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Abstract— Hydronic Heating, Ventilation, and Air Condi-
tioning (HVAC) systems, where water is used as a media for
cooling energy transport, are often used in large buildings.
Distributed Air Handling Units (AHUs) condition the air for the
cooling and ventilation needs in the building by controlling the
chilled water flow. A distributed pump setup, where local pump
controllers control the exhaust air temperature, is considered.
Commissioning of HVAC is important for the operation of the
HVAC and is the focus of this paper. Specifically, a method for
local pump controller design, that enables individual operation
of the local control loops, as well as operation of the fully
connected system. This controller design is expected to fulfill
the need for flexibility when setting the building into operation,
and thereby ensure better building performance in the end.
The theoretical findings are supported by numerical studies of
a chilled water HVAC system.

I. INTRODUCTION

With the increased temperature due to climate changes
and with the increased middle class in developing coun-
tries, it is expected that cooling will be used in more and
more buildings. Already now the energy consumption in
the building sector is substantial, with just below 12.000
GW in 2016 used for cooling alone [1]. Half of this is
used in commercial buildings. Commissioning of Heating,
Ventilation, and Air Conditioning (HVAC) systems is often
not done to the extent needed, and energy efficiency can often
be improved by proper commissioning [2]. Commissioning
has been a problem in the building sector for a long time. In
[3] it is argued that commissioning is extremely important
for the building to be operated properly. However, it is often
not done due to primary cost.

Part of building commissioning is controller design and
tuning. An overview of control methods in HVAC control
systems with a special focus on MPC is given in [4]. In
this paper we will focus on commissioning of a hydronic
network of cooling systems, where distributed pumps are
used for circulating chilled water from the chillers to Air
Handling Units (AHU). Such a structure is proposed in [5]
and automatic balancing of the system is considered in [6].
In the later each distributed pump has its own controller
controlling local outlet air temperatures of AHU’s. Stability
of the distributed pump setup with local controllers is not
treated in [5] nor in [6]. Establishing system stability will be
the focus of this work.

Here, we will pursue a solution where each control loop of
AHU branches of the system is designed separately, and at
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the same time is robust to the interconnection created by
the hydraulic network. With the anticipated structure, the
control setup can be tested and set into operation individually,
which is expected to be more appealing for the industry.
Distributed control of hydraulic networks with pressure
control objectives has already been treated in [8] and [9],
where it is shown that the distributed PI control is globally
asymptotically stable under some constraints on the network
topology. The difference between these works and the results
presented in the following is that the local controllers will
control the outlet air temperature of the water to air heat
exchangers of the AHU, as opposite to the local pressure
controls in [8] and [9].

Our starting point is the new type of hydronic system
presented in [6] for carrying the cooling load from the
chillers to the AHUs. The idea of the mechanical design
is to include only the necessary components leading to
reduced installation costs. In the proposed system, flows
through the AHUs and chillers are controlled by distributed
pumps placed at the AHUs. Therefore, control valves at the
AHUs and dedicated chiller pumps are not present in the
system. The removal of the valves and thereby the pressure
losses over these can potentially lead to savings on the
pump operation. This paper considers the design of the local
outlet air temperature controllers at the AHUs, whereas the
design and tuning of the room control are not in focus. It is
assumed that a temperature setpoint for each local outlet air
temperature controller is available. The main result of the
paper is three design procedures for the pump controllers.
The design procedures utilize results from robust control via
Linear Matrix Inequalities (LMIs) to design a set of separate
controllers that is robust to the interconnected imposed by
the hydraulic network.

The rest of the paper proceeds as follows. Section II
presents the considered hydronic system and the distributed
control setup, together with a derivation of the underlying
model of the system. The design of the distributed controllers
and stability analysis is treated in Section III. Numerical
studies of the stability and simulation results from a nonlinear
model of the considered hydronic system are presented in
Section IV.

Nomenclature: We use , to denote ”defined by” and let
sign(x) = x/|x| with sign(0) = 0 denote the sign of x.
For an n × m matrix M = Mn×m we let M ′ denote the
transposed, (M)ij denote the ij’th entry, and

Diag(Mn×m, Nl×k) ,

[
Mn×m 0n×k
0l×m Nl×k

]
(1)

with 0n×m the n ×m zero matrix, and Diag(M,N,K) ,
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Diag(Diag(M,N),K) etc. We let 1n×m denote the n×m
matrix with only ones, set 1n , 1n×1, and let ei denote
the i’th unit vector. For a set S we let χS denote the
indicator function on S. Finally, inequalities between vectors
and scalars are to be understood coordinate-wise.

