
CBF-Based Motion Planning for Socially Responsible Robot Navigation
Guaranteeing STL Specification*

Andrea Ruo, Lorenzo Sabattini and Valeria Villani

Abstract— In the field of control engineering, the connection
between Signal Temporal Logic (STL) and time-varying Control
Barrier Functions (CBF) has attracted considerable attention.
CBFs have demonstrated notable success in ensuring the safety
of critical applications by imposing constraints on system
states, while STL allows for precisely specifying spatio-temporal
constraints on the behavior of robotic systems. Leveraging these
methodologies, this paper addresses the safety-critical naviga-
tion problem, in Socially Responsible Navigation (SRN) context,
presenting a CBF-based STL motion planning methodology.
This methodology enables task completion at any time within
a specified time interval considering a dynamic system subject
to velocity constraints. The proposed approach involves real-
time computation of a smooth CBF, with the computation of
a dynamically adjusted parameter based on the available path
space and the maximum allowable velocity. A simulation study
is conducted to validate the methodology, ensuring safety in the
presence of static and dynamic obstacles and demonstrating its
compliance with spatio-temporal constraints under non-linear
velocity constraints.

I. INTRODUCTION
In recent years, several service robots have been developed

for various practical applications, defining a novel approach
to navigation called Socially Responsible Navigation (SRN).
Notably, reception and robotic guidance have emerged as
particularly popular services, where robots are gradually
replacing human personnel in assisting customers. In these
scenarios, a mobile robot autonomously navigates the envi-
ronment to guide a person to a specific location, facing the
challenge of planning and completing a collision-free path
through obstacles in the environment [1].

Compared to robot navigation in non-social environments,
such as underwater or warehouse environments, SRN takes
into account both non-social obstacles and social agents,
i.e., people, considering their comfort and social interactions
[2]. In this application context, it is crucial to include
safety-related constraints such as obstacle avoidance, velocity
limits, and speed reduction when the robot is close to people.
Additionally, space-time constraints might be relevant to
ensure that the robot can efficiently and safely manage
activities, especially in dynamic and crowded social envi-
ronments shared with people. Temporal constraints can take
various forms, such as time limits to complete a specific
task, time intervals to complete a sequence of tasks, or
priorities assigned to different activities based on their impor-
tance. These constraints may be imposed by environmental

*This work was supported by Horizon Europe program under the Grant
Agreement 101070351 (SERMAS).

Department of Sciences and Methods for Engineering
(DISMI), University of Modena and Reggio Emilia, Italy
{name.surname}@unimore.it

requirements or user requests. Expressions such as “the robot
must reach the goal pose within 10 seconds” or “the robot
must remain within a specified area for 5 seconds” can be
used to express such constraints. Temporal logics, like Signal
Temporal Logic (STL) [3], enable the specification of such
spatio-temporal constraints, enhancing the expressiveness of
Boolean logic through the temporal dimension. While STL
has its roots in the field of formal verification in computer
science, it is becoming increasingly popular as a well-
established and systematic method for formulating spatio-
temporal tasks in the field of control [4].

A significant portion of the available control approaches
for spatio-temporal tasks, as referenced in [5], [6], relies
on automata theory, which can often be computationally
intensive due to state discretization. As such, potential field-
based methods can serve as a computationally efficient al-
ternative for certain classes of spatio-temporal constraints. In
this regard, CBFs have recently garnered significant interest
for safety-critical applications. By establishing a forward-
invariant safe set through barrier functions and solving for
control input using quadratic programming, CBFs ensure
that the system remains within the safe set. CBFs provide
a highly effective tool for designing controllers that are safe
and computationally efficient [7]. While early approaches to
CBFs consider systems with a relative degree of one [8],
works in [4] and [9] address systems with higher relative
degrees.

