
Optimal Control of Linear Cost Networks

David Ohlin, Emma Tegling and Anders Rantzer

Abstract— We present a method for optimal control with
respect to a linear cost function for positive linear systems
with coupled input constraints. We show that the Bellman
equation giving the optimal cost function and resulting sparse
state feedback for these systems can be stated explicitly, with
the solution given by a linear program. Our framework admits
a range of network routing problems with underlying linear
dynamics. These dynamics can be used to model traditional
graph-theoretical problems like shortest path as a special case,
but can also capture more complex behaviors. We provide
an asynchronous and distributed value iteration algorithm for
obtaining the optimal cost function and control law.

I. INTRODUCTION

In many real-world systems the quantities of interest, like
amounts of goods or distributions of probabilities, are intrin-
sically positive. Such systems naturally lead to models that
are positive systems, where the state x is confined to the pos-
itive orthant Rn

+. In the context of optimal control, positive
systems exhibit many advantageous properties, as reviewed
in [1]. Of special note is that such systems admit linear
Lyapunov functions. This guarantees positive stage costs
for a linear cost function, giving significant computational
advantages in applications where such a cost function can
accurately capture the desired objective. In contrast, current
methods for optimal control of general linear systems with
quadratic cost [2] give rise to Riccati equations where the
number of variables scales quadratically with the dimension
of the state, as opposed to linearly. Additionally, as noted
in [1], systems on this form allow for sparse optimal state
feedback u = Kx, giving favorable scaling results for high-
dimensional inputs.

In this paper we exploit these advantages for the purpose
of optimal control of a system where the magnitude of com-
binations of input signals are jointly constrained by a linear
function of the state. These coupled constraints generalize the
previous work [3], wherein all inputs are fully actuated in
either the positive or negative direction, and give rise to trade-
offs between several different inputs. This novel formulation
covers a range of problems excluded by the constraints in [3].
In particular, it provides a natural framework for a general
class of network routing and shortest path-like problems
with underlying linear dynamics unfolding on a graph. Our
formulation, which uses linear costs for the state and input,

The authors are with the Department of Automatic Control
and ELLIIT Strategic Research Area at Lund University, Lund,
Sweden. Email: {david.ohlin, anders.rantzer,
emma.tegling}@control.lth.se

This work is partially funded by Wallenberg AI, Autonomous Systems
and Software Program (WASP) and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 834142 (ScalableControl).

allows for an explicit solution to the associated Bellman
equation, just like in the familiar quadratic cost case. We
also provide a method for obtaining the optimal cost function
J∗(x) by means of linear programming.

This paper focuses on control problems over networks,
in which physical constraints and scalability concerns in
applications typically call for distributed solution methods.
We give a distributed implementation of the value iteration
algorithm for the proposed problem formulation, similar
to those treated in [4], and show that convergence results
presented in [5] can be applied to the present setting. This
allows for distributed and asynchronous computation of the
local optimal state feedback, wherein nodes need only share
their local estimates of the cost function and the cost of the
optimal control action. An extended analysis of the problem
setup in [3], leveraging established theory of Dynamic Pro-
gramming and extending the problem to constraints based on
other norms, can be found in [6], wherein upper bounds on
the convergence rate of policy iteration for such systems are
given. That analysis, however, also fails to capture the class
of network routing problems treated here.

The formulation we present connects results from the field
of optimal control to a rich history of works (e.g. [7], [8]) on
graphs with finite state and action spaces, which becomes a
special case of the problem as stated here. Our framework is,
however, flexible enough to cover a wider range of problems
with continuous state and action spaces. Notably, interpreting
the continuous state as a probability distribution allows for
the modeling of Markov Decision Processes (MDPs) as
another special case where existing results on convergence
of methods like policy iteration [9] can be applied. Most
works in the related literature that treat dynamic versions of
the shortest path problem use models where the structure of
the graph changes [10]. Similar problems with dynamics in
a continuous state space evolving on a graph structure are,
however, relatively unexplored.

In the next section we present relevant theory and define
notation. Section III contains the problem statement, required
assumptions and main result in the form of Theorem 1.
In Section IV, an algorithm is given for distributed and
asynchronous value iteration that finds the fixed point of the
operator given in Theorem 1, corresponding to the optimal
cost function. The results are illustrated by an example
in Section V, with application to a simplified model of
a large-scale cooling system. Finally, Section VI presents
conclusions and sets out possible avenues for future study.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 72

II. PRELIMINARIES

A. Notation

Inequalities are applied element-wise for matrices and
vectors throughout. Further, the notation Rn

+ is used to
denote the closed nonnegative orthant of dimension n. The
operator min{A, 0} extracts the minimum element of A,
yielding zero if A has no negative elements. Let diag(a)
denote a square matrix with the elements of the vector a
along the diagonal. The expressions 1p×q and 0p×q signify
a matrix of ones or zeros, respectively, of the indicated
dimension, with subscript omitted when the size is clear from
the context. If the dimension is zero, this is to be interpreted
as the empty matrix.

B. Problem setup

Consider the infinite-horizon optimal control problem

Minimize
∞∑
t=0

[
s⊤x(t) + r⊤u(t)

]
over {u(t)}∞t=0

subject to x(t+ 1) = Ax(t) +Bu(t)

u(t) ≥ 0, x(0) = x0

1⊤u1(t) ≤ E⊤
1 x(t)

...
...

1⊤uM (t) ≤ E⊤
Mx(t)

(1)

where A ∈ Rn×n and B =
[
B1 · · ·BM

]
∈ Rn×m with

Bi ∈ Rn×mi define the linear dynamics. The input u ∈ Rm

is partitioned into M subvectors ui, each containing mi

elements, so that m =
∑M

i=0 mi. In the upcoming treatment,
we will let the matrices Bi be further subdivided into
individual columns as Bi =

[
Bi1 · · ·Bimi

]
with Bij ∈ Rn.

The costs connected to states and actions are s ∈ Rn
>0

and r ∈ Rm
≥0 with ri ∈ Rmi following the partition of u,

and rij denoting the jth element of ri. The constraints on
the input u(t) are given by E =

[
E1 · · ·EM

]⊤ ∈ RM×n
≥0 .

Solving the problem (1) is equivalent to finding some
optimal value function J∗(x) that satisfies the corresponding
Bellman equation

J∗(x) = min
u∈U(x)

[g(x, u) + J∗(Ax+Bu)] . (2)

In the specific context of (1) the immediate cost is given
by the value at each instant t of the cost function to be
minimized, so g(x(t), u(t)) = s⊤x(t) + r⊤u(t). Note that
stabilizability of the system in (1) is a necessary condition
for the problem to have a finite value. In the previous
work [3] the Bellman equation (2) has an optimal linear
solution J∗(x) = p⊤x with p ∈ Rn for a certain class of
positive linear systems. Our main result below proves that
similarly favorable results can be obtained for systems on
the form (1), which have a natural interpretation as network
routing problems, but are not in general admissible in [3].

III. MAIN RESULT

In anticipation of our main result, we introduce two
assumptions on the dynamics of the system in (1).

Assumption 1: Any negative element of Bi is located on
the ith row.

Assumption 2: The matrices A, B and E satisfy the
element-wise inequality A ≥ |B−E| ≥ 0 where

B− =
[
diag

([
min{B1, 0} · · ·min{BM , 0}

])
0M×(n−M)

]⊤
.

Assumptions 1 and 2 guarantee positivity of the dynamics
in (1). While this may seem restricting, the partition of u
is natural in many relevant applications. In the case of a
network problem where the inputs u correspond to quantities
transferred over edges in the network, Assumption 1 requires
that all edges leading from node i be included in the same
constraint partition ui. Since positivity of the system is
often motivated by states corresponding to real quantities,
Assumptions 1 and 2 mean that no more than the quantity
already in node i at time t (or expected to be within one
time step) can be transferred from it.

These assumptions are sufficient to ensure invariance
of Rn

+ in the general case, but in special cases where parts
of the state space are unreachable they may be relaxed. In
such cases it is, however, possible to remodel the system
in compliance with the assumptions, which can therefore be
made without loss of generality. Given these assumptions on
the matrices of the problem (1), we are now ready to state
our main result:

Theorem 1: Under Assumptions 1 and 2, the following
three statements are equivalent:
(i) The problem (1) has a finite value for every x0 ∈ Rn

+.
(ii) There exists p ∈ Rn

+ satisfying the equation

p = s+A⊤p+

M∑
i=1

min{ri +B⊤
i p, 0}Ei. (3)

(iii) The value of the linear program

Maximize 1⊤p over p ∈ Rn
+

subject to p ≤ s+A⊤p−
M∑
i=1

ziEi

zi ≥ rij +B⊤
ijp for j = 1, ...,mi

zi ≥ 0

is bounded and has solution p satisfying (3).
Given the existence of a p as in (ii), the minimal value of (1)
is p⊤x0. The optimal linear state feedback law is then given
by ui(t) = Kix(t) with

Ki :=

 0j−1×n

E⊤
i

0mi−j×n

 for i = 1, ...,M, (4)

where the vector E⊤
i enters at the jth row with j being the

index of the minimal element of ri + B⊤
i p, provided it is

negative. If all elements are nonnegative then Ki = 0mi×n.

73

Proof: We first show that Rn
+ is invariant under the

dynamics in (1). It holds that

Ax+Bu = Ax+
[
B1 · · · BM

] u1

...
uM

 = Ax+

M∑
i=1

Biui.

As a consequence of Assumption 1 and the constraints given
in (1) this expression has a lower bound given by

Ax+

M∑
i=1

Biui ≥ Ax+

min{B1, 0}E⊤

1
...

min{BM , 0}E⊤
M

0(n−M)×n

x

= (A+B−E)x

recalling that min{Bi, 0} denotes the minimum element
of Bi, yielding zero if all elements are nonnegative. This
final expression is contained in Rn

+ due to Assumption 2.
Next, let Jk(x) = p⊤k x. Given the ansatz p0 = 0,

we compute each subsequent iterate pk+1 by applying the
Bellman equation

min
u∈U(x)

[g(x, u) + Jk(f(x, u))]

= min
u∈U(x)

[
s⊤x+ r⊤u+ p⊤k (Ax+Bu)

]
= s⊤x+ p⊤k Ax+ min

u∈U(x)

[
(r +B⊤pk)

⊤u
]

where U(x) denotes the set of all inputs u satisfying the
constraints in (1). We partition the vector r + B⊤pk in the
same fashion as u into M subvectors ri + B⊤

i pk ∈ Rmi .
Since each subvector ui is only bound by one of the upper
input constraints, we can minimize the expression above
independently for each ui:

min
u∈U(x)

(r +B⊤pk)
⊤u =

M∑
i=1

min
1⊤ui≤E⊤

i x
u≥0

(ri +B⊤
i pk)

⊤ui

(5)

=

M∑
i=1

min{ri +B⊤
i pk, 0}E⊤

i x

where the minimum in the final expression is taken over
all elements in the vector ri + B⊤

i pk and 0. The Bellman
iteration becomes

min
u∈U(x)

[g(x, u) + Jk(f(x, u))]

= s⊤x+ p⊤k Ax+

M∑
i=1

min{ri +B⊤
i pk, 0}E⊤

i x

=

(
s+A⊤pk +

M∑
i=1

min{(ri +B⊤
i pk, 0}Ei

)⊤

x

= p⊤k+1x.

As a consequence, we have an increasing sequence of
functions generated by iteration of the Bellman equation,
and the cost functions all take the form Jk(x) = p⊤k x.

Given that the problem (1) has a finite value according to (i),
the sequence of value functions generated by this iteration
has the upper limit J∗(x) = p⊤x. This limit fulfills the
equation in (ii). The converse also holds since, given that
a p satisfying (ii) exists, the increasing sequence of {pk}∞k=0

must satisfy pk ≤ p for all k. This means that the Bellman
equation has a nonnegative and finite solution, implying
that (i) holds. To find the optimal controller we seek the
policy µ(x) minimizing the Bellman equation for the optimal
cost function J∗(x) = p⊤x. Taking the expression from (5)
we get

µ(x) = arg min
u∈U(x)

(r +B⊤p)⊤u

which, partitioned like the minimization in (5), can be
performed separately for each subvector µi yielding the
expression

µi(x) =

 0j−1×n

E⊤
i

0mi−j×n

︸ ︷︷ ︸

=Ki

x.

where the nonzero row vector E⊤
i enters on the jth row

and j ∈ {1, ...,mi} is the index of the largest in magnitude
negative element of ri + B⊤

i p. If all elements are positive
then µi(x) = 0mi×n is the minimizing argument. As a result,
the state feedback law for each partition ui is stationary and
given by ui(t) = Kix(t).

Finally, we address (iii) in the same way as treated in [3].
If (ii) holds then the p fulfilling Equation 3 clearly also
solves the program

Maximize 1⊤p over p ∈ Rn
+

subject to p ≤ s+A⊤p+

M∑
i=1

min{ri +B⊤
i p, 0}Ei

which is equivalent to the linear program in (iii). Any
solution fulfilling the Bellman inequality gives a lower bound
on the corresponding optimal cost function. Thus the solution
of the linear program must also be the optimal cost function
and, as a consequence, (ii) implies (iii). To show the
converse, assume that the linear program in (iii) is bounded
by some argument pk. Calculate

pk+1 = s+A⊤pk +

M∑
i=1

min{ri +B⊤
i pk, 0}Ei.

We now have pk+1 ≥ pk and as a consequence

pk+1 = s+A⊤pk +

M∑
i=1

min{ri +B⊤
i pk, 0}Ei

= min
u∈U(x)

[
s⊤x+ r⊤u+ p⊤k (Ax+Bu)

]
≤ min

u∈U(x)

[
s⊤x+ r⊤u+ p⊤k+1(Ax+Bu)

]
= s+A⊤pk+1 +

M∑
i=1

min{ri +B⊤
i pk+1, 0}Ei

74

which is exactly the constraint in the reformulated program
above. Since we assumed that pk attains the maximum of
the program and pk+1 ≥ pk, the only possible conclusion
is that pk+1 = pk. Thus the maximizing argument of the
program in (iii), if it is bounded, also solves Equation 3,
implying (ii). This concludes the proof.

To illustrate the above theorem we apply it to a simple
shortest-path problem. A detailed example showing more
general possibilities is presented in Section V.

Fig. 1: Weighted graph in Example 1.

Example 1: Consider the (trivial) problem of finding the
shortest path from node x1 to node x4 in Figure 1. This
can be formulated as an optimal control problem on the
form (1) with n = 4, m = 10 (one input for each direction of
traversal of the edges) in the following way: Let the states xi

correspond to the nodes, select E = A = I and let B be a
node-link incidence matrix:

B =

−1 −1 −1 0 1 0 1 1 0 0
1 0 0 −1 −1 0 0 0 1 0
0 1 0 0 0 −1 −1 0 0 1
0 0 1 1 0 1 0 −1 −1 −1

.
We partition the input vector u =

[
u⊤
1 u⊤

2 u⊤
3 u⊤

4

]⊤
to

collect all actions corresponding to directed edges originating
in node i into ui. The weights are selected as

s⊤=
[
1 1 1 0

]
, r⊤=

[
0 0 2 0 0 1 0 2 0 1

]
. (6)

We now have the problem on the form required by Theorem 1
and finding a p satisfying (3) by fixed point iteration we get
the optimal cost function as

J∗(x) =
[
2 1 2 0

]⊤
x.

The optimal control law is given by (4) which yields the
optimal routing in each node.

We can easily verify that Assumption 1 and Assumption 2
are satisfied by the above choice of A, B and E. The shortest
path problem assigns cost only to traversal of the edges,
while the formulation (1) also associates a cost si with each
state xi and allows for the possibility of taking no action
(u = 0). However, since the dynamics are not asymptotically
stable (A = I), the optimal policy will never be to remain
in i as long as the cost si is strictly positive. This means
the cost si will be incurred once per edge traversal in the
optimal policy. By reallocating some of the cost from the
edges to all nodes except the endpoint x4 (from r to s),
we guarantee that the optimal policy will correspond to the
shortest path. The weights (6) result in the same cost as in the

original formulation for all paths that do not stay more than
one time step in each node, i.e. all paths that are possible
candidates for the optimal solution.

IV. DISTRIBUTED IMPLEMENTATION

As the dimensions of the state and input spaces grow
in (1), it is desirable that the complexity of the solution
method scales favorably. One method for finding the optimal
control of (1) is to solve the linear program in Theorem 1.
The number of parameters scales linearly with the dimension
of the state and the program is thus computationally tractable
even for high-dimensional problems. In many applications,
however, global communication and access to information is
not feasible. An alternative method is to distribute the the
solution of the problem, requiring only local communication
and knowledge of the local dynamics. Below we present an
algorithm for distributed and asynchronous calculation of the
optimal cost function for agents with limited knowledge of
the global state.

Consider the dynamics (1) when each state xi belongs to
a separate agent i with its own constraint 1⊤ui ≤ E⊤

i x, so
that M = n. The optimal cost function J∗(x) = p⊤x with p
fulfilling (3) can be found by asynchronous distributed value
iteration starting from the ansatz p0 = 0. Agent i affects
other agents through either the dynamics A, the constraints E
or the inputs governed by the structure of B. Here, let
W (i) ∈ Rn×n denote the local incidence matrix of node i
given by W (i) = BiB

⊤
i . We define a set of neighbors of i

for each of these interactions:

NA
i := {j : Aji ̸= 0, j ̸= i}
NE

i = {j : Eji ̸= 0, j ̸= i}
NB

i = {j : W (i)
ij ̸= 0, j ̸= i}.

As a consequence of Assumption 2 we have NE
i ⊆ NA

i

with equality for the choice E = A. Note that these
sets are defined to include only out-neighbors of i. Next,
index the columns of A as A =

[
A1 · · · An

]
and let

each agent i have local estimates p̂(i), q̂(i) ∈ R. Further,
let p̂ =

[
p̂(1) · · · p̂(n)

]⊤
denote the vector containing all

agents’ estimates of the local value function. We have shown
in the proof of Theorem 1 that (3) has a solution p in Rn

+. The
positive orthant is invariant under iteration of the Bellman
equation (2). As a consequence, if p satisfying (3) exists,
then value iteration can be performed in a distributed fashion
following Algorithm 1 with local estimates converging to
the optimal cost function [5, Proposition 2.6.2], under the
additional assumption that all agents update their estimate
an infinite number of times as t → ∞. Note that steps 8
and 9 can (with slight abuse of notation) be evaluated
despite agent i not having access to the full vector p̂, since
the unknown terms in both cases are multiplied by zero.
As stated in Algorithm 1, each agent stores only local
estimates p̂(i) and q̂(i) which converge to the fixed point
corresponding to the solution of (3). In order to extract the
optimal policy, agents would additionally need to store the
index of the element that minimizes the expression in step 5.

75

Algorithm 1 Asynchronous value iteration

1: local estimates p̂(i), q̂(i) ← 0 for i = 1, . . . , n
2: local terminating conditions ci ← 1 for i = 1, . . . , n
3: while ∃i such that ci = 1 do
4: sample agent i ∈ {1, ..., n}
5: p̂

(i)
old ← p̂(i)

6: receive p̂(j) from each neighbor j ∈ NA
i ∪NB

i

7: receive q̂(j) from each neighbor j ∈ NE
i

8: q̂(i) ← min{ri +B⊤
i p̂, 0}

9: p̂(i) ← si +A⊤
i p̂+ q̂(i)Eii +

∑
j∈NE

i

q̂(j)Eji

10: if p̂(i) = p̂
(i)
old then

11: ci ← 0
12: else
13: ci ← 1
14: end if
15: end while

To perform Algorithm 1, agent i needs to store and access,
in addition to the sets of in- and out-neighbors, only the
following: Aji for j ∈ NA

i , Eji for j ∈ NE
i and Bi. From

the perspective of privacy we note that agent i requires only
the quantities p̂j and q̂j = min{rj + B⊤

j p̂, 0} from its
neighbors, which contains no information about which action
attains the minimum. Agents are not required to reveal their
optimal action in order to perform the algorithm.

Remark 1: The algorithm as stated here does not include a
truly distributed terminating condition. In settings where the
optimal controller is calculated online and system parame-
ters are potentially subject to change, it is realistic to run
the algorithm indefinitely. Various methods of termination
detection for distributed and asynchronous algorithms exist
dating back to the seminal work [11], but applying these
to the results presented here in a computationally efficient
manner is a non-trivial problem in its own right and beyond
the scope of this paper.

V. EXAMPLE: LINEAR FLOW DYNAMICS

We now present a more intricate, yet physically motivated,
example to demonstrate some of the nuances that can be
captured by the presented framework beyond the simpler
shortest path problem. In the following example an optimal
controller is derived for a system where endpoints are not
specified a priori and the routing problem is complicated by
the underlying dynamics of the network.

Example 2: Consider a simplified liquid cooling system
serving some type of large-scale industrial plant. The system
is represented by a directed graph G(V, E) where the set of
links E models travel across the pipes that transport the liquid
coolant between nodes V . Each node i ∈ V corresponds to a
different location in the plant and has an associated state xi

that specifies the heat contained there. The dynamics are
given by (1) with n = |V| and m = |E|. Let Aii model the
loss of heat at location i due to both dissipation and diffusion
to other states, while the off-diagonal elements Aij , j ̸= i
model the heat diffusing from i to other states j. For all

Fig. 2: Graph illustrating the cooling system in the example.
The coloring of nodes and edges represent the cost vectors s
and r, ranging from bright blue, corresponding to a cost of
0.2 per unit of heat transported, to bright red, corresponding
to a cost of 1. Intermediate hues represent costs on that
interval. Dashed red lines signify diffusion of heat between
nodes and dashed blue lines represent dissipation.

Fig. 3: The optimal cost function J∗(x) = p⊤x given
by Theorem 1 with each node showing the corresponding
element of p. Dashed lines indicate the possible inputs (in
both directions) and solid arrows show the direction of the
optimal stationary control policy.

states we have
∑

j Aji ≤ 1, where equality means that no
dissipation occurs in state i.

In each node i, the heat can be transferred by selecting the
input vector ui, dictating how much heat is transported across
each of the links eji leading from i. The amount transferred
is limited by the current amount present in state xi, giving
the constraint 1⊤ui ≤ E⊤

i x where Eii = Aii and Eij = 0
for i ̸= j. The matrix B has one column corresponding to
each directed link eij (from j to i), in which the jth element
is -1 and the ith is a number in the interval [0.95, 1) modeling

76

10 20 30 40

2

4

6

Iterations

L
oc

al
co

st
fu

nc
tio

n

(a)

250 500 750 1,000

2

4

6

Iterations

L
oc

al
co

st
fu

nc
tio

n

(b)

Fig. 4: (a) Elements of the cost function iterate pk evolving under fixed point iteration of (3), starting from p0 = 0. Each
element corresponds to a node in Example 2. (b) Local cost function estimates p̂(i) when performing distributed value iteration
according to Algorithm 1 for the nodes in Example 2. Note that the apparent difference in convergence rate compared to
Figure 4a is a result of only updating one node in each iteration of Algorithm 1. Scaling the axis of iterations by a factor
n = 26 illustrates that the rate of convergence for the two methods is similar.

the heat loss over the pipe. The weights r and s signify the
relative importance of cooling the different sections of the
plant. Since each pipe is represented by two links eij and eji,
the weights and heat dissipation for the two directions are
set to be identical.

Figure 2 illustrates the dynamics of an example system
with n = 26. The coloring of the nodes and links represent
the relative costs r and s of transporting and storing one
unit of heat respectively. The stationary control law found by
applying Theorem 1 is illustrated in Figure 3 by indicating
the optimal routing of heat across the graph. In any node i
that has no arrow originating in it, the optimal control
is ui = 0, letting the heat diffuse and dissipate passively. As
the dissipation only occurs in certain nodes, all heat must
necessarily be transported to these either through passive
diffusion or active heat transfer in order to obtain a finite
value of the optimization problem (1).

Figure 4a shows the elements of pk when applying value
iteration (fixed point iteration of (3)) to find p for the
above problem, with initialization p0 = 0. In Figure 4b the
evolution of the local cost estimates p̂(i) when performing
Algorithm 1 for the same problem are displayed. Both
methods converge to the fixed point corresponding to the
optimal cost function in Figure 3 and the rate of convergence
differs approximately by a factor n = 26, since only one
agent updates their state in each iteration of Algorithm 1. In
other words, the figures show both methods converging after
approximately the same number of agent updates.

VI. CONCLUSION

We have presented a framework for calculating optimal
control of positive network dynamics in a scalable way. The
resulting controller is a state feedback law u(t) = Kx(t)
where K is sparse given some inherent sparsity of the

dynamics. Furthermore, we have given a distributed and
asynchronous algorithm for finding the optimal cost function
and corresponding controller. This framework admits a wide
range of network problems, both well and lesser studied.
This indicates a possible direction for further exploration
in adapting tools developed on shortest path problems and
Markov decision processes for use in optimal control.

REFERENCES

[1] A. Rantzer and M. E. Valcher, “A tutorial on positive systems and
large scale control,” in 2018 IEEE Conference on Decision and Control
(CDC), 2018, pp. 3686–3697.

[2] D. P. Bertsekas, “Stable optimal control and semicontractive dynamic
programming,” SIAM Journal on Control and Optimization, vol. 56,
no. 1, pp. 231–252, 2018.

[3] A. Rantzer, “Explicit solution to Bellman equation for positive systems
with linear cost,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), 2022, pp. 6154–6155.

[4] D. Bertsekas, “Multiagent value iteration algorithms in dynamic
programming and reinforcement learning,” Results in Control and
Optimization, vol. 1, p. 100003, 2020.

[5] ——, Abstract Dynamic Programming: 3rd Edition, ser. Athena sci-
entific optimization and computation series. Athena Scientific, 2022.

[6] Y. Li and A. Rantzer, “Exact dynamic programming for positive
systems with linear optimal cost,” arXiv: 2306.02072 [math.OC],
2023.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math. 1, p. 269–271, 1959.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[9] Y. Ye, “The simplex and policy-iteration methods are strongly poly-
nomial for the markov decision problem with a fixed discount rate,”
Mathematics of Operations Research, vol. 36, no. 4, pp. 593–603,
2011.

[10] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-Noy,
“Dynamic shortest path algorithms for hypergraphs,” in 2012 10th
International Symposium on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt), 2012, pp. 238–245.

[11] S.-T. Huang, “Termination detection by using distributed snapshots,”
Information Processing Letters, vol. 32, no. 3, pp. 113–119, 1989.

77

