional-Derivative (PD) control with Iterative
Learning Control (ILC) to enhance legged robot velocity
control with only the inverse kinematics and no additional
system identification. This approach leverages the real-time
feedback capabilities of PD control for gait tracking while
incorporating ILC’s learning abilities to eliminate inaccuracies
from unmodeled dynamics iteratively and to reach desired
velocities without residual errors. By uniting these techniques,
the proposed method empowers legged robots to adapt and
optimize their control behavior, achieving and maintaining
desired walking velocities. Experimental results on the physical
legged robot Go1 demonstrate the effectiveness of the proposed
approach, highlighting its adaptability and reliability in real-
world scenarios. This research represents a first step towards
overcoming high computational effort and extensive data col-
lection for quadruped robot velocity tracking through onboard
learning.

Index Terms— Iterative Learning Control, Nonlinear Sys-
tems, Real-time Control, Robotics

I. INTRODUCTION

Quadruped robots have garnered substantial attention in
recent years due to their potential to navigate complex and
unstructured environments with remarkable agility and adapt-
ability [1]. This burgeoning field of robotics holds immense
promise for applications ranging from search and rescue
missions to planetary exploration and human assistance [2]–
[5]. One critical aspect in the development and deployment
of quadruped robots is the control of their legged locomotion.

Mobile robots, such as legged robots, need to track
desired body velocities accurately. This is essential for,
e.g., autonomous path planning. Accurately tracking desired
body velocities for legged robots is difficult due to, among
other things, the nonlinearity and high degrees of freedom.
Model-based and machine-learning approaches have proven
to be successful in achieving legged locomotion. Model-
based approaches rely on a precise model of the robot
and the environment. However, this modeling is technically
limited and does not cover all the internal dynamics. Most
model-based approaches use simplified models such as the
Linear Pendulum Model (LPM) or the Single Rigid Body
Model (SRB) [6], [7]. Using Zero Moment Point (ZMP) the

⇤
The authors contributed equally to the work. 1CoRoLab Berlin, Berlin

University of Applied Sciences and Technology, Germany. 2Institute of
Mechatronic Systems, Leibniz University Hannover, Germany. 3McGill
University, Montreal, Canada. 4 Technische Universität Berlin, Germany.
5HTW Berlin – University of Applied Sciences, Berlin, Germany. Funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Fundation)
Project-ID 528483508 - FIP 12 and the DAAD RISE program. Correspond-
ing author {mweiss}@bht-berlin.de

ANYmal robot from ETH Zürich achieved dynamic loco-
motion by solving a convex Quadratic Programming (QP)
problem [8]. The MIT mini-cheetah robot can plan desired
body trajectories in real-time using model predictive control
(MPC) and solving a QP problem [9]. These approaches
have no guaranteed stability, and the performance depends
on the convergence of the QP problem. Furthermore, the
computation time for such algorithms is high, and the models
do not accurately represent the real robot, even if they
were not simplified. The performance of the model-based
approaches is highly dependent on the accuracy of the full-
body model, which often fails to capture the full dynamics
of the robot.

To avoid the limitations emerging from the model-based
approaches, roboticists widely embraced Machine Learn-
ing (ML) approaches. The advantages of ML locomotion
approaches are that they are often lightweight and versa-
tile. However, they usually need high computational effort.
For example, the bipedal robot Cassie can perform stable
walking with different gait styles at various speeds using
Reinforcement Learning (RL) [10] or walk stairs [11]. The
bipedal robot Digit from Agility Robotics is able to walk
over rough terrain and sustain walking gaits under external
force disturbances using RL [12]. Rough terrain locomotion
using RL was also demonstrated for the quadrupedal robot
ANYmal from ETH Zürich [13]. The drawback of all these
approaches is that they are computationally expensive and
require a large amount of data to train the Deep Neural
Networks (DNN). Since most of the data used for DNN
training is gathered from simulations, while only a small
portion of data can be collected from hardware, the transfer
to a real system can be challenging [14]. Therefore, model-
based approaches with extensive parameter identification and
data-hungry ML approaches to achieve legged locomotion
would be inferior to a hybrid approach learning with little
real data.

