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Abstract— This paper proposes a novel control algorithm
to use bidirectional charging of electric vehicles (EVs) in the
framework of vehicle-to-grid (V2G) technology for optimal
energy transaction and investment. The energy storage com-
ponents of an electric charging station, including the buffers
of energy, provide the opportunity to sell energy to or buy
energy from a smart grid that not only improves the stability
and power quality of the grid but also offers the possibility
to the charging station owner and the EV drivers to benefit
from the trades in the energy market financially. Therefore, a
model predictive controller (MPC) is developed to maximize the
profit of the charging station and satisfy the EVs minimum state
of charge (SOC) requirement while participating in incentive-
based ancillary programs of the grid. The proposed algorithm
changes the energy investment in the components when the
price of energy changes with time, especially the price of the
grid’s energy, to keep the optimality of the energy shares. The
simulation results confirm the effectiveness of the proposed
control strategy.

I. INTRODUCTION
Nowadays, the effect of greenhouse gas emissions on our

environment has undeniably increased as the temperature
of the earth persistently rises, resulting in drought, polar
ice melting, and sea level rise. A considerable amount of
carbon dioxide is emitted into the atmosphere as a result
of transportation vehicles [1]. However, the technology of
EVs is an environmentally friendly approach to deal with
the problem of CO2 emission in the transportation sector
[2]. In fact, merging new technologies and innovations gives
the opportunity to develop EVs as a new alternative for the
transportation sector with higher quality, higher capacity, and
lower price. One of the most important structures for imple-
menting grid-connected EVs is the V2G structure (Fig. 1),
where there is a bidirectional energy flow between the EVs
and the grid.

Bidirectional charging stations, which are currently un-
der development, provide flexibility to the smart grids to
use the capability of charging/discharging EVs to improve
grid performance. Smart grids that use V2G technology
with renewable energy resources (RERs) can cope with the
problems originating from the unreliability of renewable
resources such as solar and wind energy. In other words, V2G
technology enables EVs to actively contribute to enhancing
power grid performance by participating in ancillary services.
Basically, this technology is an exchange of energy, data, and
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Fig. 1. Vehicle-to-grid (V2G) technology proposes using electric vehicles
(EVs) as energy consumers and suppliers. It allows EVs to act as mobile
energy storage units that can be used for a range of ancillary services, such
as balancing the grid, managing peak demand, providing back-up power
during grid outages, etc.

financial transactions among EVs, aggregators, and the power
grid to make a stable balance between demand and supply
[1]. The incentive-pricing plans proposed by the spot market
for charging stations of EVs and EV owners motivate them
to participate in demand response (DR). According to these
plans, car drivers can charge their batteries during off-peak
demand at a low price and sell energy to the grid at a higher
price during on-peak demands to gain profit [3].

Looking into the state-of-the-art V2G technology, various
control strategies have been utilized to integrate EVs in smart
grids and DR programs. In [4], a strategy for managing EVs
flexibility in local energy communities is suggested. The
proposed approach allows an optimized and fair management
of V2G participants in DR programs. A modern scheme
proposed in [5] makes a balance between power production
and consumption by motivating EVs to participate in energy
trading programs. Additionally, a consortium blockchain-
based strategy has been adopted to deal with problems
arising from the security and privacy protection of online
transactions between EVs and the grid. Also, a managing
scheme of EVs in smart grids has been suggested in [6]
to reliably and optimally participate in DR using a peak-
clipping method. A dynamic complex network model of
energy networks with V2G technology is proposed in [7],
where EVs are considered energy transporters, coupling
demand side management dynamics of different districts of
the grid.

In [8], a scalable DR technique is suggested to manage
EVs in smart grids to decrease overall procurement costs for
a retailer bidding to the day-ahead and spot market. Besides,
an optimal V2G pricing strategy based on game theory
is proposed in [9], where the game factors are assumed
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to be the EV users’ and gird aggregators’ factors. Two
energy management strategies suggested by [10] include
V2G technology in the smart grid, where energy supply and
demand forecasts and market prices are used in a multi-agent
system framework.