As a result, the connection between the semantics of
an STL task and time-varying CBFs allows systems to
be formally controlled while adhering to spatio-temporal
constraints and ensuring safety. Several applications have
demonstrated the potential of this combination, paving the
way for innovative and advanced solutions. An innovative
approach to integrate STL and CBF was presented in [10].
In this work, the authors proposed a method that uses a
navigation function as the foundation for constructing a
CBF and combines barrier functions to encode Boolean
operations among the predicates. In a different context, [11]
addressed trajectory planning for continuous linear systems
with discrete control updates, constrained by linear CBF
safety sets and STL specifications with linear predicates.
In this case, the trajectory planner is based on a Mixed
Integer Quadratic Programming (MIQP) formulation that
utilizes CBFs to produce system trajectories that are valid
in continuous time. In [7] the authors developed an explicit
reference governor-guided CBF (ERG-guided CBF) method
that enables the application of first-order CBFs to high-order
linearizable systems and enhances STL satisfaction.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 122

This method reduces the conservativeness of the existing
CBF approaches for high-order systems and provides safety
guarantees in terms of obstacle avoidance. A further evolu-
tion in the application of CBF and STL was presented in
[4], where the authors circumvented the use of differential
inclusions by basing their controller on a set of optimization
problems that exploit the piece-wise smoothness of the
CBF. This approach reduces the conservativeness of the
control method in those points where the CBF is nonsmooth.
Consequently, nonsmooth CBFs become applicable to time-
varying control tasks, including disjunction operators in their
STL fragment. A significant contribution to reducing the
computational burden in CBF-based STL motion planning
was made in [12] where the control design requires the
resolution of a Quadratic Programming (QP) problem during
each step of the motion planning process. Furthermore, Lin-
demann et al. extended this CBF-based STL motion planning
approach for multi-agent systems [13]–[15] with conflicting
local specifications and dynamically coupled multi-agent
systems.

To the best of our knowledge, with reference to the
existing literature, the applications in which CBFs are used in
conjunction with STL do not allow, due to their construction
method, as shown for example in [12], the completion of a
task at any time within a time interval, taking into account
the STL “eventually” operator. The “eventually” operator is a
temporal operator that is satisfied if the specification ϕ holds
at any time before the end of the time interval [16]. Further-
more, there are no applications where smooth CBF-STL are
applied in conjunction with non-linear velocity constraints in
safety-critical scenarios, given the presence of both static and
dynamic obstacles. In our proposed method, we formulate a
smooth CBF-STL control design framework that significantly
reduces the conservativeness of existing smooth CBF-STL
approaches, potentially allowing the system to operate in
a more flexible and efficient manner without compromising
safety.

The contributions of this paper can then be summarized
as follows: i) development of a CBF-based STL motion
planning methodology for completing a task at any time
within a time interval in a dynamic system subject to non-
linear velocity constraints, while providing safety-critical
guarantees (i.e., velocity constraints and obstacle avoidance);
ii) online computation of the smooth CBF-based STL motion
planning.

II. PRELIMINARIES

In the following, we denote scalars and vectors by non-
bold letters x and bold letters x, respectively; R is the set
of real numbers, while Rn is the n-dimensional real vector
space. Non-negative and positive real numbers are R≥0 and
R>0, respectively. A class K function α : R≥0 → R≥0 is a
continuous and strictly increasing function with α(0) = 0.
Consider x ∈ Rn and u ∈ U ⊆ Rm be the state and input
of a non-linear input-affine control system:

ẋ = f(x) + g(x)u (1)

Velocity
Contraints

Fig. 1. Example 1: The robot must reach the final state xG within 10
seconds while being subject to two maximum velocity constraints defined
by different colored areas along its path.

Velocity
Contraints

Fig. 2. Example 2: The robot must reach the final state xG within 10
seconds while being subject to two maximum velocity constraints defined
by different colored areas along its path in the case of obstacle avoidance.

where the functions f : Rn → Rn and g : Rn → Rn×m

are locally Lipschitz continuous [12]. Given a control signal
u : [t0, t1] → U , the signal x : [t0, t1] → Rn is a solution
to (1) if x is absolutely continuous and x(t) satisfies (1) for
all t ∈ [t0, t1].