The proposed control framework leverages the advantages
of Proportional Derivative (PD) control in providing real-
time feedback for accurate tracking of velocity references
while harnessing the learning capabilities of Iterative Learn-
ing Control (ILC) to improve control performance over
time. The integration of these control techniques enables the
legged robot to adapt and refine its control strategy through
iterative learning, thereby enhancing its ability to achieve and
maintain desired velocities. Most gait controllers need a gait
library where different joint angle trajectories for different
body velocities are stored. These gait libraries are usually

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 134

generated using a dynamics model of the robot with high
computational effort. The proposed controller is able to reach
desired velocities without a precalculated gait library based
on the dynamics model of the robot. Therefore, the controller
does not rely on heavy calculations of model dynamics,
nor does it need a large amount of data and computational
resources to do so. In simulation an ILC approach with
model-based trajectory generation and gait library has shown
promising results in tracking joint trajectories [15] but there
it is not shown that the robot can actually track the velocities.
Also, in contrast to the method proposed in [15] in this work,
the ILC only relies on the feedforward torque of the previous
step, not the total torque. Therefore, the PD-ILC proposed
in this work, the PD controller generates the most torque
while in [15] over time the ILC and therefore the feedforward
controller is the main controller.

Our research contributes to the advancement of legged
robot control techniques, paving the way for improved mo-
bility and computational cost and enabling onboard com-
putation without the need to simulate or compute the dy-
namics first. The results presented in this paper demonstrate
the potential of the proposed approach for enhancing the
capabilities of legged robots in various practical applications.
The main contributions are:

• To the best of our knowledge, this is the first instance in
which a PD-ILC controller was used to track velocities
on real quadruped robot hardware.

• The proposed method works without modeled dynamics
and parameter identification but in contrast to other
model-free methods, with little computational cost.

• The proposed control scheme is able to learn tracking
desired velocities on the hardware within seconds.

The proposed control scheme is implemented and tested on
the quadrupedal robot Go1 (s. Fig. 1) from Unitree Robotics
introduced in II-B. The proposed control structure is also
introduced in II. The performance of the proposed controller
is shown in Section III.

II. METHODS

This section introduces the conventions used, the robot
model, and trajectory generation. The trajectory tracking
controller design and the ILC are explained in detail.

A. Conventions
All quantities in the world coordinate system have a left

subscript E , all quantities within the body coordinate system
have a left subscript B, and all quantities in the hip coordinate
systems are denoted with Hl where l 2 {FR,FL,RR,RL}.
The legs l are denoted by front right (FR), front left (FL),
rear right (RR), and rear left (RL).

B. Robot Model
The considered robot is a quadruped robot inspired by dog

biomechanics (s. Fig. 1). Each of the four legs has three hinge
joints, which are actuated by three motors, resulting in three
Degrees of Freedom (DOF) for each leg. The robot has a
floating base with six DOF in Cartesian space. Therefore, the

l1

l 2 E

qz

qx
qyHpFL,z

HpFL,x HpFL,y

B

z

x yH

z

x y
qFL,1 qFL,2

qFL,3

qRL,1
qRL,2

qRL,3

hip

thigh

calf

Fig. 1. Go1 kinematic model with coordinate systems and the motors of
the left side.

robot has 18 DOF in total. The variables qx, qy, qz denote the
Cartesian position of the robot’s trunk, while the orientation
is denoted as q�, q✓, q the z-y-x Euler angles. The floating
base in the B frame in relation to E frame is denoted by

Eqb :=
⇥
qx, qy, qz, q�, q✓, q

⇤T
. (1)