In this paper, we consider a charging station that includes
a buffer and several EVs to design an MPC for managing
energy transactions between the storage components and the
grid such that the benefit of the charging station is maximized
while the charging station can contribute to the energy spot
market. The energy investment in the players (the buffer, the
EVs, and the grid) is made to maximize the benefit of the
charging station, and this investment is updated when the
energy tariffs for selling to/buying from the players change.
In fact, the price of energy sold or bought by the grid and
the price of energy sold to/bought from the EVs are not
constant with time. Therefore, the proposed optimal control
strategy updates the energy investment in the players while
considering the incentive-based plans proposed by the energy
spot market (ancillary services) and the minimum state of
charge (SOC) that the EVs should have before leaving the
charging station. Hence, the paper is targeting the following
steps to deal with this complex problem successfully:

• Modeling the buffer and the battery for prediction
purposes

• Define a cost function that describes the wealth of the
charging station in terms of energy investments

• Formulating the constraints arising from energy flow
and distribution, the EVs minimum SOC requirement,
and the spot market primary service

The organization of the paper is as follows: Section II
describes the storage components’ models in the charging
station. Section III provides detailed information about the
proposed methodology, which formulates the cost function
and the corresponding constraints, concluding the whole
optimization problem formulation for MPC at each sample
time. The simulation results are demonstrated in section IV,
and the article concludes in section V.

II. MODELING AND CHARGING STATION SETUP

The proposed model for the electric vehicle battery and
the architecture of the charging station are described in two
subsections as follows.

A. Battery model

This subsection describes the model of the battery and
buffer used in the charging station setup. A lithium-ion
battery can be modeled in a discrete form as follows [11],
[12]:

ẋ =
η

C
I (1)

where x is the SOC of the battery, η is the efficiency of the
battery, C is the capacity of the battery, and I is the current
injected into (I > 0) or taken from (I < 0) the battery. In the
case of buffer, the capacity C is considerably more than the
EVs battery. The goal is to develop a control-oriented hybrid
model of the batteries such that the three different modes
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Fig. 2. Power charging profiles of six different EVs [13].

of charging/discharging/standby are captured. It is vital to
note that each car’s battery produced by a car manufacturer
has an optimal charging power profile, usually expressed
in terms of SOC. The vehicles are charged based on this
power characteristic to avoid any possible inefficiency or
damage caused by the inappropriately injected current into
the battery. Therefore, it is assumed that these power profiles
are used to charge and discharge the vehicles, meaning that
knowing the SOC of a battery, the corresponding power for
charging and discharging is read from the profiles.

The mathematical description of the current injected
into/taken from a battery can be written as follows:

I = δ1fc(x) + δ2fd(x) (2a)

δ1 + δ2 ≤ 1, δ1,2 ∈ {0, 1} (2b)

where δ1 and δ2 are binary variables for charging and
discharging, respectively. The charging current fc(x) and
discharging current fd(x) are functions of SOC and are
extracted from the charging power profiles. It is important to
note that currently, car manufacturers only provide charging
power profiles but not discharging power profiles. Since
this paper has targeted a futuristic control algorithm for the
bidirectional charging of EVs and the discharging profile
fd(x) is also required, it is assumed that this profile is given.
The proposed hybrid model of the batteries can also be used
for the buffer in the charging station. Fig. 2 demonstrates
approximately batteries’ charging profiles in terms of SOC
for different EV manufacturers.

For design purposes, it is required to model the current
from the grid IG using binary variables for buying energy
from or selling energy to the grid. Therefore, the grid current
IG is described using a pair of binary variables and a pair
of continuous variables as follows:

IG = δ1GI1 + δ2GI2 (3a)

δ1G + δ2G ≤ 1, δ1G, δ2G ∈ {0, 1} (3b)

where it is assumed that I1 ≥ 0 and I2 ≤ 0 and both are
continuous variables. While δ1G is 1, the current is injected
into the grid from the charging station, and in the case δ2G
is 1, the current flow is from the grid side to the charging
station.

1997



Grid

Buffer

IG

IB IC1
ICn

ib, vb ic1 , vc1 icn , vcn

Car 1 ...