A. Signal Temporal Logic

We utilize STL as a temporal logic formalism due to
its capability to express both qualitative and quantitative
requirements of systems in continuous domains [10], [16]. It
offers a natural and compact approach to analyze a robot’s
motion in a continuously evolving space-time environment.
Let s : R≥0 → Rn be a continuous-time signal. STL involves
logical predicates, denoted by µ, whose truth values are
evaluated over continuous signals s(t). The predicates [3] are
obtained after evaluation of a predicate function h : Rn → R
as:

µ :=

{
True if h(s(t)) ≥ 0

False if h(s(t)) < 0.
(2)

In this work, the continuous signal is the system’s state
trajectory at time t, namely x(t). The STL syntax [13] of
an STL formula ϕ can be associated with one of the various
expressions defined by the grammar in (3):

ϕ ::= ⊤ | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2. (3)

In particular, ϕ can be associated with the Boolean True
(⊤) signifying that the formula is always true; with the
predicate µ indicating that ϕ holds true when the predicate
is satisfied as shown in (2); with the “negation” operator
meaning that ϕ is true when the negated formula ¬ϕ is false;
with the “conjunction” operator of two STL formulas ϕ1∧ϕ2
where ϕ is true when both ϕ1 and ϕ2 are simultaneously
true; or with the “until” temporal operator ϕ1 U[a,b] ϕ2 where

123

a, b ∈ R≥0 represent the bounds of the interval defined
by the temporal operator, with a ≤ b. In this context, ϕ
is true when ϕ1 becomes true and remains so within the
specified time interval before ϕ2 becomes true. To further
enhance the expressiveness of STL, two additional operators
are introduced: the “eventually” temporal operator, defined
as F[a,b]ϕ := ⊤U[a,b] ϕ, and the “always” temporal operator,
defined as G[a,b]ϕ := ¬F[a,b]¬ϕ, where G[a,b]ϕ is satisfied
if ϕ is not violated during the interval [a, b]. The satisfaction
relation (x, t) ⊨ ϕ indicates that the signal x : R≥0 → Rn,
e.g., a solution of (1), satisfies ϕ at time t.

For a signal x : R≥0 → Rn, the STL semantics [12] are
defined recursively as follows:

(x, t) |= ⊤ ⇔ holds by definition,

(x, t) |= µ ⇔ h(x(t)) ≥ 0,

(x, t) |= ¬ϕ ⇔ ¬((x, t) |= ϕ),

(x, t) |= ϕ1 ∧ ϕ2 ⇔ (x, t) |= ϕ1 ∧ (x, t) |= ϕ2,

(x, t) |= ϕ1 U[a,b] ϕ2 ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= ϕ2,

∧ ∀t2 ∈ [t, t1], (x, t2) |= ϕ1,

(x, t) |= F[a,b]ϕ ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= ϕ,

(x, t) |= G[a,b]ϕ ⇔ ∀t1 ∈ [t+ a, t+ b], (x, t1) |= ϕ.

All STL temporal operators have bounded time intervals in
continuous time. The horizon of an STL formula is the
minimum time needed to decide its satisfaction. For an
STL formula that has no nested operators, its horizon is
determined by the largest upper bound of the time intervals
of all operators [11].

Finally, it is possible to discuss the quality of satisfaction
by defining the quantitative semantics ρϕ(x, t) ∈ R, which
indicates how robustly a signal x satisfies ϕ at time t [14],
thus obtaining a robustness value ρ instead of a Boolean
value. Furthermore, it holds that (x, t) ⊨ ϕ if ρϕ(x, t) > 0
and (x, t) ⊨ ϕ implies ρϕ(x, t) ≥ 0.

B. Control Barrier Functions encoding STL formulation

A CBF facilitates controller synthesis for dynamic systems
by ensuring that, if the system initiates within a specified set,
it will always remain within that set. This property estab-
lishes the set as forward invariant concerning the system’s
dynamics. A CBF can define the permissible control inputs
that ensure the forward invariance of specific regions for the
given dynamical system.

In [15], the authors have established a connection between
a function b : Rn × [t0, t1] → R, later shown to be a valid
Control Barrier Function (vCBF), and the STL semantics of
ϕ. In particular, if this function is in accordance with the
conditions expressed in [12] (i.e., Steps A, B and C in [12]),
then, for a given signal x : R≥0 → Rn with b(x(t), t) ≥ 0
for all t ≥ 0, it holds that (x, 0) ⊨ ϕ. Let the safe set C be
the set of configurations that satisfy the safety requirements
for the system. C explicitly depends on time

C(t) := {x ∈ Rn|b(x, t) ≥ 0}.

Hence, x(t) ∈ C(t) for all t ≥ 0 implies (x, 0) ⊨ ϕ.

TABLE I
TIME COMPARISON BETWEEN CONSTRAINT IN THE STL FORMULA AND

ACTUAL PATH DURATION. TIME IN [S].

ϕ′ ϕ′′ ϕ′′′ ϕ′′′′ ttotal

STL constraint 10 30 10 10 60

Actual path duration 6.51 25.06 9.01 6.50 47.08

In the presence of multiple temporal operators and predi-
cates, we use a smooth approximation of the min operator.
For p functions bl : Rn ×R≥0 → R where l ∈ {1, ..., p}, let
b(x, t) := − 1

η ln (
∑p

l=1 exp(−ηbl(x, t))) with η > 0. Note
that minl∈{1,...,p} bl(x, t) ≈ b(x, t) where the accuracy of
this approximation increases as η increases, i.e.,

lim
η→∞

−1

η
ln

(
p∑

l=1

exp(−ηbl(x, t))

)
= min

l∈{1,...,p}
bl(x, t).

Regardless of the choice of η, we have

−1

η
ln

(
p∑

l=1

exp(−ηbl(x, t))

)
≤ min

l∈{1,...,p}
bl(x, t) (4)

which is useful since b(x, t) ≥ 0 implies bl(x, t) ≥ 0 for
each l ∈ {1, ..., p}.

Similar to [12], a switching mechanism can be used
introducing ol : R≥0 → {0, 1} into b(x, t) :=
− 1

η ln (
∑p

l=1 ol(t) exp(−ηbl(x, t))); p is again the total
number of functions bl(x, t) obtained as in [12] (Steps A, B
and C) and each bl(x, t) corresponds to either an “always”,
“eventually”, or “until” operator with a corresponding time
interval I = [al, bl]. If this mechanism is employed, it is
necessary to remove the single functions bl(x, t) from b(x, t)
when the corresponding “always”, “eventually”, or “until”
operator is satisfied. With these conditions it is possible to
synthesize a QP that renders C(t) forward invariant when
b(x, t) is a vCBF. Therefore, we can consider:

min
û∈U

ûTQû (5a)

s.t.
∂b(x, t)

∂x
(f(x) + g(x)û) +

∂b(x, t)

∂t
≥ −α(b(x, t))

(5b)

where Q ∈ Rm×m is a positive semi-definite matrix. This
convex optimization problem is feasible if b(x, t) is a vCBF.
The role of the α(·) function [17] is to provide to the
designer a way to modulate the action of the CBF, depending
on whether a more conservative or aggressive behaviour is
desired.

III. PROBLEM STATEMENT

We propose a motion planning approach based on CBF
and STL for completing a task at any time within a time
interval in a dynamic system subject to non-linear velocity
constraints. To this end, we consider the STL fragment [15]
reported in (6). In particular, we divide STL formulas into
two categories: ψ, defining an elementary class, and ϕ,

124

defining a composite class that includes temporal operators
and conjunctions of multiple elementary STL formulas

ψ ::= ⊤ | µ | ¬µ | ψ1 ∧ ψ2 (6a)
ϕ ::= G[a,b]ψ | F[a,b]ψ | ψ1U[a,b]ψ2 | ϕ1 ∧ ϕ2 (6b)

where ψ1, ψ2 are formulas of the class ψ given in (6a),
whereas ϕ1 and ϕ2 are formulas of the class ϕ given in (6b).
Compared to [12], we make similar assumptions:

Assumption 1: For an STL formula ϕ defined according
to (6b), there exists a constant C ≥ 0 such that (x, 0) ⊨
ϕ =⇒ ||x(t)|| ≤ C ∀t ≥ 0.
This guarantees that trajectories x(t) are bounded.

Assumption 2: The vector function g(x) in (1) is such that
g(x)g(x)T is positive definite for all x ∈ Rn.

Now, the problem under consideration in this paper can
be stated as follows.

Problem 1: Given the dynamical system in (1) and an
STL formula ϕ as in (6), derive a control law u(t) so that
the solution x : R≥0 → Rn to (1) is such that (x, 0) ⊨
ϕ providing safety-critical guarantees regarding non-linear
velocity constraints and obstacle avoidance.

IV. PROPOSED APPROACH
To solve Problem 1, we compute a valid CBF b(x, t) at

any time and leverage the “eventually” operator. For this
reason in Section IV-A we explain the general procedure for
how to dynamically calculate the vCBF when ϕ := F[ta,tb]µl

or ϕ := G[ta,tb]µl where µl does not contain any conjunc-
tions, i.e., considering the definition given in (4), p = 1.
Subsequently, in Section IV-B we present the proposed CBF-
based STL motion planning methodology.

A. Online computation of smooth CBF-STL motion planning

The construction of b(x, t) is equivalent to the procedure
used in [15]; we refer interested readers to the original
paper for further details. For completeness, the procedure
is summarized as follows:

• Consider ϕ := F[ta,tb]µ or ϕ := G[ta,tb]µ and let

t∗ :=

{
tb if F[ta,tb]µ , tb > 0
ta if G[ta,tb]µ , ta ≥ 0.

(7)

• Let
hopt := sup

x∈Rn

h(x). (8)

• Since we aim at satisfying ϕ with robustness threshold
r ∈ R≥0, i.e., ρϕ(x, 0) ≥ r, then choose

r ∈
{

(0, hopt) if t∗ > 0
(0, h(x(0))) if t∗ ≥ 0.

(9)

• Consider b(x, t) := −γ(t)+h(x) where γ(t) is a non-
decreasing function defined as piecewise linear function

γ(t) :=

{
γ∞−γ0

t∗ t+ γ0 if t < t∗

γ∞ otherwise.
(10)

• Next, let

γ0 ∈ (−∞, h(x(0)), (11a)
γ∞ ∈ (max(r, γ0), h

opt). (11b)

Fig. 3. Robot trajectory in simulated environment.

Fig. 4. Time evolution of real speed in reference to maximum speed.

By means of this procedure, it is possible to obtain b(x, t),
and consequently ∂b(x,t)

∂x and ∂b(x,t)
∂t in order to achieve the

function in (5b).

B. CBF-based STL motion planning methodology

For a dynamical system, safety constraints can be thought
of as those delimiting a safe region of its state space, in
which the state must remain all the time. Such a region is
what we define here as the safe set [17]. Let us consider
having a robot in the initial position x0 = [x0x , x0y]

T and it
needs to reach the goal xG = [xGx , xGy]

T in a time t∗ = tb
seconds with a certain tolerance distance ε from xG. This
problem can be expressed in terms of the following STL
formula:

ϕ : F[ta,tb](||x0 − xG|| < ε).

To construct b(x, t), in the case of the “eventually” operator,
according to Sec. IV-A, it is necessary to consider t∗ as the
time tb belonging to the interval I = [ta; tb]. This process
does not allow the desired task to be completed at any time
within the interval I, but it will be completed at tb, unless
the vCBF is constructed with a different t∗ < tb ∈ I.
Furthermore, considering a system that must provide safety-
critical guarantees, it is necessary to consider the possibility
that it may be subject to velocity constraints and that it
must complete the task while ensuring collision avoidance

125

Fig. 5. The behavior of the control barrier function b(x, t) has a value
always greater than zero, indicating the satisfaction of the STL formula ϕ.

and remaining within the safe set. We propose the following
CBF-based STL motion planning methodology that allows
solving these problems. It consists of two construction steps.

1) STEP 1: The first step involves determining the av-
erage velocity, vaverage, that the robot would have along
the path to be crossed. Assuming there are no obstacles, the
robot will follow the minimum Euclidean distance path, thus
obtaining that vaverage, set by the STL formula ϕ, is given
by the ratio between the variation of the distance traveled
∆stot, and the time t∗ imposed by ϕ, as defined in (12):

∆stot =
√
(x0x − xGx)

2 + (x0y − xGy
)2, (12a)

vaverage =
∆stot
t∗

. (12b)

In the event that one or more obstacles are present along
the robot’s path, the distance it will need to traverse will
be greater, leading to an increase in velocity to ensure
the satisfaction of the STL specification ϕ (i.e., to ensure
that the task is completed by t∗). Introducing the velocity
constraint vmax, two sub-cases can be considered: the first,
vmax ≥ vaverage in which the specification ϕ continues to
be satisfied; the second, vmax < vaverage, in which the STL
specification ϕ cannot be satisfied. Consider, for example, the
case shown in Fig. 1: in this situation, the STL specification
requires the robot to reach the destination xG from the
initial position x0, covering a distance of ∆stot = 17 m,
in t∗ = 10 s. As a result, vaverage = 1.7 m/s, which
does not allow the satisfaction of the specification in the
last tract of 1.5 m, shown in grey, since vmax < vaverage.
A similar scenario that considers the presence of an obstacle
is depicted in Fig. 2. In this case as well, the robot should
have an average velocity vaverage = 1.7 m/s to ensure the
satisfaction of the specification within t∗ = 10 s. This cannot
be achieved as it conflicts with the velocity constraint of
vmax = 1 m/s when the robot enters in the area shown in
yellow near the obstacle, since vmax < vaverage.

2) STEP 2: This step provides a solution that allows
resolving the issue introduced by the velocity constraint and
simultaneously addresses the problem associated with the
inability to conclude a task at any time within the interval I,
considering the “eventually” operator.

In particular, we propose the computation of a dynamically
defined bound t∗new, given by

t∗new =
∆s

(Pi − PrPc) vmax(t)
(13)

where:
• ∆s is the remaining path space;
• vmax(t) is the maximum velocity;
• Pi represents the initial percentage, taking a user-

defined value 0.5 ≤ Pi < 1 which allows the vaverage to
be increased so as to complete the specification within
I. In the simulation presented in Section V, Pi is set to
0.9;

• Pr is the reduction percentage, taking an arbitrary value
0 < Pi < 0.2 which allows to decrement initial
percentage in case the solver does not converge to
solution. In the simulation in Section V, Pi is considered
as 0.025;

• Pc is the percentage counter, with an initial value of
zero, and it is incremented in case the QP fails to find
a solution.

Specifically, the solution consists in instantaneously check-
ing the maximum velocity vmax(t) and dynamically com-
puting a t∗new based on the remaining distance ∆s and the
weighted maximum allowable velocity (Pi−PrPc) vmax(t).
This computation needs to be implemented whenever a
change in vmax occurs or when the quadratic problem does
not converge to a feasible solution due to the exceeding of
speed constraints. Hence, the quantity t∗new will be used to
compute a new barrier b(x, t), as explained in Section IV-A.
This procedure will allow the robot to travel the route at a
speed greater than vaverage, thus allowing the specification
to be satisfied in the interval I, and to overcome the problem
depicted in Figs. 1 and 2.

Regarding non-linear velocity constraints, considering the
velocity vector vreal = [vx, vy, w]

T , we introduce an
additional constraint within the QP problem by impos-
ing the squared norm of the non-linear velocity to be
∥vx + vy∥ ≤ vmax. Therefore, the overall SRN problem can
be formulated as follows

min
û∈U

ûTQû (14a)

s.t.
∂b(x, t)

∂x
(f(x) + g(x)û) +

∂b(x, t)

∂t
≥ −α(b(x, t))

∥vx + vy∥ ≤ vmax.
(14b)

V. SIMULATION RESULTS

In order to test the proposed framework, we simulated
an SRN application in Matlab, shown in Fig. 3 and in the
accompanying video1. Let us consider a scenario in which
a robot is located in a train station and needs to guide a
person to a platform. Depending on the robot’s position,
the velocity constraint vmax can vary, creating different
operational modes:

1DOI: https://doi.org/10.5281/zenodo.10075373

126

• Standard: the default mode, with vmax = 1.5 m/s;
• Crowded Area: when the robot is close to dynamic or

static obstacles, with vmax = 1.05 m/s;
• Corridor: when the robot is within a corridor, where

human access is not allowed and we assume there are
not obstacles. Here, we set vmax = 3 m/s.

For the simulation, we employed a three-wheeled omnidi-
rectional robot model as implemented in [12]. The simulation
environment incorporates six obstacles, comprising three
static and three dynamic obstacles, randomly distributed in
the environment. To create a more realistic simulation of dy-
namic obstacle behavior, distinct rhodonea curve trajectories
are assigned to each obstacle. To successfully guide the user
to their destination, the robot starts from the charge_pose
and proceeds to the home_pose. Subsequently, it must safely
guide the user to the platform while avoiding collisions.
Upon completing the task, the robot will enter the corri-
dor and ultimately return to the initial position. The robot
is expected to execute this sequence of operations within
various time intervals, for a maximum total of 60 seconds.
The temporal constraints are expressed through the following
STL formula: ϕ = ϕ′∧ϕ′′∧ϕ′′′∧ϕ′′′′ with a certain tolerance
ε = 0.2 m and velocity constrains, where:

ϕ′ : = F[0,10](||x− xHOME_POSE || ≤ ε)

ϕ′′ : = F[10,40](||x− xPLATFORM_1|| ≤ ε)

ϕ′′′ : = F[40,50](||x− xCORRIDOR|| ≤ ε)

ϕ′′′′ : = F[50,60](||x− xCHARGE_POSE || ≤ ε).

Figure 4 shows the real velocity profile along the path that
satisfies the non-linear velocity constraints, shown in red.
For simplicity, we considered the robot internal dynamics
f(x) equal to zero. As a result, its velocity is given by
vreal = g(x)u, from (1). During the simulation, pauses
were introduced at the end of each STL specification, as
indicated by the green segments in Fig. 4, where the robot
is not moving. In addition, as reported in Table I, it can be
observed that each specification is satisfied within the time
interval defined by its own temporal operator. As a result,
by employing this approach, it was possible to decrease the
execution time of the STL formula ϕ to approximately 47 s
instead of 60 s. The performance of the function b(x, t),
shown in Fig. 5, demonstrates the satisfaction of the formula
ϕ throughout the entire simulation, as it ensures that its value
is always greater than zero. Using the proposed approach, it
is possible to observe the results of motion planning, which
has allowed for the identification of a valid path for the
robot and the satisfaction of STL specifications subject to
non-linear velocity constraints, ensuring the compliance with
safety guarantees.