All joints are actuated. The motor vector is given as

qm := [qFR,1, qFR,2, qFR,3, qFL,1, qFL,2, qFL,3,

qRR,1, qRR,2, qRR,3, qRL,1, qRL,2, qRL,3]
T ,

(2)

where ql,1 denotes the hip roll motor, ql,2 denotes the
hip pitch motor and ql,3 denotes the knee motor for each
leg l. Therefore, the generalized coordinates of the robot are
denoted as

q :=
⇥
EqT

b , q
T
m

⇤T
. (3)

Since the robot has four legs, there are four feet. We define
the Cartesian position of these in the hip frame as:

Hpl := [pxl , pyl , pzl]
T (4)

The foot trajectory is calculated in the hip frame to simplify
the generation and can, therefore, be used by all legs.
Following trajectory generation, inverse kinematics are used
to calculate the joint angles and velocities for each leg.
The desired joint angles can be calculated from the desired
Cartesian foot position Hpl 2 [P] in the hip frame for the
respective leg by the following inverse kinematics equations
for the corresponding joint, with P being the set of all
reachable points:

ql,1(Hpl) = arctan

✓
Hlpyl

Hlpzl

◆

ql,2(Hpl) = arccos

✓
||Hlpl||

l21 + l22

◆
+

arctan

0

@�
Hlpxlq

Hlp
2
yl
+Hl p

2
zl

1

A

ql,3(Hpl) = arcsin

✓
�

Hjpxl

l2
� sin (ql,2)

◆
� ql,2

(5)

where l1 is the length of the thigh, and l2 is the length of the
calf. || · || denotes the Euler norm of the foot position vector.
These inverse kinematics equations return a unique solution

135

Standing foot trot

trot
start and stop
walking

Fig. 2. Gait phases: Standing still with all feet on the ground, to start
walking, the robot lifts the front left and rear right leg off the ground. The
applied trotting gait alternates stand and swing phases. The diagonal feet
are in phase with each other. The left feet trajectories in the hip frame
are indicated in blue for the swing phase and red for the stand phase. The
arrows on the feet indicate the direction of the movement.

for every reachable point. The Cartesian foot velocity vl in
the hip frame is calculated using the Jacobian (6).

q̇l = Jl(Hpl)vl (6)

where Jl(Hpl) is the Jacobian matrix of the robot inverse
kinematics, which is given in (5). The Jacobian matrix is
defined as

Jl(Hpl) :=
@ql

@Hpl

(7)

where ql := [ql,1(Hpl), ql,2(Hpl), ql,3(Hpl)].

C. Trajectory Generation

There are different gait types for quadruped robots, such as
trotting gait, pace gait, bounce gait, and gallop gait [16]. We
propose the use of a trotting gait (trot), where the diagonal
pairs of legs move in unison. Therefore, the front legs are
50% out of phase with each other (s. Fig. 2). During the
trotting gait, we split the trajectory into phases. While the
stance phase describes relative movement between the foot
contact point and the body, the swing phase describes the
motion of the leg in the air. The given trot frequency ft with
a sampling rate fs.

To generate the trajectories for the trotting gait, we propose
using Bézier curves. These Bézier curves are used to generate
the Cartesian foot position, which is subsequently used to
calculate the velocity trajectory, which is defined by the start
and end positions and velocities. The Bézier curve for one
foot Bl(s, vcom,d) 2 R3⇥n for one step s with fs

ft
normalized

measured time samples, such that s 2 [0, 1], is defined as

Bl(vcom,d, s) =
nX

i=0

✓
n
i

◆
(1� s)n�isiPi(vcom,d). (8)

s = 0 indicates the start of the phase, and 1 the end of the
current phase. The degree of the Bézier curves is defined
by n, and Pi are control points of the curve for a desired
linear Center of Mass (COM) velocity vcom,d along x-axis of
the B frame. This Bézier curve is used to create the swing
phase trajectory [17]. For the stand phase trajectory, a linear
interpolation between the endpoint and the start point of the
swing phase in the hip frame is used (indicated by the red
line in Fig. 2). Since the generated swing trajectories start
and end at the same distance to the ground, this should result
in a stable body height. The COM velocity vcom depends on
the distance per step; therefore, we propose not to model

the dynamics of the robot but calculate the vcom from the
distance traveled during the standing phase.