...

Car n

V

Fig. 3. The charging station architecture.

B. Charging station structure

The architecture of the charging station with the corre-
sponding converters for charging and discharging the bat-
teries is illustrated in Fig. 3. It is assumed that the charging
station includes one buffer and n EVs connected to the same
bus with the same voltage V , and the converters (chargers)
supply the compatible currents to these components. The
buffer, as a battery with significant capacity compared to
the cars’ battery, can provide benefits to the charging station
since the charging station operator is able to buy energy from
the grid or cars and sell it at a higher price to the grid or cars.
In other words, this component is not only an active player
when a primary or secondary service is sent from the spot
market to the charging station but also gives the opportunity
to make economic energy transactions.

III. CONTROLLER SYNTHESIS

The goal of the proposed control algorithm is to maximize
the financial benefit of the charging station by exploiting
bidirectional charging while not only contributing to the
spot market through demand response but also satisfying the
requirements of the EVs. In other words, the charging station
should make an optimal energy transaction between the grid,
the buffer, and the EVs using bidirectional charging while
participating in demand response and ensuring a minimum
level of SOC before the cars leave the charging station. MPC,
as an optimal controller with the capability of predicting the
future behavior of the system, is designed to maximize the
benefit of the charging station and to satisfy the constraints
originating from Kirchhoff’s law and the minimum SOC
requirement. The following two subsections elaborate on the
cost function and the constraints of the optimization problem.
The goal is to set the charging/discharging currents of the
buffer and the EVs optimally.

A. Cost Function

Utility maximization refers to the process of making
decisions to allocate resources in a way that maximizes
an individual’s / investor’s overall satisfaction or wealth. In
the context of finance, it involves choosing investments or
assets that provide the highest expected utility, e.g. financial
wealth, taking into account factors such as risk tolerance,
time horizon, and personal preferences [14]. In financial
decision-making, utility maximization is significant in port-
folio management and investment choices. Investors seek to
maximize their benefits by selecting investments or assets

with the highest expected return. Suppose an investor starts
with some initial endowment and wants to invest its wealth
into m different assets. Let ui

t denotes the number of shares
of asset i owned by the investor at time t. It is also assumed
that the price of asset i is described by pit at each time. Then,
the investor’s wealth at each sample time is as follows [15]:

Wt =

m∑
i=1

ui
t p

i
t. (4)

ui
t is also called a “portfolio” in the literature of financial

mathematics, and the goal of utility maximization, also
known as “portfolio optimization”, is to choose these port-
folios such that the highest expected wealth for a given level
of risk is achieved.

In this paper, the charging station wealth is defined by
the energy investment in the buffer, the EVs, and the energy
sold to the grid. Specifically, the charging station operator
can make energy transactions among the grid, the EVs, and
the buffer. The benefit of the charging station should be
maximized by conducting energy transactions concerning the
price of energy in the grid and spot market, as well as the
price of energy stored in the buffer and the vehicles. It is
assumed that the amount of electrical energy (portfolios)
bought from the grid, the buffer, and the EVs at time
t is uG

b , uB
b , and uCi

b in MWh, respectively. Also, the
electrical energy sold to the grid, the buffer, and the EVs
are described by uG

s , uB
s , and uCi

s , respectively. Then, the
resulting financial wealth Jt is given by:

Jt = uG
b M

G
b + uG

s M
G
s + uB

b M
B
b + uB

s M
B
s

+

n∑
i=1

(uCi

b MCi

b + uCi
s MCi

s )
(5)

where M∗
b and M∗

s are the prices for buying from and selling
to the players at time t, respectively. The core idea of the
energy transactions between the grid, the buffer, and the
EVs is to buy energy from the players with lower energy
prices (M∗

b ) and sell it to the players with higher energy
prices (M∗

s ) such that the benefit of the charging station is
maximized. Therefore, energy transactions lead to a higher
financial wealth for charging stations. Bidirectional charging
provides the opportunity to exploit the capacity of the buffer
and the cars’ battery to make energy transactions such that
the financial wealth of the charging station increases. This
means choosing u∗

b /u∗
s and adapting these selections with

respect to the prices M∗
b /M∗

s by shifting the energy shares
from one player to the others to boost the whole wealth Jt.