VI. CONCLUSION

We proposed a CBF-based STL motion planning method-
ology for completing a task at any time within a time
interval I in a dynamic system subject to non-linear velocity
constraints, while providing safety-critical guarantees given
the presence of both static and dynamic obstacles. This

procedure uses an online computation of the smooth CBF
using a value, dynamically calculated, t∗new based on the
remaining path space and the weighted maximum allow-
able velocity. Next, a simulation was proposed in order to
validate the methodology showing proper compliance with
spatio-temporal constraints subject to non-linear velocity
constraints. This research opens new possibilities for safety-
critical navigation in complex environments by leveraging
the combination of STL and CBFs in a computationally-
efficient manner. In the future, we plan to incorporate addi-
tional types of constraints for use within a social-navigation
context, such as the constraint on the robot’s rotation to
ensure that the user is always within the robot’s field of
view. Furthermore, this architecture will be implemented
in a mobile robot for experimental validation in physical
environment.

REFERENCES

[1] K. Song, Y. Chiu, L. Kang, S. Song, C. Yang, P. Lu, and S. Ou.
Navigation control design of a mobile robot by integrating obstacle
avoidance and lidar slam. In Int. Conf. on Syst., Man, and Cybern.
IEEE, 2018.

[2] S. Silva, N. Verdezoto, D. Paillacho, S. Millan-Norman, and J. D.
Hernández. Online social robot navigation in indoor, large and
crowded environments. In Int. Conf. on Robot. and Autom. IEEE,
2023.

[3] O. Maler and D. Nickovic. Monitoring temporal properties of
continuous signals. In Int. Symp. on Formal Techniques in Real-Time
and Fault-Tolerant Syst. Springer, 2004.

[4] A. Wiltz and D. V Dimarogonas. Handling disjunctions in signal
temporal logic based control through nonsmooth barrier functions. In
Conf. on Decision and Control. IEEE, 2022.

[5] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J
Pappas. Symbolic planning and control of robot motion [grand
challenges of robotics]. Robot. & Autom. Magazine, 2007.

[6] L. Lindemann and D. V. Dimarogonas. Efficient automata-based
planning and control under spatio-temporal logic specifications. In
Am. Control Conf., 2020.

[7] K. Liang, M. Cai, and C. Vasile. Control barrier function for lineariz-
able system with high relative degrees from signal temporal logics: A
reference governor approach. arXiv preprint arXiv:2309.08813, 2023.

[8] P. Wieland and F. Allgöwer. Constructive safety using control barrier
functions. IFAC Proceedings Volumes, 2007.

[9] Q. Nguyen and K. Sreenath. Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints. In Am.
Control Conf. IEEE, 2016.

[10] A. Zehfroosh and H. G Tanner. Non-smooth control barrier navigation
functions for stl motion planning. Frontiers in Robot. and AI, 2022.

[11] G. Yang, C. Belta, and R. Tron. Continuous-time signal temporal logic
planning with control barrier functions. In Am. Control Conf. IEEE,
2020.

[12] L. Lindemann and D. V Dimarogonas. Control barrier functions for
signal temporal logic tasks. Control Syst. letters, 2018.

[13] L. Lindemann and D. V Dimarogonas. Control barrier functions for
multi-agent systems under conflicting local signal temporal logic tasks.
Control Syst. letters, 2019.

[14] L. Lindemann and D. V Dimarogonas. Decentralized control barrier
functions for coupled multi-agent systems under signal temporal logic
tasks. In Eur. Control Conf. IEEE, 2019.

[15] L. Lindemann and D. V Dimarogonas. Barrier function based
collaborative control of multiple robots under signal temporal logic
tasks. Transactions on Control of Netw. Syst., 2020.

[16] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan. Specification-based monitoring
of cyber-physical systems: a survey on theory, tools and applications.
Lectures on Runtime Verification: Introductory and Advanced Topics,
2018.

[17] F. Ferraguti, C. T. Landi, A. Singletary, H. Lin, A. Ames, C. Secchi,
and M. Bonfè. Safety and efficiency in robotics: the control barrier
functions approach. Robot. & Autom. Magazine, 2022.

127