Transforming the Bézier curve Bl(vcom,d, s) into the joint
space is accomplished using the inverse kinematics (5 and
6) yielding the desired joint angle trajectories of all joints
for a desired vcom,d which can be fully represented by the
numerical matrix Hd(vcom,d, s) 2 Rnj⇥n and joint angular
velocity trajectories Ḣd(vcom,d, s) 2 Rnj⇥n where nj equals
the number of joints (e.g. trajectories for one leg s. Fig. 3).
The desired joint space trajectories are used by the PD
controller to track the desired trajectory. The trajectories are
not optimized nor smoothened to be perfect in the joint space
since this would require additional modeling of dynamics.

Fig. 3. Trajectories in joint space. Steps in the velocity trajectories are
caused by the calculation of the position derivative. The trajectories are not
smoothened nor optimized into the joint space. The black arrows indicate
the start of the swing phase and the direction of the movement.

D. Trajectory Tracking Controller Design
The controller consists of a linear feedback controller

and an ILC. The PD controller is used to track the desired
trajectory and is solely based on the current tracking error.
Each step is considered a trial. There is a trial-dependent
variable s, and we use the subscript k to denote each
step. In addition to the feedback term, the ILC acts as a
feedforward term and learns from the errors obtained during
previous trials. The ILC is used to reduce the tracking error
resulting from unmodeled dynamics as well as from constant
disturbances. For each of the 12 joints, an independent PD
controller and ILC is designed and applied.

Feedback Controller Feedforward Controller

vcom,d

Trajectory
Generation

(8)

hd

hq

+
� (9)

ek

ek�1
L-Filter

Q-Filter

ILC
Control

(11)

⌧ ILC
k

⌧ ILC
k�1

PD
Control

(10)

Torque
Library

+
+ (12)

⌧k

⌧ ILC
k⌧ PD

time
strides k

Fig. 4. Trajectory Tracking Controller Design. The detailed calculations of
all elements of feedback control (green) and feedforward control (blue) are
listed with their corresponding equation numbers in the paper.

136

1) Proportional Derivative (PD) Controller: The desired
trajectories in the Cartesian space are transformed into the
joint space matrices Hd(vcom,d, s) and Ḣd(vcom,d, s) where
each row represents the trail trajectory for one joint and each
column represents all desired joint angles and angular veloc-
ities respectively at a normalized time step s as described in
the previous section. The current desired angles and angular
velocities are denoted as hd(s) 2 Rnj , ḣd(s) 2 Rnj .
The desired trajectories are the input for the PD feedback
controller.

Since the trajectories are generated in Cartesian space and
not optimized nor smoothened, the velocity trajectories are
not perfect, hence the steps in the trajectories (s. Fig. 3). The
joint velocities are continuous within each phase; during the
phase change, the trajectory is discontinuous, which will lead
to some minor errors since the sudden step in the velocity is
not possible for the motor. The position and velocity error
are calculated as follows:

ek(s) = hd(s)� hq(s)

ėk(s) = ḣd(s)� ḣq(s)
(9)

where hq(s) are the measured joint angles and ḣq(s) the
measured joint angular velocities respectively. The output of
the PD controller ⌧ PD

(s) 2 R12 is calculated as follows:

⌧ PD
(s) = KPek(s) +KDėk(s) (10)

where KP 2 Rnj⇥nj and KD 2 Rnj⇥nj are the proportional
and derivative gains, respectively. To avoid a sim-to-real gap
and needing as little model information as possible, the gains
KP and KD were tuned by suspending the robot and tracing
the trajectory with all feet in the air, which is possible due
to the robot’s lightweight. For simplification, the gains are
uniform for all joints (KP = I12 · kP and KD = I12 · kD
where I denotes the identity matrix). This can be done since
the motors for all joints are similar, although all motors
experience different forces due to the weight distribution on
the torso. Therefore, tuning the kP and kD for each motor
independently would require knowledge of the dynamics and
inertia of the robot.