B. Constraints

The proposed control algorithm should maximize the
financial wealth of the charging station by finding the optimal
portfolios, i.e., the energy investments, while considering the
constraints caused by energy flow in the system and SOC of
the batteries, as well as the demands from the spot market.
Based on Kirchhoff’s law, the current from the grid must
be equal to the injected current into the buffer and the cars’
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battery:

IG + IB +

n∑
i=1

ICi = 0 (6)

where IG is the current injected into the grid, IB , and IC
are the injected currents into the buffer and the cars’ battery,
respectively. It is important to mention that the direction of
the currents in the case of discharging is the reverse of what
is shown in Fig. 3. The energy invested in the buffer or the
EVs and the energy shifted to the grid can be expressed
mathematically as follows:

u∗
b/s =

∫ t

0

V (τ)I∗(τ)dτ (7)

where V is considered a constant in this paper. Moreover,
the level of SOC of the EVs is not allowed to be any
desired value because using the battery out of the standard
recommended range might damage the battery or cause non-
optimal usage. Therefore, the following constraint is imposed
on the EVs battery and the buffer at each sample time t:

αj ≤ xj,t ≤ βj (8)

where j ∈ {B,Ci} and αj and βj are the lower and upper
bounds on the SOCs (xj,t), respectively. This inequality
ensures the safe and reliable operation of the batteries in
the charging station. The car manufacturers usually consider
the range of 10%-90% or 20%-80% as an optimal operating
range for the EVs.

Bidirectional charging also provides the opportunity for
charging stations to participate in DR programs. As men-
tioned in Section I, the DR services provided by the charg-
ing station can be formulated in terms of power planning
or energy consumption programs. In the case of primary
services, the charging station is supposed to reduce power
consumption supplied by the grid or even provide power to
the spot market. This flexibility provided by the charging
station in terms of power reduction can be expressed by:

Pmin ≤ PB + PC ≤ Pmax (9)

where Pmax and Pmin < 0 are respectively the upper bound
and lower bound on the power consumption of the charging
station. When a primary demand is received from the spot
market, which usually asks for a power reduction for 30s,
the charging station can either limit its power consumption
to Pmax or even provide power to the grid by discharging the
storage components. This power provision is one of the main
advantages of bidirectional charging in the charging station.

One of the most important constraints in the design pro-
cedure of the MPC is to provide the minimum SOC required
by the EV drivers before leaving the charging station. The
energy transactions between the charging station and the grid,
as well as the ancillary service provision, should not affect
the requested SOC by the driver at the time he/she wants to
take the EV from the charging station. It is assumed that the
time for picking up the EVs is known in advance. Therefore,
it is necessary to direct the EVs SOC above a threshold
set by the drivers. The strategy adopted in this paper for

taking the final SOC into account is to add the following soft
constraint to the optimization problem formulation using a
slack variable:

xC(T ) + δ ≥ S0 (10)

where T is the end time of the prediction horizon, S0 is
the minimum required SOC and δ ≥ 0 is the slack variable.
When the EVs connect to the charger in the charging station,
XC(t) has low levels of SOC. Therefore, δ gets higher values
to satisfy the constraint (10). When time is approaching the
time specified by the EV drivers for picking up the car, the
controller should set the charging power of the EVs such
that the minimum required SOC is satisfied on time.

C. Optimization Problem Formulation

The goal of the predictive controller is to find the optimal
currents injected into/taken from the buffer and the EVs’
battery such that the financial benefit of the charging station
is maximized. Referring to Eq. (1)-(3), the optimization prob-
lem is a mixed-integer linear programming (MILP). Since the
detailed explanation of the cost function and the constraints
has been completed in the last two subsections, the whole
optimization problem of MPC can be formulated as follows:

max
δ,∆1,∆2,ξ,I1,I2,IG

N∑
t=1

Jt − γt · δ (11a)

s.t. Xt+1 = Xt + Ts · (A Ut) (11b)

