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Abstract— We develop a convex relaxation for the minimum
energy control problem of the well-known unicycle model in
the form of a semidefinite program. Through polynomialization
techniques, the infinite-dimensional optimal control problem
is first reformulated as a non-convex, infinite-dimensional
quadratic program which can be viewed as a trajectory gener-
ation problem. This problem is then discretized to arrive at a
finite-dimensional, albeit, non-convex quadratically constrained
quadratic program. By applying the moment relaxation method
to this quadratic program, we obtain a sequence of semidefinite
relaxations. We construct an approximate solution for the
infinite-dimensional trajectory generation problem by solving
the first- or second-order moment relaxation. A comprehensive
simulation study provided in this paper suggests that the
second-order moment relaxation is lossless.

I. INTRODUCTION

The development of reliable and efficient trajectory plan-
ning techniques is of tremendous importance to meet the high
safety standards imposed on autonomous vehicles. Consid-
erable attention has been devoted to designing optimization-
based trajectory generation methods relying on convex op-
timization due to their successful application to real-world
systems, e.g., to space vehicles [1], [11], [14], [16], [24],
[28]. This approach typically involves solving an infinite-
dimensional optimal control problem which is usually neither
readily amenable to computation nor can a closed-form
solution be specified.

Thus, several approaches in the literature, e.g., [6], [7],
[13], [17], [18], relax and reformulate general infinite-
dimensional optimal control problems, such as the minimum
energy control problem for the unicycle model, in some
manner leading to finite-dimensional convex optimization
problems which can be solved with a dedicated convex
optimization solver.

More specifically, the authors in [17] and [18] rely on
local optimization algorithms or, more precisely, sequential
convex programming methods to produce an approximate
solution to an optimal control problem. Using this approach,
the non-convex components in the optimal control problem
are successively discretized and linearized around a reference
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trajectory to arrive at a sequence of convex approximations
of the original problem. In [7], possible non-convex input
constraints are relaxed and the nonlinear dynamics are han-
dled by a piecewise linear approximation. Combined with
a discretization step, this leads to a mixed integer linear
program to be solved.

In [6] and [13], sum-of-squares and moment relaxation
techniques are invoked, respectively, to approximately solve
optimal control problems. The result in [13] uses the weak
formulation of optimal control problems and assumes that
the cost function is a polynomial and the constraints form
a semi-algebraic set. This weak formulation can be viewed
as a special instance of the generalized moment problem.
Accordingly, a hierarchy of semidefinite relaxations is con-
structed which approximately solves the optimal control
problem. The authors in [6] build upon this result from the
sum-of-squares perspective in a reproducing kernel Hilbert
space, allowing for non-polynomial and smooth data in
the optimal control problem. They obtain a semidefinite
program (SDP) by subsampling the “kernel sum-of-squares
relaxation”, approximating the optimal value of the optimal
control problem.

As a key contribution, we present a novel approach to con-
struct global approximate solutions to the minimum energy
control problem for the unicycle model through semidefi-
nite relaxations. While this paper exclusively addresses this
particular setup, the proposed approach should set the stage
for constructing approximate solutions to general optimal
control problems that can be “polynomialized”, i.e., reformu-
lated as an infinite-dimensional polynomial program through
rational transformations. Nevertheless, the minimum energy
control problem for the unicycle model is of high practical
importance itself, e.g., in aerospace applications. A concrete
practical example is landing a spacecraft using a parafoil as
described in [8]. By extending the unicycle model to include
the altitude component, the resulting model can be viewed
as a kinematic model for a parafoil. Note that this extension
does not alter the considered optimal control problem since
this altitude component can be calculated independently from
the optimization problem.

This paper is structured as follows. In Section II the
considered optimal control problem setup is presented and
cast into an equivalent formulation in the form of a tra-
jectory optimization problem. Section III demonstrates that
loosening a particular constraint in the trajectory generation
problem enables a reformulation as a non-convex quadrati-
cally constrained quadratic program (QCQP). In Section IV
we show how the first and second semidefinite relaxation
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in the moment hierarchy can be exploited to construct an
approximate solution for the trajectory generation problem.
Numerical experiments are provided in Section V. A techni-
cal proof for the reformulation of the optimal control problem
as well as proofs and properties of the solution space of the
relaxed optimal control problem are found in the appendix.

Notation. The absolute value of x ∈ R is denoted as |x|.
The closure of an open interval Ω ⊂ R is denoted by Ω̄.
For an interval I = (a, b) ⊂ R we denote by Ck(I) the
set of k-times continuously differentiable functions on I
and by Ck(Ī) the set of k-times continuously differentiable
functions on I such that the derivatives up to order k can
be continuously extended to Ī . If we let L2(I) be the space
of square integrable functions on I , then the Sobolev space
Hk(I) is the set of functions f ∈ L2(I) whose weak
derivatives up to k-th order are in L2(I). The k-th (weak)
derivative of a function x with respect to t is denoted as
dk

dtk
x(t), provided that it exists. For first and second order

(weak) derivatives, we use the notation ẋ(t) := d
dtx(t) and

ẍ(t) := d2

dt2x(t), respectively. We make use of the standard
embeddings H1(I) ⊂ C(Ī) and H2(I) ⊂ C1(Ī), see, e.g.,
Theorem 5.12 in [3].

II. PROBLEM STATEMENT

The minimum energy control problem for the unicycle
model with fixed initial and final configuration is given by

minimize
u∈L2(Ω)

∫
Ω

|u(t)|2 dt (1)

subject to ẋ(t) = vp cos(θ(t)), t ∈ Ω̄,

ẏ(t) = vp sin(θ(t)), t ∈ Ω̄,

θ̇(t) = u(t), t ∈ Ω,

x(0) = xs ∈ R, y(0) = ys ∈ R,
x(tf ) = xf ∈ R, y(tf ) = yf ∈ R,
θ(0) = θs ∈ R, θ(tf ) = θf ∈ R,

where Ω := (0, tf ), tf ∈ R. Here, x, y ∈ H2(Ω) denote
the vehicle’s position as functions of time, θ ∈ H1(Ω) its
heading angle as function of time and vp ∈ R its constant
horizontal speed. The vehicle’s angular velocity can be
manipulated through the control input u ∈ L2(Ω). Note that,
given u ∈ L2(Ω), the constraints in problem (1) uniquely
define θ ∈ H1(Ω) and x, y ∈ H2(Ω), by integration. The
constraints in (1) are well-defined due to the embeddings
H1(Ω) ⊂ C(Ω̄) and H2(Ω) ⊂ C1(Ω̄). The question of
existence of a solution of (1) is not addressed in this paper.

In order to convexify (1) in the upcoming sections we
rewrite this problem as

minimize
x,y∈H2(Ω)

J(x, y) :=

∫
Ω

|ẍ(t)|2 + |ÿ(t)|2 dt (2)

subject to |ẋ(t)|2 + |ẏ(t)|2 = v2p, t ∈ [0, tf ], (2a)(
x(0)
y(0)

)
=

(
xs
ys

)
,

(
ẋ(tf )
ẏ(tf )

)
= vp

(
cos(θf )
sin(θf )

)
,(

x(tf )
y(tf )

)
=

(
xf
yf

)
,

(
ẋ(0)
ẏ(0)

)
= vp

(
cos(θs)
sin(θs)

)
.

Recall that the assumption x, y ∈ H2(Ω) renders the con-
straint (2a) well-defined. In words, this reformulation means
that a controller expending minimum energy corresponds to
a trajectory with minimum bending energy, as stated in the
next theorem, with a proof given in Appendix A.

Theorem 1: A solution of problem (1) can be obtained
from a solution of problem (2) and vice versa.

In the sequel, we will relax problem (2) in order to arrive
at a numerically tractable finite-dimensional formulation.

III. RELAXATION TO A FINITE-DIMENSIONAL
PROBLEM

In a next step, we impose the constraint (2a) only at
discrete points in time leading to the optimization problem

minimize
x,y∈H2(Ω)

∫
Ω

|ẍ(t)|2 + |ÿ(t)|2 dt (3)

subject to |ẋ(ti)|2 + |ẏ(ti)|2 = v2p, i = 0, . . . , N + 1,(
x(0)
y(0)

)
=

(
xs
ys

)
,

(
ẋ(tf )
ẏ(tf )

)
= vp

(
cos(θf )
sin(θf )

)
,(

x(tf )
y(tf )

)
=

(
xf
yf

)
,

(
ẋ(0)
ẏ(0)

)
= vp

(
cos(θs)
sin(θs)

)
,

where 0 = t0 < t1 < · · · < tN+1 = tf is a partition of
the interval Ω̄ = [0, tf ]. As argued below, this relaxation
of the constraint renders the corresponding solution space
finite-dimensional. In fact, the solution space of (3) can be
confined to a particular function space, which we call the
space of variational generalized splines.

Definition 1: Let a = t0 < t1 < · · · < tn = b be a
partition of the interval [a, b] ⊂ R and let I := (a, b). Then,
the space of variational generalized spline functions is given
by functions which solve the optimization problem

minimize
s∈H2(I)

J(s) :=

∫
I

|s̈(t)|2 dt (4)

subject to ṡ(ti) = βi, i = 0, . . . , n, (4a)
s(a) = α0, s(b) = α1, (4b)

for some α0, α1, βi ∈ R, i = 0, . . . , n. The space of
variational generalized spline functions for a fixed partition
of I in n subintervals is denoted as S ({ti}ni=0).

Remark 1: While Definition 1 may seem almost identical
to definitions of other types of splines (see, e.g., [20], [25]),
specifically cubic splines, our definition differs slightly. To be
more precise, we do not require s ∈ C2(I) in Definition 1,
only that s ∈ H2(I), i.e., the second derivative of s may
be discontinuous when considering the entire interval I . In
addition, while we require the function’s first derivative to be
interpolating for some given data points, we do not require
this for the function itself.

In Appendix B we show that the space S ({ti}ni=0) is
finite-dimensional, and in particular, that any s ∈ S ({ti}ni=0)
satisfies

d4

dt4
s(t) = 0, ∀t ∈ Ii, i = 1, . . . , n, (5)

i.e., the function s is a cubic polynomial on the subintervals
Ii := (ti−1, ti), i = 1, . . . , n. Most of the techniques used
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to prove the results in Appendix B are reminiscent of proofs
from spline theory. However, as mentioned in Remark 1,
we did not find a type of spline in the literature which
matches Definition 1 precisely. For this reason, we included
Appendix B. The next theorem is a direct consequence of
the results established thus far. Hence, its proof is omitted.

Theorem 2: Let Ωi := (ti−1, ti) for i = 1, . . . , N + 1.
Further, let the pair (x, y) with x, y ∈ H2(Ω) be a solution
of (3). Then, x, y ∈ S({ti}N+1

i=0 ).
By invoking Theorem 2, we derive a genuine finite-

dimensional formulation of (3) as given in the next theorem.
Theorem 3: Define the set
T := {z ∈ R2N | hi(z) := z2i + z2i+N − v2p = 0,

i = 1, . . . , N}.

Then, there exists a matrix Q ∈ R2N+1×2N+1 with Q ≽ 0
such that a solution to problem (3) can be obtained by solving
the finite-dimensional QCQP

f∗ := inf
z∈T

f(z), (6)

where f(z) :=
(
1 z⊤

)
Q
(
1 z⊤

)⊤
.

Proof: Due to Theorem 2, we can restrict the so-
lution space of (3) to the space of variational generalized
spline functions. Let us now introduce basis functions φj ∈
S
(
{ti}N+1

i=0

)
, j = −1, . . . , N +2 for our variational general-

ized spline space, which can be determined by solving an in-
terpolation problem. Here, a representation in the Lagrange-
basis is adopted, where the functions φj are defined such
that for i = 0, . . . , N + 1 we have

φj(t0) =

{
1 if −1 = j

0 if −1 ̸= j
, φj(tN+1) =

{
1 if N + 2 = j

0 if N + 2 ̸= j
,

φ̇j(ti) =

{
1 if i = j

0 if i ̸= j
for j = −1, . . . , N + 2. (7)

Then, the functions x and y can be parameterized as

x(t) =

N+2∑
j=−1

xjφj(t), y(t) =

N+2∑
j=−1

yjφj(t), (8)

where x1, . . . , xN , y1, . . . , yN ∈ R are unknown coefficients
and represent the new decision variables. The coefficients
x−1, x0, xN+1, xN+2, y−1, y0, yN+1, yN+2 ∈ R are obtained
by using the constructed basis functions (7) and evaluating
the boundary values of x and y in (3), yielding(

x−1

y−1

)
=

(
xs
ys

)
,

(
x0
y0

)
= vp

(
cos(θs)
sin(θs)

)
,(

xN+2

yN+2

)
=

(
xf
yf

)
,

(
xN+1

yN+1

)
= vp

(
cos(θf )
sin(θf )

)
.

Next, we represent our discretized constraint in prob-
lem (3) in the basis (7), resulting in

|ẋ(ti)|2 + |ẏ(ti)|2 =

∣∣∣∣∣∣
N+2∑
j=−1

xjφ̇j(ti)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N+2∑
j=−1

yjφ̇j(ti)

∣∣∣∣∣∣
2

= x2i + y2i = v2p, i = 1, . . . , N. (9)

In order to transform the cost functional, denote

xb(t) :=

0∑
k=−1

xkφk(t) +

N+2∑
k=N+1

xkφk(t),

yb(t) :=

0∑
k=−1

ykφk(t) +

N+2∑
k=N+1

ykφk(t).

Then, defining Q ∈ R2N+1×2N+1 as

Q :=

 r b⊤1 b⊤2
b1 H 0N×N

b2 0N×N H

 (10)

with H = HT ∈ RN×N , b1 ∈ RN , b2 ∈ RN , r ∈ R, where

Hi,j :=

∫
Ω

φ̈i(t)φ̈j(t) dt, r :=

∫
Ω

|ẍb(t)|2 + |ÿb(t)|2 dt

as well as

b1 :=


∫
Ω
ẍb(t)φ̈1(t) dt

...∫
Ω
ẍb(t)φ̈N (t) dt

 , b2 :=


∫
Ω
ÿb(t)φ̈1(t) dt

...∫
Ω
ÿb(t)φ̈N (t) dt


yields Q ≽ 0 and

J(x, y) =

∫
Ω

∣∣∣∣∣∣
N+2∑
j=−1

xjφ̈j(t)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N+2∑
j=−1

yjφ̈j(t)

∣∣∣∣∣∣
2

dt

=
(
1 x⊤ y⊤

)
Q
(
1 x⊤ y⊤

)⊤
. (11)

Let z :=
(
x⊤ y⊤

)⊤ ∈ R2N . Then, (11) corresponds to the
cost function f and (9) to the constraint set T of (6). Since
the constraint set T is diffeomorphic to a torus, a compact set
in R2N , and since the function f is continuous, problem (6)
admits a minimizer. Hence, problem (6) can be solved to
obtain a solution z =

(
x1 . . . xN y1 . . . yN

)⊤
. By

inserting the coefficients x1, . . . , xN , y1, . . . , yN into (8) a
solution for (3) can be recovered.

Even though we were able to render problem (2) finite-
dimensional by loosening the constraint (2a), the resulting
problem (6) remains non-convex due to the non-convexity
of the constraint set T . Subsequently, we concentrate on
solving (6) and discuss how to generate a (inexact) solution
for (6) using convex relaxations based on the theory of
moments. This allows us to retrieve an approximate solution
for the original problem (2) through the parameterization (8).

IV. SEMIDEFINITE RELAXATIONS OF THE QCQP

As we are interested in global solutions of (6), as opposed
to local solutions, we turn to the technique of constructing
hierarchies of semidefinite relaxations based on the theory
of moments and the dual theory of sum-of-squares. These
types of semidefinite relaxations mainly originate from the
works of Lasserre [12], Nesterov [21], Parrilo [22], [23] and
Shor [27]. In our setup we require the availability of (inexact)
solutions for (6) in order to generate suboptimal trajectories
for (2). Below, we consider two procedures to construct
(inexact) solutions for (6). Both of these methods involve
solving an SDP from the moment perspective. Thus, we
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follow Lasserre [12] and consider the sequence of moment
relaxations of (6) given by

fmom
d := inf

y
Ly(f) (12)

subject to Md(y) ≽ 0,

y0 = 1,

Md−1(hiy) = 0, i = 1, . . . , N,

with relaxation order d > 0, where Ly denotes the Riesz
linear functional, Md(y) the moment matrix and Md−1(hiy)
the localizing matrix. Each successive value fmom

d improves
upon the optimum value f∗ and can be obtained by solving
an SDP. Since the considered constraint set T satisfies the
so-called Archimedean property, we can establish asymptotic
convergence, i.e., lim

d→∞
fd = f∗ due to Theorem 2.9 in [12].

However, note that the computational burden grows signifi-
cantly as the relaxation order d is increased.

In the sequel, we consider the first and second relaxation in
the hierarchy (12). Using the first-order moment relaxation,
we can always retrieve inexact solutions to (6) through a
randomized projection algorithm inspired by the approxima-
tion scheme for the maximum cut (MAXCUT) problem [9].
On the other hand, in all cases considered numerically, see
Section V-C, we obtain an optimality certificate through the
second-order moment relaxation, meaning that this relaxation
is an exact convex formulation of (6). For this reason, higher
relaxation orders are not considered in this work.

A. First-order moment relaxation

The first moment relaxation in hierarchy (12) is also
referred to as standard SDP relaxation and is equivalent to the
dual of the well-known Shor relaxation for QCQPs. For (6)
this relaxation can be written as

inf
Z∈R2N+1×2N+1

trace(QZ) (13)

subject to Z ≽ 0,

Z1,1 = 1,

Zi,i + Zi+N,i+N = v2p, i = 2, . . . , N + 1.

If a solution Z∗ of (13) has rank one, then this relaxation is
lossless and a solution to (6) can be extracted from the first
column of Z∗.

Whenever rank(Z∗) > 1, the above relaxation is inexact
and we do not directly recover an optimal or even feasible
point for (6). For this purpose, we propose a randomized
approximation algorithm, based on the MAXCUT algo-
rithm [9], to produce an inexact solution for (6). Like the
MAXCUT algorithm, our algorithm exploits that any positive
semidefinite matrix is admissible for a sequence of second
order moments of a measure. As a consequence, if the matrix
the matrix Z∗ is partitioned as

Z∗ =

(
1 ẑ⊤

ẑ Ẑ

)
, (14)

then, the matrix Ẑ−ẑẑ⊤ can be interpreted as the covariance
matrix for a multivariate normal distribution. This can be

used to generate a candidate point ζ from this normal
distribution, i.e., ζ ∼ N (ẑ, Ẑ − ẑẑ⊤). By projecting this
candidate onto the set T in some way, a feasible point for (6)
can be produced. In contrast to the MAXCUT algorithm,
our algorithm, given in Algorithm 1, performs a different
projection step. More specifically, we exploit that T is
diffeomorphic to a torus and project onto this set. The reason
for this modification is that for the considered setup, we have
observed through numerical experiments that Algorithm 1
yields feasible points associated with a lower objective value
when compared to the MAXCUT algorithm. However, we
could not establish a performance guarantee for (6) with
either algorithm.
Algorithm 1 Approximation algorithm for (6)