2) Iterative Learning Control (ILC) Controller: The
quadruped robot is a highly dynamic and nonlinear system
where dynamic forces are modeled to generate the trajectory
or to design a feedforward controller [18]. To correct the
gait for the unmodeled dynamics and constant disturbances,
we propose to use an ILC to minimize the joint position
error. Since the ILC minimizes the joint angular position
error and angular velocity error, the desired joint trajectories
are followed; therefore, the desired body velocity vcom,d
is reached. Since all gaits, like the trot, are based on a
repeating sequence of trajectories, the ILC as a model-free
approach is suited to improve the trajectory tracking [19].
To update the feedforward torque, the trajectory error in
position and velocity from the previous stride are used. Due
to the different dynamics of each leg, 12 independent ILCs
are used. Due to the delay in the hardware, the time data is
shifted 0.01 s ahead (�) to improve the ILC’s performance.

To update the feedforward torque we use the same KP and
KD gains as in the PD-Controller:

⌧ ILC
k (s) = ⌧ ILC

k�1(s) + lP ·KPek�1(s+ �)

+ lD ·KDėk�1(s+ �)
(11)

where lP = 0.2, lD = 0.1 are the ILC gains. Therefore,
the ILC compensates 20% of the remaining position errors
and 10% of the remaining velocity errors. The total torque
is then calculated by adding the feedback torque and the
feedforward torque:

⌧ k(s) = ⌧ PD
(s) + ⌧ ILC

k (s) (12)

where ⌧ (s) 2 R12 contains the torque for all joints. The
ILC is always updated after the stand phase therefore, the
front right and the front left leg are updated asynchronously
with a phase shift of 0.5. This ensures that all trajectories are
processed in the same way. The ILC torque ⌧ ILC

k is stored
in the torque library therefore ⌧ ILC

k�1 can be used in the ILC
update and after the ILC has converged. To smoothen the
ILC inputs, all errors are pre-filtered (L-Filter) using a 4th-
order Infinite Impulse Response (IIR) low pass filter, which
is applied through a forward and backward pass. An identical
filter is applied in the same fashion to post-filter (Q-Filter)
the torques for the same reason after the update. Additionally,
we filter the measured COM velocity vcom using a running
mean over the last second.

III. RESULTS

Fig. 5. The Go1 experimental setup. The Robot is tethered for safety and
to separate power and Ethernet cables.

The proposed control strategy is tested on the Unitree Go1
Edu. Go1 weighs approximately 12 kg with most of the mass
located in the torso. To test the controller, a desired COM
velocity vcom,d is set, and the robot starts from standing still.
For safety reasons and to hold the power and the Ethernet
cable away from the legs of the robot, the Go1 is connected
to a safety rope (s. Fig 5). The communication between the
operating computer and the robot is implemented in Robot
Operating System (ROS) [20]. The step duration is set to
0.5 s resulting in 2 full step cycles per leg per second and the
controller runs at 500Hz. Changes in velocity are achieved
by changing the distance per step. Since the robot starts

137

from standing still, the first steps are needed to accelerate
the joints. Therefore, the ILC starts after the third step is
taken. Before that, the joints have not accelerated enough to
make reasonable corrections.

The ILC is updated until the Root Mean Square (RMS) of
ek(s) ⇡ 0 or until the tenth step. The error in velocity evel
is neglected in this condition, given that the velocity is the
first derivative of the position – the velocity error is minimal.
The ten-step limit for the ILC was chosen only to have to
walk at the desired speed for 5 s until the torque is stored
for later use in a torque library. Using these stored torques
as feedforward torques, the robot can reach the velocities
without updating using the ILC-controller. This allows it to
learn every COM velocity once and use that velocity from
then on.

To test the controller different desired COM velocities
vcom,d 2 [�0.2,�0.1, 0.1, 0.3, 0.4] m s

�1 were used. First, all
velocities are tested using only the PD-controller, consisting
of 12 Single Input Single Output (SISO) PD controllers.
With the PD baseline, the ILC is tested. The error while
using solely the PD controller is above 20% this is due
to the unmodeled dynamics, constant disturbances, and the
imperfect PD gains, which we set to kP = 90 and kD = 4

(PD tuning described above). About three full step cycles are
needed to reach a stable COM velocity.

The ILC correction can be observed in the trajectories
(s. Fig. 6). It is clearly visible that the ILC is able to
compensate for the unmodeled dynamics and correct the
motor position. The initial error is always more significant
on the rear legs. The hip motors should perform only small
motions, which is not the case initially. During the stand
phase, the desired hip position does not change, but due
to gravity and other unmodeled dynamics, the hip motor
does not hold the desired position. The ILC improves the
performance, but there is still some movement in the joint.
However, since the error on the hip motor never exceeds
0.0262 rad (⇡ 1.5 deg) after the convergence of the ILC,
this does not impede the performance. Unmodeled dynamics
have little impact on the thigh joints from the beginning.
Therefore, the controller complexity could be reduced for
this case by removing the ILC for these joints. Yet, the rear
legs improve in tracking the trajectory. The calf joints are
most impacted by unmodeled dynamics. Here, the gravity
does impact the stand phase trajectory and makes tracking
impossible without the ILC.

During the swing phase, the PD controller is able to follow
the trajectory. This is expected since the PD controller was
tuned to track the trajectory in the air. During the stand
phase, gravity impacts the rear legs more than the front
legs due to the robot’s mass distribution. Therefore, to track
the trajectory without the ILC using only a PD controller,
some modeling would be required. As all PD controllers are
equivalent, gravity exerts a greater influence on the rear legs,
resulting in a more pronounced ILC correction for the rear
legs. After the seven ILC update steps, the trajectory tracking
is not perfect but satisfactory in reaching the desired COM
velocity vcom,d. The robot’s rear legs are not yet at the same

0 5 10

0.10

0.15

H
ip

ro
ll
[ra

d]

Front Left Joint Angles

0 5 10
-0.15

-0.10

-0.05
Rear Right Joint Angles

0 5 10

0.80

1.00

H
ip

pi
tc
h
[ra

d]

0 5 10

0.80

1.00

0 5 10

-1.80

-1.60

K
ne

e
[ra

d]

0 5 10

-1.80

-1.60

Time [s]

desired actual

1Fig. 6. Improvement over time in tracked position using ILC for 0.4m/s.
The ILC correction is evident on the calf joints, where the most significant
improvement occurs. The grey shaded areas indicate the stand phase.

height with regard to the hip. Therefore, the robot’s torso
leans backward with a pitch angle below 5 deg; this is visible
in Fig. 6 due to the higher calf angle error during the stance
phase.

0.0 0.2 0.4 0.6 0.8 1.0
s [-]

�10

0

10

To
rq
ue

[N
m
]

-0.2 m/s

-0.1 m/s

0.1 m/s

0.2 m/s

0.3 m/s

0.4 m/s

1Fig. 7. Learned ILC torques for the different COM velocities (Front Right
calf joint). The grey shaded area indicates the stand phase.

Although the ILC does mostly improve the trajectory dur-
ing the stance phase, the ILC does not primarily compensate
for gravity (s. Fig. 7). During a great part of the stance
phase ⌧ ILC

⇡ 0. Also, the feedforward torque is different
for different vcom,d especially in the end of the stance phase.
Therefore, the PD controller can compensate for most of the
gravity, and the ILC compensates for unmodeled dynamics
and the remaining error resulting from gravity.

Fig. 8. Position RMS error for different COM velocities vcom,d in each
ILC trial. The grey vertical lines represent the initial and final ILC-update.
The grey shaded areas indicate the delay until all torques are updated and
applied once (i.e., the error minimizes further after the last update). The
initial errors for all velocities are similar and are corrected at the same rate.

The PD-IL controller successfully compensates for the un-

138

modeled dynamics and reaches vcom,d with a remaining error
below 5% (s. Fig. 9). The final error arises from slip between
the feet and the ground, which cannot be compensated using
only the feet trajectories relative to the B or H frames. This
could be avoided by improving the trajectory generation to
consider friction constraints and generate a more realistic
trajectories during the stance phase. The ILC minimizes the
position error as shown in Fig. 8 where the error in position
is calculated as the RMS error of the position over the whole
trajectory for all joints. Here, the convergence of the ILC is
clearly visible. Regardless of speed, the error at the beginning
and the end of the ILC updates matches closely. After the
last update, the error is invariant, which explains the stable
COM velocities vcom,d – the feedforward torque is always
applied. Walking backward is particularly challenging for the
PD controller. This is due to the PD controller’s inability to
compensate gravity, unmodeled dynamics on the rear legs,
causing the front legs to push the rear feet further into the
ground. The performance improvements after the last ILC
update can be attributed to the new torque which is first
applied after the final update and the inertia of the robot.

Fig. 9. COM velocities reached with and without ILC for five arbitrarily
chosen references. It is visible that with the ILC, the performance is
significantly better, and it is possible to track the desired velocities. The
grey vertical lines represent the initial and final ILC-update. The grey shaded
areas indicate the delay until all torques are updated and applied once (i.e.,
the error minimizes further after the last update).

Since there is no feedback for the velocity, the proposed
method is only valid as long as there is little to no slip
between the feet and the ground. The Unitree Go1, equipped
with rubber feet, allows for this assumption across various
surfaces. However, the rapid seven-step ILC update process,
despite its efficiency, requires time to learn the torques for
different speeds.

IV. CONCLUSION

In this paper, we proposed and tested a control scheme
using a PD-ILC to achieve desired velocities in quadruped
robots. The proposed control framework leverages the ad-
vantages of PD control in providing real time feedback for
accurate tracking of velocity references while harnessing the
learning capabilities of ILC to improve control performance
over time. The integration of these control techniques enables
the legged robot to adapt and refine its control strategy
through iterative learning, thereby enhancing its ability to

achieve and maintain desired velocities. With the proposed
control scheme, we rapidly learn unmodeled dynamics and
are able to achieve accurate trajectory tracking without rely-
ing on heavy calculations or large amounts of data gathered
in simulation or on the robot. Since all data is gathered in
real time on the robot, there is no sim-to-real gap.

This paper shows a way to overcome high modeling and
PD controller tuning effort as well. The proposed control
scheme is an important step toward overcoming high com-
putation costs and achieving on-board gait generation and
control. It might be possible to get similar results with a per-
fectly tuned Proportional Integral Derivative (PID) controller,
but that would require more modeling and optimization of
the controller gains, which can be very difficult or time-
consuming. Testing this method on additional quadruped
robots is necessary to demonstrate its efficacy across various
kinematic and dynamic configurations, as this aspect remains
unverified in the present paper, thereby delineating the scope
for future investigation.

In future research, we plan to teach the robot various gait
patterns to assess the performance of ILC with diverse move-
ments. With different gait patterns or higher step frequencies,
higher speeds would also be possible. In forthcoming re-
search, the prediction of the acquired ILC torques through
Gaussian Process Regression will be undertaken.

REFERENCES

[1] L. Wellhausen and M. Hutter, “Rough terrain navigation for legged
robots using reachability planning and template learning,” in 2021
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2021,
pp. 6914–6921.

[2] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal - a highly
mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2016, pp. 38–44.

[3] N. Li, J. Cao, and Y. Huang, “Fabrication and testing of the rescue
quadruped robot for post-disaster search and rescue operations,” in
2023 IEEE 3rd Int. Conf. on Electronic Technology, Communication
and Information (ICETCI), 2023, pp. 723–729.

[4] C. Cruz Ulloa, J. del Cerro, and A. Barrientos, “Mixed-reality for
quadruped-robotic guidance in SAR tasks,” Journal of Computational
Design and Engineering, vol. 10, no. 4, pp. 1479–1489, 06 2023.
[Online]. Available: https://doi.org/10.1093/jcde/qwad061

[5] A. Swaminathan, S. R, J. B. J, and J. V, “Design and develop-
ment of light weight and low-cost quadruped robot for spying and
surveillance,” in 2022 Int. Conf. on Innovation and Intelligence for
Informatics, Computing, and Technologies (3ICT), 2022, pp. 500–504.

[6] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation,” in Proceedings 2001 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems. Expanding the Societal Role of
Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 1,
2001, pp. 239–246 vol.1.

[7] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for
pushing the limits of dynamic quadruped control,” in 2019 Int. Conf.
on Robotics and Automation (ICRA), 2019, pp. 6295–6301.

[8] C. Dario Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring,
J. Hwangbo, and M. Hutter, “Dynamic locomotion and whole-body
control for quadrupedal robots,” in 2017 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2017, pp. 3359–3365.

[9] D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly
dynamic quadruped locomotion via whole-body impulse control
and model predictive control,” CoRR, vol. abs/1909.06586, 2019.
[Online]. Available: http://arxiv.org/abs/1909.06586

139

[10] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne,
“Iterative reinforcement learning based design of dynamic locomotion
skills for cassie.” [Online]. Available: http://arxiv.org/abs/1903.09537

[11] J. Siekmann, K. Green, J. Warila, A. Fern, and J. W. Hurst,
“Blind bipedal stair traversal via sim-to-real reinforcement learning,”
CoRR, vol. abs/2105.08328, 2021. [Online]. Available: https:
//arxiv.org/abs/2105.08328

[12] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feedback
motion policy design using reinforcement learning on a 3d digit
bipedal robot,” in 2021 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 5136–5143, ISSN: 2153-0866.

[13] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, Oct 2020. [Online]. Available: https:
//doi.org/10.1126%2Fscirobotics.abc5986

[14] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer
in deep reinforcement learning for robotics: A survey,” CoRR, vol.
abs/2009.13303, 2020. [Online]. Available: https://arxiv.org/abs/2009.
13303

[15] J. Cheng, Y. G. Alqaham, A. K. Sanyal, and Z. Gan, “Practice Makes
Perfect: An iterative approach to achieve precise tracking for legged
robots.” [Online]. Available: http://arxiv.org/abs/2211.11922

[16] Y. Fukuoka and H. Kimura, “Dynamic locomotion of a biomorphic
quadruped ‘tekken’ robot using various gaits: walk, trot, free-
gait and bound,” vol. 6, no. 1, pp. 63–71. [Online]. Available:
http://content.iospress.com/doi/10.1080/11762320902734208

[17] D. J. Hyun, S. Seok, J. Lee, and S. Kim, “High speed trot-running:
Implementation of a hierarchical controller using proprioceptive
impedance control on the MIT Cheetah,” 2014. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/98270

[18] P. Corke, W. Jachimczyk, and R. Pillat, “Dynamics and control,”
in Robotics, Vision and Control: Fundamental Algorithms in
MATLAB®. Springer Int. Publishing, pp. 355–392. [Online].
Available: https://doi.org/10.1007/978-3-031-07262-8 9

[19] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge
University Press, 2019.

[20] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

140