II. COOLING SYSTEMS

We consider a hydronic cooling system as sketched in Fig.
1. This type of hydronic system is also considered in [6],
where a simple model is derived. This model is described in
this section and will in the following be used for the proposed
controller design procedure.
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Fig. 1. Sketch of the hydronic cooling system considered in this work.

The system in Fig. 1 consists of two chillers that provide
cold water to n air handling units (AHUs) each containing
a water to air heat exchanger (WAHE) which is sketched in
Fig. 2.

Qi,Ta

Qi,Ti
qi,qc qi,qi

Fig. 2. A sketch of the i’th water to air heat exchanger (WAHE).

The exogenous system inputs are the supply water temper-
ature θc provided by the chillers, the outdoor air temperature
Ta, and the n air flows Qi, i = 1, 2, . . . , n through the n
WAHE. The outdoor temperature Ta and the airflow Qi are
expected to change slowly compared to the control dynamics
and hence can be assumed constant in the controller design.
The water in-flow qi ≥ 0 to the i’th AHU transfers the heat to
the chillers via the hydraulic network shown in Fig. 1. Note
that qi is positive due to the non-return valve just after the
pump. The dynamics of the hydraulic network are fast and
stable (it only contains passive components) and will in the
sequel be neglected. The water in-flow qi is determined by
the operation of the pumps and the structure of the network.
The relation between the pressure (difference) of the i’th
pump, ∆pi, and the water in-flows of the cooling system is
found by setting up the pressure loop equations for each loop
of the network, ending up with the following relation

∆pi = riq
2
i +Rc

 n∑
j=1

qj

2

+

i∑
k=1

2Rk

 n∑
j=k

qj

2

(2)

where ri > 0 is the combined hydraulic resistance of the
WAHE and the non-return valve of the i’th AHU and Rk > 0
is the resistance of the k’th pipe segment. The i’th pump
operation is control by the i’th pump speed ωi and relates
the pressure ∆pi and water in-flow qi as follows

∆pi = −aiq2i + biω
2
i , qi ≥ 0 (3)

with ai > 0 i = 1, . . . , n and bi > 0 i = 1, . . . , n. The
constants ai and bi describe the pump operation and are
determined by the type and size of the pump. The pump
speed ωi ≥ 0 is the control input to the system. Combining
the network model (2) and the pump model (3) leads to the
following relation between the control input ωi and the flows
of the AHU’s

ω2
i =

ri + ai
bi

q2i +
Rc
bi

 n∑
j=1

qj

2

+

i∑
k=1

2
Rk
bi

 n∑
j=k

qj

2

.

(4)

A compact version of (4) can be found in (30).
The system output to be controlled consists of the n air

temperatures Ti produced by the WAHEs. In this work, the
objective is to control each of the air temperatures Ti to some
given constant reference value T ∗i by adjusting the water in-
flow qi using the pump speed ωi.

Using a finite volume approximation with one water
volume Vw (blue area of the sketch in Fig. 2) and one air
volume Va (white area of the sketch in Fig. 2), the following
dynamic model for the i’th WAHE can be obtained

CwVw,iθ̇i = Cwqi(θc − θi)− Li(θi − Ti) (5a)

CaVa,iṪi = CaQi(Ta − Ti) + Li(θi − Ti) (5b)

with θi the return water temperature produced by the i’th
WAHE and Li the heat transfer constant describing the
energy transfer between water and air. The constants Cw
and Ca are the specific heat capacities of water and air
respectively, while the constants Vw,i and Vw,i are the
volumes of water and air inside the WAHE respectively.

It is important to note that the WAHE dynamics in (5),
do not contain any explicit information of the control inputs.
Indeed, it is through the i’th in-flow, qi, that the i’th AHU
may be accessed. Moreover, the i’th control action, ωi,
affects not only the i’th AHU but also all the other AHUs
through the relation in (4), which is illustrated in Fig. 3,
where Ci are controllers and AHUi are the AHUs.
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Fig. 3. The control interconnection.
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Remark 1 The measurement of the air temperature typically
imposes a delay time due to the placement of the sensor. That
is, the measured air temperature T̃i(t) = Ti(t − δt), where
δt depends on the air flow Qi. The relation is δt = kd/Qi,
where kd depends on the sensor position and the design of
the air dock. However, in this work, the airflow Qi and the
sensor position is assumed to lead to a negligible delay δt.

III. DISTRIBUTED CONTROLLERS

For the distributed pump system under consideration, it is
desirable to be able to commission the control loops one by
one. Therefore, we propose a controller set-up with integral
action where each AHU is stabilized independent of the
others using (4) with qj = 0, j 6= i. In details, extend the
i’th WAHE system (5) with one integral state

CwVw,iθ̇i = Cwqi(θc − θi)− Li(θi − Ti) (6a)

CaVa,iṪi = CaQi(Ta − Ti) + Li(θi − Ti) (6b)

ζ̇i = Ti − T ∗i (6c)

and let the exogenous inputs Ta and Qi be constant. From the
reference value, T ∗i , we then obtain the steady state values

θ∗i =
−CaQi(Ta − T ∗i ) + LiT

∗
i

Li
(7)

q∗i =
Li(θ

∗
i − T ∗i )

Cw(θc − θ∗i )
(8)

The values for exogenous inputs Ta and Qi are found from
the design condition for the cooling system, i.e., depending
on building heating load and air exchange requirements.
The relation between the air exchange requirement and the
heating load of the building defines the airflow temperature
reference T ∗i . Finally, the chilled water supply temperature
θc is defined by the sizing of the heat exchanges. Hence,
the parameters for the operating point are defined by the
design of the room’s cooling system. Now linearizing (6) at
(θ∗i , T

∗
i , q
∗
i ) we get

ẋi = Aixi +Biui (9)

with ui = qi − q∗i

Ai =


−
(

q∗i
Vw,i

+ Li

CwVw,i

)
Li

CwVw,i
0

Li

CaVa,i
−
(
Qi

Va,i
+ Li

CaVa,i

)
0

0 1 0

 (10)

Bi =

 θc−θ∗iVw,i

0
0

 , xi =

 θi − θ∗iTi − T ∗i
ζi

 (11)

It is remarke that the pairs (Ai, Bi) are all controllable for
any relevant system parameters since the determinant of the
controllability matrix is(

θc − θ∗i
Vw,i

)3(
Li

CaVa,i

)2

.

Note also that if the extra integral state ξ̇i = θi − θ∗i is
introduced the controllability matrix will not have full rank.

Therefore, even though it would be desiable, it is not possible
to control both the outlet air temperature Ti and the return
water temperature θi to a desired reference.

The outlet air temperature Ti is the control objective hence
measured. Moreover, the return temperature θi can easily be
measured in this type of hydronic system. The last state ζ
in (11) is the internal state of the controller hence known.
With the chosen heat exchange model these measurements
lead to full state information. It then follows that we may
apply state-feedback

ui = Kixi (12)

chosen such that the convergence Ti − T ∗i → 0 as t → ∞
happens in accordance with some predefined specification
(e.g., rise-time and overshoot). Finally, since qj = 0 for j 6= i
is assumed while stabilizing the ith AHU, the relation (4)
transform to

ω2
i =

(
ri + ai
bi

+
Rc
bi

+

i∑
k=1

2
Rk
bi

)
q2i , α̂iq

2
i (13)

which yields ωi =
√
α̂iqi , ᾱiqi since sign(qi) = sign(ωi)

by physical considerations. The stabilizing control input to
the i’th AHU (with qj = 0, j 6= i) is therefore

ωi = ᾱiKixi + ᾱiq
∗
i (14)

It is remarked that the control gain Ki should be robust with
respect to (the constant) exogenous inputs Ta and Qi. That
is, one should choose Ki such that it stabilizes (9) for any
relevant values of Ta and Qi. By controllability and since
the exogenous inputs change slowly compared to the system
dynamics, this is indeed doable.

It is of course important to verify that when the above
control design is applied to the true system with intercon-
nection given by (5) and (4), then it does not destabilize the
system. To that end, we write (6) compactly as (the affine
bilinear system)

żi = Fizi +Miziqi +Giqi + Ei (15)

with Mi = Diag(−1/Vw,i, 0, 0)

Fi =

−
Li

CwVw,i

Li

CwVw,i
0

Li

CaVa,i
−
(
Qi

Va,i
+ Li

CaVa,i

)
0

0 1 0

 (16)

Gi =

 θc
Vw,i

0
0

 , Ei =

 0
QiTa

Va,i

−T ∗i

 , zi =

θiTi
ζi

 (17)

Note that the right-hand side of (15) is zero when evaluated
at

qi = q∗i , zi = z∗i ,
[
θ∗i T ∗i 0

]′
and that if the control (14) is to be applied to (15), then qi
should be replaced with ωi/ᾱi.

The full system dynamics may then be represented as

ż = Fz +Gq + E +H(z)q (18a)

= Fz +GΛ̄−1ω + E +H(z)Λ̄−1ω (18b)
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with

F = Diag(F1, . . . , Fn) ∈ R3n×3n (19)

G = Diag(G1, . . . , Gn) ∈ R3n×n (20)

H(z) = Diag(M1z1, . . . ,Mnzn) ∈ R3n×n (21)
Λ̄ = Diag(ᾱ1, . . . , ᾱn) ∈ Rn×n (22)

E =

E1

...
En

 , z =

z1...
zn

 , q =

q1...
qn

 , ω =

ω1

...
ωn

 (23)

To simplify the equations below we chose to make minor
abuse of notation and write

H(q) = Diag(M1q1, . . . ,Mnqn) ∈ R3n×3n (24)

which correspond to the derivative of H(z)q with respect to
z.

As above, note that the right-hand side of (18) is zero
when evaluated at

q = q∗ ,
[
q∗1 · · · q∗n

]′
, z = z∗ ,

[
z∗1 · · · z∗n

]′
Moreover, let φ̄ denote the control law generated by the
control laws (14), that is

ω = φ̄(z) , Λ̄(K(z − z∗) + q∗) (25)

with K = Diag(K1, . . . ,Kn) ∈ Rn×3n, so

ωi = φ̄i(z) = ᾱiKi(zi − z∗i ) + ᾱiq
∗
i

as in (14). Then the equilibrium point z∗ for the closed loop
system

ż = Fz +GΛ̄−1φ̄(z) + E +H(z)Λ̄−1φ̄(z) (26a)
= Fz +G(K(z − z∗) + q∗) + E

+H(z)(K(z − z∗) + q∗) (26b)

is stable since the linearized system (at z∗) is

ẋ = (F +GK +H(z∗)K +H(q∗))x (27a)
= (F +H(q∗) + (G+H(z∗))K)x (27b)

, (A+ BK)x (27c)

with x = z − z∗ and

A = F +H(q∗) = Diag(A1, . . . , An) ∈ R3n×3n (28)

B = G+H(z∗) = Diag(B1, . . . , Bn) ∈ R3n×n. (29)

Note that both (24) and (21) has been used in the above.
The relation (4) can also be written compactly as

ω2
i = q′(Λi + Ψi + Γi)q , q′Siq (30)

with

(Λi)jl =

{
αi ,

ri+ai
bi

j = l = i

0 otherwise

Ψi =
Rc
bi

1n×n , ψi1n×n

Γi =

i∑
k=1

2
Rk
bi
Diag(0(k−1)×(k−1), 1(n−k+1)×(n−k+1))

Clearly Si is symmetric and positive semi-definite (Si ≥
0).

The relation between all the control inputs and the flows
of the AHU’s can now be written compactly as

ω = f(q) =


√
q′S1q

...√
q′Snq

 (31)

The Jacobian matrix ∂f(q) of f at q is therefore

∂f(q) =
[
ρ1(q)S1q · · · ρn(q)Snq

]′
(32)

with ρi(q) = 1√
q′Siq

. Now let q > 0 be any water in-
flow such that ∂f(q) is nonsingular. By the inverse function
theorem f has a (local) inverse g , f−1. From this, we
may combine (18) and (31) to obtain the following complete
system description

ż = Φ(z, ω) = Fz +Gg(ω) + E +H(z)g(ω) (33)

Note that the above control design used a coordinate
change having ith coordinate function ωi = fi(q) = ᾱiqi
(and therefore qi = gi(ω) = ωi/ᾱi) with ᾱi define just
below (13).

We now investigate whether the control law given by (25)
stabilizes (33). First, recognize that the control law (25) is
obtained under the assumption that only one of the branches
is active at the time. Due to the interaction between the
branch flows, described in (30) subsequently in (31), the
steady-state value of the speed must be different in the
case with one active branch compared to the case where all
branches are active. Let the operating point for the speed
in the case where all branches are active be denoted by
ω∗ , f(q∗), hence Φ(z∗, ω∗) = 0 so (z∗, ω∗) is a steady-
state value for (33). However, φ̄(z∗) 6= ω∗ in general, so φ̄
do not qualify as a state feedback control law for (33). We
therefore modify φ̄ with an offset as

ω = φ(z) , φ̄(z)− Λ̄q∗ + ω∗.

so Φ(z∗, φ(z∗)) = Φ(z∗, ω∗) = 0 and φ qualify as a state
feedback control law for (33). Now consider the closed loop
system

ż = Φ(z, φ(z)) = Fz +Gh(z) + E +H(z)h(z) (34)

with h(z) = g(φ(z)). To check the stability property of the
equilibrium point z∗ we linearize (34) at z∗ and obtain

ẋ = (F +G∂g(ω∗)Λ̄K

+H(z∗)∂g(ω∗)Λ̄K +H(q∗))x (35a)
= (F +H(q∗) + (G+H(z∗))∂g(ω∗)Λ̄K)x (35b)

, (A+ B̄K)x (35c)

with1 ∂g(ω∗) = ∂f(q∗)−1 the Jacobian matrix of g at ω∗,
and B̄ = B∂g(ω∗)Λ̄. Compared to (27) one sees that the
control gain K now is replaced by ∂g(ω∗)Λ̄K.

1As a passing remark we mention that from numerical examples it seems
like ∂g is an L-matrix.
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In conclusion, we see that the control gain K from the
control law (25) needs to be chosen such that both the closed
loop system (27) and (35) are stable. To obtain this we
propose the following three stabilization procedures.

Stabilization procedure 1: First consider the Lyapunov
equation for the set of disconnected controllers

P(A+ BK) + (A+ BK)′P + εP < 0 (36)

with ε ≥ 0 a tuning parameter, P = Diag(P1, . . . ,Pn) and
Pi > 0. Now let Q = P−1, so Q = Diag(Q1, . . . ,Qn)
with Qi = P−1i . Using the change of variables Q = P−1
we obtain

AQ+QA′ + BY + Y ′B′ + εQ < 0 (37)

with Y = KQ. Note that Y = Diag(Y1, . . . , Yn) with
Yi = KiQi. Hence we may find a block diagonal control
gain matrix K stabilizing (27), by first solving the LMI (37)
subject to the constraints

Q = Diag(Q1, . . . ,Qn), Qi > 0 (38a)
Y = Diag(Y1, . . . , Yn) (38b)

and then set K = Y P = Diag(Y1P1, . . . , YnPn) which
guarantees stability of the closed loop system (27). Due to
the diagonal structure of K one could now check for stability
of the closed loop system (35), however, we propose the
following which also guarantee robustness towards parameter
uncertainties.Therefore, secondly to verify that the closed
loop system with the hydraulic interconnection (35) is stable,
one should verify the LMI (in the variables R > 0 and
τ > 0) [

RA+A′R+ τK ′K RB̄
B̄′R −τI

]
< 0 (39)

which guarantee’s stability of A + B̄∆K for all ∆ with
‖∆‖2 ≤ 1, hence in particular for ∆ = I .

Stabilization procedure 2: This procedure will produce
a control gain K stabilizing the closed loop systems (27)
and (35) simultaneous. To obtain this we simply solve
(37) and (39) simultaneously. In more details, apply Schur
complement to (39) and set R = P and K = Y P , then
use the change of variables Q = P−1 and apply Schur
complement again to obtain[

AQ+QA′ + ϑB̄′B̄ Y ′

Y −ϑI

]
< 0 (40)

with ϑ = 1/τ . It follows that the control gain K = Y P =
YQ−1 obtained by solving the LMI’s (37) and (40) subject
to the constraints ε, ϑ ≥ 0 and (38) will stabilizing the closed
loop systems (27) and (35) simultaneous.

Stabilization procedure 3: If the above two procedures
turn out to be too conservative one can solve (37) and

AQ+QA′ + B̄Y + Y ′B̄′ + ε̃Q < 0 (41)

simultaneously. As with procedure 2, this will yield a control
gain stabilizing both (27) and (35). However, no robustness
guarantees are given when applying this procedure.

Note that procedures 1 and 2 both guarantee robustness
since both use (39). However, procedure 2 is conservative
compared to procedure 1 since the variable Q is used in
both LMI’s when using procedure 2.

The synthesis procedures and robustness analysis are il-
lustrated in the next section.

IV. NUMERICAL STUDIES

To exemplify the above results, numerical tests are pre-
sented in the following. The tests are done using a simu-
lation model developed based on (6) and (4) describing the
nonlinear behavior of the system. The model has four AHU’s
with the outlet air temperature controlled by local controllers
designed using the procedures described in Section III. The
parameters for the hydraulic network connecting the AHU’s
and the AHU’s are given in Table I.