Ut = ∆1Fc(Xt) + ∆2Fd(Xt) (11c)

∆̃1 + ∆̃2 ≤ In+2 (11d)
Eq. (3), (6) − (10) (11e)

where γt is a positive time-varying coefficient, ξ =
[X1 · · ·XN+1], Xt = [xB,t xC1,t · · ·xCn,t]

T , the matrices
including only binary variables are:

∆1C = diag(δ1C1
, . . . , δ1Cn

)

∆2C = diag(δ2C1 , . . . , δ2Cn)

∆1 = diag(δ1B ,∆1C)

∆2 = diag(δ2B ,∆2C)

∆̃1 = diag(δ1G,∆1)

∆̃2 = diag(δ2G,∆2)

(12)

Also, the state vectors, input vectors, and charging profile
vectors are as follows:

ξ = [X1 . . . XN+1]

Xt = [xB,t xC1,t . . . xCn,t]
T

IC = [IC1
. . . ICn

]T

U = [IB ITC ]
T

Fc,C = [fc,C1 . . . fc,Cn ]
T

Fc = [fc,B FT
c,C ]

T

Fd,C = [fd,C1
. . . fd,Cn

]T

Fd = [fd,B FT
d,C ]

T

(13)

It is also assumed that Ã = diag( ηC1

CC1
, · · · , ηCn

CCn
), and

A = diag( ηB

CB
, Ã). The binary variables δ1∗ and δ2∗ are
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respectively defined for charging and discharging the buffer
and the EVs or buying energy from/selling energy to the grid.
Also, ηB and ηCi are the efficiency coefficients of the buffer
and the EVs, and CB and CCi

are the capacity of the buffer
and the EVs, respectively. fc,∗ is the charging profile of
the buffer/EVs, while fd,∗ is the discharging profile. Finally,
the sampling time is noted by Ts. Since this paper aims
to capture primary ancillary services as described in (9), the
sampling time is considered in order of 1s.

It is vital to note that the algorithm in this paper is pro-
posed for the charging station shown in Fig. 3, where a buffer
and n EVs have been connected to the charging station.
The motivation for exploiting charging/discharging power
profiles is not only because it provides an optimal and safe
method for bidirectional energy provision but also because
it reduces the computational burden of the MPC. When the
amount of power for charging/discharging is defined based
on the SOC of the EVs or the buffer, then the controller
does not need to seek the optimal charging/discharging
currents. The MPC specifies whether the component should
be charged, discharged, or in standby mode, meaning no
current enters or leaves the storage component. This leads
to faster decision-making where mostly the binary variables
in ∆1 and ∆2 play a role in computation. As a result,
the computation resources can be used to implement the
proposed algorithm on charging stations with more charging
points (more EVs). The implementation of primary service
requests is accomplished through changing Pmax and Pmin

with time. In other words, it is assumed that the whole
power consumption of the charging station is not more than
Pmax at each time, and simultaneously, the power provision
by the charging station is not more than |Pmin|. During 1
day (24 hours), depending on the grid condition, the spot
market might ask for changing the upper and lower bounds
accordingly to improve the grid stabilization.

IV. SIMULATION RESULTS

Two main simulation scenarios have been considered for
this paper to demonstrate the performance of the proposed
controller. In the first scenario, it is supposed that the price
of energy is constant with time, and the performance of the
MPC is investigated under primary demand. In the second
scenario, the energy price is changed to see its effect on the
decision-making strategy. The charging station architecture
is shown in Fig. 3, and it is assumed that 20 EVs have been
connected to the charging points in the charging station. The
charging power profile of the EVs is also shown in Fig. 4,
where an approximation of the Tesla Model 3 P AWD - 2021
charging power profile is used [16]. It is also assumed that
the power profile for discharging is the minus of the power
profile for charging (fd = −fc). Without loss of generality,
it is assumed that the buffer is also charged with the same
trend as the EVs, and only the profile is scaled by 20 (20x)
in the power axis such that it is able to provide energy for the
whole EVs, if necessary. The sampling time is also chosen
Ts = 1 s, and the prediction horizon is tp = N × Ts = 15 s.
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Fig. 4. Power charging profile of the EVs.

1) Scenario 1: In this scenario, the buffer and the EVs
have different initial SOCs. The price of energy for the
grid, buffer, and EVs are chosen MG

b = 1440 c.u./MWh,
MG

s = 360 c.u./MWh, MB
b = 2160 c.u./MWh, MB

s =
2160 c.u./MWh, MCi

b = 2160 c.u./MWh, MCi
s =

2160 c.u./MWh, respectively, where “c.u.” stands for “cur-
rency unit”. It is assumed that these prices are constant
during normal operation; however, they are changed dur-
ing the primary demand. The price of buying and selling
energy for the grid, the buffer, and the EVs are, respec-
tively, MG

b = 360 c.u./MWh, MG
s = 14400 c.u./MWh,

MB
b = 1080 c.u./MWh, MB

s = 720 c.u./MWh, MCi

b =
1080 c.u./MWh, MCi

s = 720 c.u./MWh. Based on these
prices, during the primary demand, the charging operator
can buy energy from the EV drivers and the buffer with
1080 c.u./MWh and sell it to the grid with 14400 c.u./MWh.
Also, for the EV drivers, it makes sense to sell energy to the
charging station because the price of selling to the station is
more than buying. Starting from different initial conditions,
it is more beneficial to charge the buffer and the EVs because
the price of buying energy from the grid is much less than
the price of selling energy to the buffer and EVs. Therefore,
the controller makes the transactions in order to absorb
energy into the buffer and the EVs, leading to an increase
in the SOCs, as shown in Fig. 5. As the SOCs increase,
the charging powers of the storage components reduce. The
primary demand is received three times during the charging
phase: t = 600 s, t = 900 s, and t = 1200 s, and lasts 30 s
each time. The spot market demands to reduce the power
consumption of the charging station to Pmax = −3.32 MW,
Pmax = −2.82 MW, and Pmax = −2.38 MW, respectively,
meaning some energy should be transferred from the grid to
the charging station (Pmax < 0). Therefore, the MPC stops
receiving energy from the grid and changes the direction of
energy flow into the grid, reducing the storage components
SOC during the demand intervals (see Fig. 5). When the
demand is received, the EVs and the buffer have levels
of SOC that require a specific power for discharging. In
fact, these components cannot take any continuous value of
electrical power, resulting in certain levels of power injection
from the buffer and EVs to the power grid. At the end of
the simulation (50min), as shown in Fig. 5 for four selected
EVs, the storage components are filled with maximum SOC
(90%).
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Fig. 6. Wealth function in Scenario 1.

The wealth function of the charging station is illustrated
in Fig. 6, where it rises continuously with time. However,
during the primary demand intervals, the slope of the in-
crement increases because the reward for primary demand
participation is considerable enough to motivate the charging
station operator to discharge the EVs and the buffer shortly.

2) Scenario 2: The effect of changing energy prices
is investigated in this scenario, where the prices of en-
ergy are changed noticeably. The buffer and the EVs
have different levels of SOC at the beginning, and
there are two sets of tariffs. The first set of prices
is MG

b = 480 c.u./MWh, MG
s = 120 c.u./MWh,

MB
b = 720 c.u./MWh, MB

s = 840 c.u./MWh, MCi

b =
720 c.u./MWh, MCi

s = 720 c.u./MWh, while the second
set is MG

b = 360 c.u./MWh, MG
s = 1440 c.u./MWh,

MB
b = 1080 c.u./MWh, MB

s = 720 c.u./MWh, MCi

b =
1080 c.u./MWh, MCi

s = 720 c.u./MWh. Starting from the
initial condition, it is more beneficial to charge the buffer
and the EVs because the price of buying energy from the
grid is less than the price of selling energy to the buffer and
the EVs. Therefore, the controller makes the transactions to
shift the energy from the grid to the buffer and the EVs,
resulting in SOC increment between t = 0 s and t = 500 s,
as shown in Fig. 7. Then, in the second period from t = 500 s
to t = 1000 s, the second energy tariff is applied, which
results in discharging the storage components into the grid.
The charging station operator buys energy from the EVs and
the buffer at a cheaper price (1080 c.u./MWh) and sells it
to the grid at a higher price (1440 c.u./MWh). Accordingly,
the controller discharges the buffer and the EVs, shifting
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Fig. 7. The power profiles and SOCs in Scenario 2.
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energy from the charging station back to the grid between
t = 500 s and t = 1000 s. As the SOCs increase, the charging
powers of the storage components reduce (Fig. 7). The two
sets of tariffs are applied again in the same order between
t = 1000 s and t = 2000 s, and the same trends for the power
and SOCs are observed. The levels of SOC for EVs are the
same at t = 0 s, t = 1000 s, and t = 2000 s.

The wealth of the charging station, as shown in Fig. 8, is
steadily increasing with time. However, the rate of increase
is different in each of the 500 s intervals. The benefit of
the grid with the first set of tariffs is 360 c.u./MWh if the
energy is sold to the buffer and 240 c.u./MWh if it is sold
to the EVs, while in the second mode, the benefit for buying
from the buffer and selling to the grid is 360 c.u./MWh,
and for buying from the EVs and selling to the grid is also
360 c.u./MWh. Therefore, with the second set of tariffs, the
benefit of the charging station is greater, and the slope of
wealth increment is more than the first set (Fig. 8). The con-
troller makes the energy transactions to maximize the benefit
of the charging station by charging and discharging EVs and
the buffer. The SOC levels of the EVs at the end of the
simulation are the same as at the beginning of the simulation
(Fig. 7). The wealth of EV drivers decreases when they buy
energy from the charging station, but it increases when they
sell it back to the charging station. The gain of selling to
the charging station (1080 c.u./MWh) is more than buying
(720 c.u./MWh), and in a cycle of charging and discharging
the net benefit is positive (360 c.u./MWh). Therefore, the EV
drivers benefit from the energy transactions despite having
the same levels of SOC at the end of the simulation.
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Fig. 9. Buffer and grid power profiles in Scenario 1.
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Fig. 10. Buffer and grid power profiles in Scenario 2.

3) The buffer and grid analysis: The power profiles of the
buffer and the grid for the two scenarios are shown in figures
9 and 10. In the first scenario, the power consumption of the
buffer starts with a value more than 2MW and decreases
with time (Fig. 9). When the primary demands are received
three times (t = 600 s, t = 900 s and t = 1200 s), the
direction of energy flow is changed and energy is sent from
the buffer (and also EVs) to the grid. Therefore, its power
consumption gets negative values three times, each of them
lasts for 30 s. This storage component fully discharges at
the end of the simulation. The power provided by the grid
starts from 5MW, and its absolute value decreases with time.
When the charging station participates in DR three times, the
grid receives energy, and as a result, its power consumption
jumps above zero, as shown in Fig. 9. This power provision
contributes noticeably to the reserve market for frequency
stabilization. The power profiles of the buffer and the grid
in the second scenario are shown in Fig. 10. The buffer
charges twice and discharges twice during the simulation.
When the first set of energy tariffs is applied in this scenario,
the charging station operator buys and stores energy in the
buffer. On the other hand, when the second tariff is applied,
it sells energy to the grid at a higher price, leading to more
gains. The grid provides almost 5MW at the beginning of the
simulation, and its power profile fluctuates with time. The set
of energy tariffs changes three times, which results in these
power jumps in reverse of the buffer (Fig. 10). The proposed
algorithm changes the direction of energy flow according to
the set of energy tariffs to maximize the benefit.

V. CONCLUSIONS
A control algorithm for charging/discharging storage com-

ponents of an electric charging station, including a buffer and
several EVs, was proposed in this paper to optimally make
energy transactions between the charging station and the grid
while contributing to the primary services originating from
the spot market. It was shown that the proposed strategy
could choose the energy portfolios according to energy price
variation and DR with an optimal energy supply to the EV.
This work was completed in the scope of the DeRIVE project
denoted by 01MV22014B and funded by the German Federal
Ministry of Digital Infrastructure and Transport (BMDV).
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