Require: Z∗ as in (14), obtained by solving (13)
for k = 1 : 2000 do ▷ Heuristically determined sample size

Draw a candidate ζ ∼ N (ẑ, Ẑ − ẑẑ⊤)
for i = 1 : N do ▷ Project ζ onto T

zai = vp
ζi√

ζ2
i +ζ2

i+N

, zai+N = vp
ζi+N√
ζ2
i +ζ2

i+N

end for
end for
Choose the vector from ((za)2000k=1 ) which is associated
with the lowest objective value.

B. Second-order moment relaxation

Let us now consider the next relaxation in hierarchy (12),
i.e., the second-order moment relaxation. As supported by
numerical results, see Section V-C, we conjecture the fol-
lowing statement and emphasize that this conjecture does not
rely on the concrete structure of the cost function. In other
words, this conjecture includes problem (6) as a special case.

Conjecture 1: Let p be a quadratic polynomial with real
coefficients in the variable z. Then, the second-order moment
relaxation of

p∗ := inf
z∈T

p(z) (15)

is lossless
Remark 2: One could also attempt to prove Conjecture 1

from the sum-of-squares perspective, in which case it needs
to be shown that for real-valued quadratic polynomials
(ψi(z))

N
i=1 we have that p(z) − p∗ −

∑N
i=1 ψi(z)hi(z) has

a sum-of-squares decomposition whose degree is at most 4.
Another approach which might help to prove Conjecture 1
is to replace the ordinary polynomials in the sum-of-squares
decomposition by trigonometric polynomials, e.g., as in [19].

By implementing the linear algebra routine devised in [10],
we can numerically determine whether the second-order
moment relaxation of (15) is tight and also extract some
global minimizer for (15). This optimality certificate relies
on checking a certain rank condition of the moment matrix.
We present a convincing numerical indicator in Section V-
C to support Conjecture 1, especially concerning the spe-
cific QCQP (6). We note that numerically examining this
conjecture involves considering all natural numbers for the
parameter N as well as gridding the space of quadratic
polynomials and the parameter vp. For the particular case (6),
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this translates into varying the number of samples N and all
model parameters consisting of the velocity vp as well as the
initial and final values xs, ys, θs, xf , yf , θf , tf .

V. NUMERICAL RESULTS
This section presents some numerical results for the trajec-

tory planning problem (2) as well as a numerical indicator for
the validity of Conjecture 1. The involved SDPs were solved
using the parser Yalmip [15] and the solver Mosek [2].

We generate an approximate solution for (2) by con-
structing a (inexact) solution for (3), which translates into
problem (6) by using the parameterization (8). In case the
first-order moment relaxation (13) is lossless, we obtain an
optimal trajectory to (3) for a given N . Otherwise, either
Algorithm 1 is used to generate a suboptimal trajectory
for (3) or, the second-order moment relaxation is solved,
which always yielded an optimal trajectory for (3) in our
simulation studies through the algorithm presented in [10].

To numerically construct an approximate solution for (2)
using our approach, the discretization parameter N as well as
the model parameters vp, xs, ys, θs, xf , yf , θf , tf need to be
fixed. We note that for a given set of model parameters, the
exactness of the moment relaxations (12) seems to be inde-
pendent of N when N > 5. In particular, if tf , xs, ys, xf , yf
are held constant, we have observed that the exactness of
the first-order moment relaxation depends on the parame-
ter values vp, θs, θf . This aspect is further elaborated on
throughout this section. In the following simulation results,
the constraint (2a) is sampled equidistantly. