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Abstract— For complex nonlinear systems, it is challenging to
design algorithms that are fast, scalable, and give an accurate
approximation of the stability region. This paper proposes
a sampling-based approach to address these challenges. By
extending the parametrization of quadratic Lyapunov functions
with the system dynamics and formulating an ℓ1 optimization
to maximize the invariant set over a grid of the state space,
we arrive at a computationally efficient algorithm that esti-
mates the domain of attraction (DOA) of nonlinear systems
accurately by using only linear programming. The scalability
of the Lyapunov function synthesis is further improved by
combining the algorithm with ADMM-based parallelization.
To resolve the inherent approximative nature of grid-based
techniques, a small-scale nonlinear optimization is proposed.
The performance of the algorithm is evaluated and compared
to state-of-the-art solutions on several numerical examples.

I. INTRODUCTION

Determining the stability region of general nonlinear
dynamic systems is one of the most important research
directions in the field of control theory [1]. To investigate
stability properties, Lyapunov analysis is commonly applied,
whereby a positive definite function is sought that shows
convergence of the system trajectories to a given equilibrium
point [2]. If a valid Lyapunov function is found, its level sets
can be used to estimate the domain of attraction (DOA) of
the equilibrium point, which is a stable region of the system.

Finding a Lyapunov function for general nonlinear systems
is difficult, because it mostly involves non-convex optimiza-
tion. Throughout the past decades, several algorithms have
been developed to overcome this issue by either focusing on
special system classes (e.g. rational, polynomial), or com-
puting an approximate solution of the optimization problem.

For example, Sum of Squares (SoS) is a common ap-
proach, where the Lyapunov function is constructed as the
sum of squared polynomials, inherently ensuring positive
definiteness [3]. Despite the fact that SoS can be efficiently
used for polynomial systems with 2-3 dimensional state
space, the optimization becomes computationally intractable
for large number of states and general nonlinear systems,
limiting the applicability of the algorithm.

To estimate the DOA of uncertain rational nonlinear
systems, linear matrix inequality (LMI) conditions have been
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introduced in [4]. Using the notion of annihilators together
with Finsler’s Lemma, convex optimization problems are
formulated to establish stability properties. Although it is a
promising research direction, current results are restricted to
rational systems, moreover, they are still either conservative,
or computationally overwhelming [4], [5].

Recently, sampling-based Lyapunov analysis methods
have gained significant attention [6], [7], [8]. In [9], control
Lyapunov functions (CLFs) are synthesized for continuous-
time nonlinear systems. The proposed approach consists
of a demonstrator (generating control inputs from states),
a learner (proposing candidate Lyapunov functions based
on the samples), and a verifier (checking if the candi-
date is valid over the investigated domain of the state
space). To verify the proposed candidate, the algorithm is
restricted to polynomial dynamics with polynomial CLFs
and a semidefinite programming-based relaxation is applied.
A similar approach is presented in [10] to find the DOA
of discrete-time nonlinear systems. This method exploits a
neural network approximation of the dynamics and extends
quadratic Lyapunov functions by incorporating future states
to enrich the quadratic function class. Although the algorithm
can be applied to general nonlinear systems, it involves the
computation of deterministic bounds on the neural network
approximation error, which is not yet solved for high dimen-
sional systems.

In continuous time, including the system dynamics in
the parametrization of the Lyapunov function is known as
Krasovskii’s method that has been originally used to establish
global asymptotic stability [11]. In [12], [13], it is shown that
the conservativeness of quadratic functions can be reduced
by using non-monotonic Lyapunov functions, where the
dynamics also appear in the parametrization.

Learning stability certificates with artificial neural net-
works is also an emerging field of robotics and control
[14]. Neural Lyapunov functions have shown remarkable
representation capability and they can be trained efficiently
[15], [16]. In [17], it is demonstrated that the scalability of
Lyapunov function synthesis for certain high dimensional
systems can be improved by separable control Lyapunov
functions and their neural network approximation. However,
due to the difficulties of solving constrained neural network
optimizations and verifying neural Lyapunov functions on a
continuous domain, their applications are currently limited.

In this paper, we propose a novel iterative, sampling-based
approach to estimate the DOA of general continuous-time
nonlinear systems. To overcome the limitations of existing
methods, our contributions are as follows:
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1) By turning the Lyapunov function construction as a
linear programming problem with ℓ1 regularization, we
arrive to a computationally efficient method with direct
maximization of the invariant set.

2) We improve the scalability of the Lyapunov function
synthesis using the Alternating Direction Method of
Multipliers (ADMM) algorithm.

3) The performance of the proposed method is analyzed
and compared to state-of-the-art solutions on several
numerical examples.

This work is organized as follows. In Section II, the
problem formulation is introduced. The main contributions of
the paper are presented in Sections III and IV, in terms of the
algorithm for Lyapunov function synthesis and the ADMM
extension for improved scalability. Numerical examples are
provided in Section V, and Section VI concludes the paper.

II. PROBLEM FORMULATION

We consider nonlinear systems of the form

ẋ(t) = f(x(t)), (1)

where x(t) ∈ Rn is the state vector and f : Rn → Rn is
a nonlinear function. A point x∗ ∈ Rn is an equilibrium
point of system (1), if f(x∗) = 0. The domain of attraction
(DOA) associated with an equilibrium point x∗ is the set of
all initial states, starting from which the trajectories of (1)
converge to x∗. A linear coordinate transformation can shift
any equilibrium point to the origin, therefore, without loss
of generality (w.l.o.g.), we assume that system (1) has an
equilibrium point at the origin.

The equilibrium point x=0 of system (1) is asymptotically
stable, if for each ϵ > 0 and t0 ∈ R, there exists a δ >
0, such that for all ∥x(0)∥ ≤ δ, ∥x(t)∥ ≤ ϵ ∀t ≥ t0 and
limt→∞ x(t) = 0, where ∥ · ∥ denotes the Euclidean norm.

Let X be a closed subset of Rn that contains the origin
in its interior, moreover, let β, β, β̄ : [0, b) → [0,∞) be
strictly increasing functions with β(0) = β(0) = β̄(0) = 0
and b ∈ R+ such that ∥x∥ ≤ b,∀x ∈ X . If there exists a
continuously differentiable function V : X → R such that

β(∥x∥) ≤ V(x) ≤ β̄(∥x∥) ∀x ∈ X , (2a)

V̇(x) ≤ −β(∥x∥) ∀x ∈ X , (2b)

then V is called a Lyapunov function (LF), and system (1) is
asymptotically stable on X [18]. Moreover, the sublevel sets
of the Lyapunov function given by Xl = {x | V(x) ≤ l},
l ∈ R give an invariant subset of the DOA if Xl ⊆ X .

Throughout this paper, our goal is to find a Lyapunov
function such that the maximal level set contained in X
minimizes the volume of the set difference with respect to
the true DOA of the underlying nonlinear system.

III. SAMPLING-BASED DOA ESTIMATION WITH ℓ1
OPTIMIZATION

In this section, we introduce a sampling-based algorithm
for estimating the DOA of system (1). First, we discuss the
parametrization of the Lyapunov function. Then, following
the concept of counterexample-guided methods ([9], [10]),

we propose an iterative algorithm consisting of a learner and
a verifier to construct a Lyapunov function with maximal
sublevel set.
A. Lyapunov function parametrization

We generalize the results of [10] to continuous-time sys-
tems by incorporating the dynamics and its derivatives into
the Lyapunov function. By assuming that f is d times contin-
uously differentiable, moreover, both f and its derivatives are
bounded on X , we propose the following parametrization:

V(x, P ) = z⊤Pz, P ∈ Sp,

z =
[
x⊤ f(x)⊤ ḟ(x)⊤ . . . f (d−1)(x)⊤

]⊤
,

(3)

where p = n(d + 1), f (0)(x) = f(x), and f (i+1)(x) =
d
dt

(
f (i)(x)

)
= ∂

∂x (f
(i)(x))f(x) for i ∈ Id−2

0 . The notation
Ii2i1 stands for the set of integers i1, i1 + 1, . . . , i2, and Sp
denotes the set of p×p symmetric matrices. The derivative of
the Lyapunov function given by (3) is expressed as follows:

V̇(x, P ) = ż⊤Pz + z⊤P ż,

ż =
[
f(x)⊤ ḟ(x)⊤ f̈(x)⊤ . . . f (d)(x)⊤

]⊤
.

(4)

From (3)-(4), it follows that both V(x) and V̇(x) are linear in
P when the state is fixed, which we exploit later to efficiently
synthesize such Lyapunov functions. Moreover, boundedness
of z, ż ensures that the r.h.s. of (2a) is automatically satisfied.

Choosing the value of d generates a tradeoff between the
complexity of the Lyapunov function synthesis and the accu-
racy of the DOA estimation. In practice, it is recommended
to start with d = 1 and increase its value until good coverage
of the DOA is obtained.

B. Learner based Lyapunov synthesis
The goal of the learner is to propose a candidate Lyapunov

function. The Lyapunov conditions in their original form
given by (2) are infinite dimensional, therefore the problem
is too complex to solve directly. Instead, we employ a
grid-based approach, and synthesize a candidate Lyapunov
function that satisfies (2) at discrete points of the state space.
Later, we show how the inherent approximative nature of the
resulting grid-based problem can be overcome.

As the first step, we define X as the region of interest
(ROI) of the system, in which we would like to locate the
DOA. In general, we assume that X is available based on
prior knowledge about the specific system. In this paper, we
consider X to be a hyperrectangle, formulated as follows:

X = {x ∈ Rn | x(i) ≤ x(i) ≤ x̄(i), i = 1 . . . n} (5)

where x, x̄ ∈ Rn are lower and upper bounds on the state
variables. Next, we generate a data set DN by drawing
N samples on a grid over X as initial conditions and
simulate the system dynamics until convergence to a small
neighborhood of the origin or divergence is reached. Based
on the simulations, we partition DN into subsets X0 and
X∞, DN = X0 ∪ X∞, where X0 contains the stable initial
conditions, |X0| = N0, and X∞ contains the unstable initial
conditions, |X∞| = N −N0 = N∞. The notation | · | stands
for the cardinality of a given set.
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The learner proposes a Lyapunov function candidate and a
DOA estimate in terms of the largest sublevel set contained
in X considering the sample points in DN . As the value l
associated with the largest sublevel set Xl = {x | V(x, P ) ≤
l} can be tuned arbitrarily with the scaling of P , w.l.o.g. we
choose l = 1. The best solution would be to separate X0 and
X∞ by the contour line V(x, P ) = 1, i.e., V(x, P ) ≤ 1 ∀x ∈
X0 and V(x, P ) > 1 ∀x ∈ X∞. However, if the a priori fixed
structure of V does not allow this perfect separation, we still
intend to exclude all elements of X∞ from the level set,
while trying to include from X0 as many points as possible.
To solve this problem, we apply ℓ1 optimization, as follows:

P ∗ = argmin
P∈Sp,α∈RN0

∥α∥1 = argmin
P∈Sp,α∈RN0

N0∑
i=1

αi (6a)

s.t. αi ≥ 0, ∀i ∈ IN0
1 , (6b)

V(xi, P ) ≤ 1 + αi, ∀xi ∈ X0, i ∈ IN0
1 , (6c)

V(xi, P ) ≥ εx⊤
i xi, ∀xi ∈ X0, i ∈ IN0

1 , (6d)

V̇(xi, P ) ≤ −εx⊤
i xi, ∀xi ∈ X0, i ∈ IN0

1 , (6e)

V(xj , P ) ≥ 1 + δ, ∀xj ∈ X∞, j ∈ IN∞
1 . (6f)

By minimizing the ℓ1 norm, we enforce a sparse solution,
i.e., maximize the number of zero elements of α ∈ RN0

[19]. Due to Constraint (6c), each zero entry corresponds
to a stable point contained in the level set. Furthermore,
Constraints (6d), (6e) represent the Lyapunov conditions
given by (2), where ε ∈ R+ is chosen to be a small constant1.
Moreover, Constraint (6f) ensures that the unstable points are
outside of the 1 level set by a margin of δ ∈ R+. Generally,
δ ≈ 10−2 is a good choice, but selecting a higher value (e.g.
0.1-0.2) often results in improved numerical stability. In fact,
handling δ as a decision variable could improve feasibility
in exchange for increased complexity of the optimization.

However, V̇(xi, P ) is forced to be negative even at points
which are outside of the sublevel set, which can lead to
infeasibility of the optimization. To solve this issue, we
modify Constraint (6e) to prescribe negativity only within
the 1 level set of V(x, P ), i.e., where αi = 0, as follows:

V̇(xi, P ) ≤ αi − εx⊤
i xi, ∀xi ∈ X0, i ∈ IN0

1 . (6e')

Optimization (6) is linear in P and α, therefore it is a linear
program (LP), which can be solved efficiently by numerical
solvers. If the problem is feasible, the result gives a Lyapunov
function candidate that is valid on the sample set.

The number of optimization variables in (6) is nopt =
n2(d + 1)2 + N0. Assuming ng number of grid points
in each dimension, N0 grows polynomially with ng and
exponentially with n. Hence, scalability is mostly limited
by the number of state variables and grid points, while it is
less affected by the value of d.

C. Verifier optimization

The candidate Lyapunov function proposed by the learner
satisfies (2) only at the sample points, therefore a verifier

1The quadratic function class for β, β is a standard choice, but other
parametrizations could also be applied as an extension of Optimization (6).

Algorithm 1 Sampling-based iterative DOA estimation
1: input: X0,X∞
2: Let i = 0
3: while i < imax do
4: solve (6) to obtain P ∗

5: solve (7) to obtain γ∗, η∗

6: if γ∗ ≥ 0 then
7: X0 ← X0 ∪ argmaxx∈X̄ V̇(x, P ∗)
8: else if η∗ ≤ 0 then
9: X0 ← X0 ∪ argminx∈X̄ V(x, P ∗)

10: else
11: return P ∗

12: end if
13: i← i+ 1
14: end while
15: return NaN

is required additionally to make sure that the Lyapunov
conditions are satisfied between the samples, as well. For
this, the following two optimization problems are solved:

γ∗ = max
x∈X̄
V̇(x, P ∗), η∗ = min

x∈X̄
V(x, P ∗), (7)

where X̄ = X1\{0}, X1 is the sublevel set V(x, P ) ≤ 1, and
P ∗ is the solution of (6). Optimization (7) is nonlinear as the
system dynamics appear in the objective function. However,
the number of optimization variables is always n regardless
of d and N , therefore it can be solved efficiently, e.g. by us-
ing CasADi [20]. Considering the result of Optimization (7),
if γ∗ < 0 and η∗ > 0, we accept V(x, P ∗) as a valid
Lyapunov function. Otherwise, we add the corresponding
x value (the counterexample) to X0 and call the learner
to compute a new candidate. The iteration between the
learner and the verifier terminates either if a valid LF is
found, or a specified maximum number of iterations (imax)
is reached. The main steps of the proposed sampling-based
DOA estimation method are outlined in Algorithm 1.

IV. IMPROVING SCALABILITY

The scalability of the learner optimization is important
to address, because assuming constant grid resolution, the
number of samples grows exponentially with the dimension
of the state space. Specifically, Constraints (6c), (6e') can be
written in the form of Aξ ≤ b with ξ = [ vec(P )⊤ α⊤ ]⊤ ∈
Rp2+N0 , A ∈ R2N0×(p2+N0), and b ∈ R2N0 . For a 5
dimensional system with d = 1 and 10 samples along each
dimension, this means that N0 = 105, therefore A has
more than 1010 elements. The solution of such a large scale
problem is very difficult without distributing the constraints.

To overcome the scalability issues, we employ the Alter-
nating Direction Method of Multipliers (ADMM) [21]. For
this, Optimization (6) can be rewritten in the following more
compact form:

ξ∗ =argmin
ξ∈C

J(ξ), (8)

where J is the linear cost function, and C is the set of affine
constraints. We express C as the intersection of m affine sets,

182



i.e., C = C1 ∩ C2 ∩ · · · ∩ Cm, such that Constraints (6b),
(6d), (6f) are included in all m sets, and Constraints (6c),
(6e') are divided into m parts.

By introducing ξ̃ = [ ξ1 ξ2 . . . ξm ], z̃ = [ z1 z2 . . . zm ],
ξ̃, z̃ ∈ R(p2+N0)×m, (8) can be rewritten in the standard form
used, e.g., by [21] to derive the ADMM steps, as follows:

min
ξ̃=z̃

m∑
i=1

J(ξi) + IC(ξ1, . . ., ξm) + ID(z1, . . ., zm), (9)

where IC , ID are indicator functions of the sets C̃ = C1 ×
C2×· · ·×Cm, and D = {z̃ ∈ R(p2+N0)×m | z1 = z2 = · · · =
zm}, respectively. Then, using the scaled form of ADMM
[21], the following update rules are formulated:

ξ̃k+1 = argmin
ξ̃∈C̃

m∑
i=1

J(ξi) +
ρ

2
∥ξ̃ − z̃k + ũk∥2, (10a)

z̃k+1 = argmin
z̃∈D

ρ

2
∥ξ̃k+1 − z̃ + ũk∥2, (10b)

ũk+1 = ũk + ξ̃k+1 − z̃k+1, (10c)

where ũ is the scaled dual variable, and ρ ∈ R+ is the
step size parameter. Optimization (10a) can be decoupled
and parallelized, as follows:

ξk+1
i = argmin

ξi∈Ci

J(ξi) +
ρ

2
∥ξi − z̃ki + ũk

i ∥22, i ∈ Im1 . (11)

The update of z̃ in (10b) can be solved in closed form:

z̃k+1 = [ ξ̄ ξ̄ . . . ξ̄ ], ξ̄ =
1

m

m∑
i=1

(ξk+1
i + uk

i ). (12)

The convergence of the iterative algorithm can be examined
by monitoring the following two residual terms:

rk = ξ̃k − z̃k, sk = ρ(z̃k+1 − z̃k). (13)

If the norm of both residual terms are small for a given
K ∈ Z+, i.e., ∥rK∥ ≤ ε̄ and ∥sK∥ ≤ ε̄ for a user-defined
ε̄ ∈ R+, then ξK is returned as the solution of the original
problem given by (8).

In practice, selecting the value of m needs to be consid-
ered carefully. While choosing a large value leads to good
scalability, convergence of the algorithm can become slow
as it is also pointed out in [21]. On the other hand, small
values of m result in faster convergence, but the scalability
improvement is less significant. Generally, the minimal value
of m for which the optimization can be solved is a good
choice.

V. EXAMPLES

We evaluate the performance of the proposed algorithm
by estimating the DOA of a number of nonlinear dynamic
systems, all of which have an asymptotically stable equi-
librium point at the origin. First, we examine two- and
three-dimensional systems taken from [4], [5]. Then, we
show how ADMM can be used to construct the Lyapunov
function and estimate the DOA of a five-dimensional sys-
tem. The numerical values of the parameters, computation
times, and number of iterations are collected in Table I.

Fig. 1. Estimated domain of attraction for multiple 2D systems. Green and
red points denote the elements of X0 and X∞, respectively, while the solid
black and dashed blue lines correspond to the 1 level set of the Lyapunov
function and the true DOA of the system. Left: Van der Pol system given
by (14), center: Example 2 given by (15), right: Example 3 given by (16).

To help the interpretation of our results, we also indicate
the true DOA of each system, obtained by simulating the
dynamics on a dense grid. All computations have been
performed on a laptop with Intel Core i7 CPU, Ubuntu
20.04 OS, and 32 GB of RAM. To solve the convex learner
optimization and the nonlinear verifier optimization, we
have used Mosek2 and CasADi [20], respectively. All of
our source code used for the numerical study is available
at https://github.com/AIMotionLab-SZTAKI/
sampling_based_lyapunov.

A. Two-dimensional examples

1) Van der Pol oscillator: As the first example, we have
examined the DOA of a Van der Pol oscillator, governed by
the following dynamics:[

ẋ1

ẋ2

]
=

[
x2

−2x1 − 3x2 + x2
1x2

]
. (14)

The ROI has been chosen to X = [−4, 4] × [−10, 10],
similarly to [4]. Samples have been drawn on a uniform grid
over X using 30 grid points in each dimension, resulting in
N = 900 samples collected to DN .

The results are displayed on the left panel of Fig. 1,
where the level set of the Lyapunov function and the true
DOA are depicted by the solid black and dashed blue
lines, respectively, while the green and red points denote
the elements of X0 and X∞. After only 2 iterations, the
algorithm has returned the following coefficient matrix:

P ∗
1 =


0.1192 0.068 0.0 0.0 −0.0022 −0.0001
0.068 0.0 0.0 0.0 0.004 0.0
0.0 0.0 0.0606 0.0 0.0 0.0004
0.0 0.0 0.0 0.0 −0.0006 0.0

−0.0022 0.004 0.0 −0.0006 0.0 0.0
−0.0001 0.0 0.0004 0.0 0.0 0.0


Fig. 1 shows that the DOA estimate is very accurate, few

stable points are outside of the sublevel set. Moreover, the
numerical results show that our method outperforms [4] both
in terms of the volume of the DOA estimation and the
solution time required to compute the Lyapunov function.

2) Example 2: The second example is Eq. (143) of [4]:[
ẋ1

ẋ2

]
=

[
−x1 + x1x

2
2

x1 − x2 + x2
1x2 − x1x

2
2

]
. (15)

In this case, we have generated 900 initial samples on a
uniform grid over the domain X = [−2.5, 2.5]× [−2.5, 2.5].

2https://mosek.com/
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TABLE I
PARAMETERS AND RESULTS OF THE NUMERICAL EXAMPLES

system n true DOA volume d ε δ N iterations estimated DOA volume computation time
ours [4] [5] ours (sec.) [4] (min.) [5] (sec.)

(14) 2 66.84 2 10−3 0.15 900 2 57.72 50.61 - 0.093 1452 -
(15) 2 8.736 1 10−3 0.1 900 1 8.44 6.96 - 0.015 522 -
(16) 2 17.28 3 10−3 0.1 900 3 16.39 15.38 - 0.273 760 -
(17) 3 888.12 1 10−4 0.1 9261 8 529.49 32.02 314.48 2.830 561 4.758
(18) 5 31754.63 1 10−2 0.5 59049 5 5087.06 - - 986.67 - -

Fig. 2. DOA estimation of the 3D example given by (17). The green
surface depicts the level set of the LF, and the blue mesh shows the DOA.

The algorithm has successfully found a Lyapunov function
and DOA estimate in only 1 iteration, resulting in the
following coefficient matrix:

P ∗
2 =

 0.0 −0.0021 0.0097 0.1424
−0.0021 1.0534 0.3903 0.4305
0.0097 0.3903 0.0973 0.0325
0.1424 0.4305 0.0325 0.0294

 .

The center panel of Fig. 1 shows that the DOA of the
nonlinear system is estimated accurately in this case, as
well. Similar to the first example, the results outperform [4]
both in terms of the volume of the DOA estimation and the
computation time.

3) Example 3: The third example is more challenging
than Examples 1 and 2, because it has an asymmetric domain
of attraction. The dynamic model of the system is described
by Eq. (137) in [4], as follows:[

ẋ1

ẋ2

]
=

[
x2 + p1ζ(x)

−x1 − x2 + p2x
2
1

]
, ζ(x) =

x1

x2
2 + 1

, (16)

where p1 = p2 = 0.5 are used as numerical values of the
parameters. The ROI has been chosen to X = [−2, 7] ×
[−7, 2], and similar to the other 2D examples, 900 initial
samples has been generated on a uniform grid (30 along each
dimension). For an accurate DOA estimation, 2 derivatives of
the dynamics have been included in the Lyapunov function,
resulting in 64 parameters of the coefficient matrix. Although
the solve time of this example is higher than previous ones
due to the increased number of parameters, it is still only
0.273 s, which shows excellent performance of the algorithm.
The numerical value of the coefficient matrix obtained after
3 iterations is as follows:

P
∗
3 =



1.18 0.55 0.0 1.47 0.0 1.03 0.0 −0.03
0.55 0.89 −1.23 2.01 −0.82 0.85 0.56 0.81
0.0 −1.23 0.79 −3.83 2.57 −0.52 −0.24 −0.71
1.47 2.01 −3.83 −0.12 −1.55 −1.37 −0.01 −0.51
0.0 −0.82 2.57 −1.55 4.36 1.66 0.0 0.53
1.03 0.85 −0.52 −1.37 1.66 0.23 0.06 0.06
0.0 0.56 −0.24 −0.01 0.0 0.06 0.0 0.01

−0.03 0.81 −0.71 −0.51 0.53 0.06 0.01 0.02


.

In the right panel of Fig. 1, it is shown that most of the
stable points are contained in the level set of the Lyapunov
function, despite the unique asymmetric shape of the DOA.

B. Three-dimensional example
As the next example, we have chosen a three-dimensional

system that is examined both in [4] and [5]:ẋ1

ẋ2

ẋ3

 =

 x2 + p3x3 + p1ζ(x)
−x1 − x2 + p2x

2
1

p3(−2x1 − 2x3 − x2
1)

 , ζ(x) =
x1

x2
2 + 1

, (17)

where the numerical values of the parameters have been set to
p1 = p2 = p3 = 0.5. To estimate the DOA, 21 initial samples
have been generated along each dimension of the ROI X =
[−4, 4] × [−5, 5] × [−8.5, 7], resulting in 9261 points. The
coefficient matrix of the resulting Lyapunov function is

P ∗
4 =


0.063 −0.015 0.0 −0.056 0.003 0.007
−0.015 −0.092 −0.051 0.085 0.01 0.0
0.0 −0.051 0.0 0.0 0.0 0.0

−0.056 0.085 0.0 −0.12 −0.057 −0.051
0.003 0.01 0.0 −0.057 −0.005 −0.008
0.007 0.0 0.0 −0.051 −0.008 0.003

 .

The computation time is larger compared to the 2D
examples, due to the higher number of iterations required
to find the Lyapunov function, and the increased dimension
of the LP. The 1 level set is a 3 dimensional surface, which is
displayed in Fig. 2. Compared to [4], the volume of our DOA
estimate is more than 10 times larger, while the computation
time is lower by multiple orders of magnitude. The DOA
estimation of [5] is significantly better than the one found in
[4], but it is also outperformed by our results both in terms
of computation time and volume of the estimated DOA.

C. Five-dimensional example with ADMM
We analyze the scalability of the algorithm with ADMM

extension on a 5 dimensional system, which has been synthe-
sized by coupling the dynamics of (14) and (17), as follows:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

 =


x2

−2x1 − 3x2 + x2
1x2 − x4

x4 + p3x5 + p1ζ(x)
−x3 − x4 + p2x

2
3

p3(−2x3 − 2x5 − x2
3)

 , ζ(x) =
x3

x2
4 + 1

,

(18)
where p1 = p2 = p3 = 0.5 have been used, similarly to
the three-dimensional example of Sec. V-B. The two parts
of the dynamics are coupled by the −x4 term of the second
equation. Consequently, (18) can be written in the form of

ẋ1 = f1(x1, x2), x1 = [x1 x2]
⊤, (19a)

ẋ2 = f2(x2), x2 = [x3 x4 x5]
⊤. (19b)
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Fig. 3. DOA estimation of the 5D example given by (18). Each plot shows
a slice of the level set V(x) = 1 and the DOA, depicted by solid black and
dashed blue lines, respectively.

Given that the origin of both (14) and (17) are asymptotically
stable, i.e., f1(0, x2) = 0 and f2(0) = 0, the origin of the
resulting coupled system given by (18) is also asymptotically
stable. For the proof of stability of the coupled system with
stable subsystems, see e.g. [22].

We have determined X by combining the ROI of systems
(14) and (17), resulting in X = [−4, 4]×[−10, 10]×[−4, 4]×
[−5, 5]×[−8.5, 7]. Then, we have generated a uniform grid of
9 sample points along each dimension, i.e., 59049 samples
altogether to simulate the system dynamics and construct
X0,X∞. The learner optimization has been infeasible due to
the high number of constraints. To make the optimization
tractable, we have employed the ADMM algorithm detailed
in Section IV. Using ADMM, we have split the constraints
to m = 2 parts and run the two optimizations in parallel.
This way, the problem has been solved successfully.

To construct the Lyapunov function, 5 iterations have been
performed between the learner and the verifier, moreover,
ADMM required 18 iterations in average to solve the learner
optimization, resulting in 16 minutes of solve time altogether.
The DOA estimation is illustrated in Fig. 3, where slices of
the level set are depicted together with slices of the DOA.
The left panel depicts the slice at x3 = x4 = x5 = 0,
showing that the DOA estimation is very accurate. The center
and right panels show that the corresponding slice of the true
DOA is not contained in the ROI, therefore the curves are not
closed. However, the level set of the LF covers a significant
part of the DOA in these planes, as well.

It is important to note that the increased computation time
of this example is mainly due to the high number of ADMM
iterations. However, on the one hand, most existing DOA
estimation methods are limited to 3 or 4 dimensional systems
(see e.g. [4], [7], [8], [10]), therefore the successful solution
already shows improvement compared to these algorithms.
On the other hand, the implementation of ADMM could be
optimized further to improve the convergence and reduce the
overall computation time.

VI. CONCLUSION

In this paper, we have presented a novel sampling-based
algorithm to estimate the domain of attraction of nonlin-
ear systems. By applying ℓ1 optimization to maximize the
volume of the invariant set of the constructed Lyapunov
function, our algorithm have generated accurate DOA es-
timates quickly and efficiently compared to state-of-the-art
techniques. Furthermore, the ADMM extension has improved

the scalability of the algorithm, resulting in successful DOA
estimation of a five dimensional nonlinear system.

In future research, the scalability of the algorithm could be
further improved by large-scale convex optimization meth-
ods. This way, our approach could be extended to handle
even more complex and high-dimensional nonlinear systems.
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[17] L. Grüne and M. Sperl, “Examples for separable control Lyapunov
functions and their neural network approximation,” in Proc. of the
12th IFAC Symposium on Nonlinear Control Systems, 2023, pp. 19–
24.

[18] A. Isidori, Nonlinear Control Systems II. Springer London, 1999.
[19] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge,

UK: Cambridge University Press, 2004.
[20] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,

“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[21] S. Boyd, “Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” Foundations and Trends
in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.

[22] A. Isidori, Nonlinear Control Systems. Springer London, 1995.

185