For comparison, local controllers are designed for each
of the AHU’s neglecting the influence of the hydraulic
network from the adjacent AHU’s. Standard pole placement
is used for this design with the closed loop poles {-0.04, -
0.02+i·0.02, -0.02-i·0.02} for each AHU loop. These closed
loop poles lead to the desired response for each separate
control loop. However, introducing the influence between
AHU’s from the hydraulic network (meaning changing the
input matrix from B to B̄) leads to the following poles
{5.2630, 5.9125, 5.9870, 2.6053, 0.0007, 0.0005, 0.0004,
0.0004, -0.0312, -0.0312, -0.0312, -0.0312} for the closed
system, which clearly is unstable. This verifies the need for
a more involved design procedure.

All three design procedures in Section III have been solved
using YALMIP [7] with Matlab, and lead to stable designs
for both the separated systems (input matrix B) and the con-
nected system (with input B̄). Results with design procedure
2 are presented in the following. With this procedure, it
was easier to tune the system to a desired slow response.
The response with a step in the temperature reference from
293.15 [K] (20 oC) to 294.15 [K] (21 oC) is shown in Fig.
4.
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Fig. 4. Controller response to a 1 degree change in the air supply reference
for all 4 AHU’s. The top plot shows the responses when each AHU is
running separately, and the lower plot shows the responses when all AHU’s
are running at the same time and therefore experience the influence from
adjacent AHU’s.
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TABLE I
MODEL PARAMETERS USED FOR SIMULATION AND ANALYSIS.

Parameter Sym i = 1 i = 2 i = 3 i = 4 Unit
Heat transfer between water and air in AHU B 24.00 · 103 14.00 · 103 12.00 · 103 20.00 · 103 [W·K−1]
Specific heat coefficient for water Cw 4.17 · 106 [J·m−3·K−1]
Specific heat coefficient for air Ca 891.80 [J·m−3·K−1]
Nominal air temperature reference T̄ ∗

i 293.15 [K]
Nominal ambient temperature Ta 308.15 [K]
Nominal supply water temperature θc 283.15 [K]
Water volume in AHU Vw 230.00 · 10−3 134.00 · 10−3 115.00 · 10−3 192.00 · 10−3 [m3]
Air volume in AHU Va 9.00 5.20 4.50 7.50 [m3]
Nominal water flow through AHU q 5.75 · 10−3 3.36 · 10−3 2.89 · 10−3 4.81 · 10−3 [m3/s]
Nominal air flow through AHU Q 8.97 5.23 4.49 7.48 [m3/s]
Hydraulic resistance of the chilled water source Rc 8.85 · 103 [pa/(m3 /s)]
Hydraulic resistance of pipelines to branch R 8.85 · 103 20.45 · 103 42.23 · 103 108.26 · 103 [pa/(m3/s)]
Hydraulic resistance of branch r 151.23 · 103 442.59 · 103 599.11 · 103 216.51 · 103 [pa/(m3/s)]
Pump constant a 453.69 · 103 2212.96 · 103 4193.79 · 103 1948.61 · 103 [-]
Pump constant b 30.00 50.00 70.00 90.00 [-]

The top plot in Fig. 4 shows the responses when each
AHU is running separately, whereas the lower plot shows
the responses when all AHU’s are running at the same time
and therefore experience the influence from adjacent AHU’s.

It should be noted that for the tested system the numerical
values of τ (design procedure 1) and ϑ (design procedure 2)
are close to zero, though YALMIP indicates a primal and
dual feasibility. These small values mean that we cannot
claim robustness for the test system when using these de-
sign procedures. However, as mentioned above, stability is
obtained.

V. CONCLUSION

This work considers the design of local AHU controllers
in a distributed pump setup for HVAC systems. A robust
design procedure via LMIs is presented that ensures robust
operation and at the same time opens up for stepwise test
and commissioning procedures. Such stepwise procedures
are expected to enable better building commissioning and
therefore better building performance when taken into use.

Further research includes restricting the robustness for-
mulation to enable better numerical properties and include
performance requirements in the design. Moreover, as an
alternative to the designed state feedback control using
standard PI control is interesting, as the commissioning staff
typically is familiar with this type of controller. Finally, only
the case where all controllers are active and the cases with
only one active controller are considered. In future research,
we will relax this.
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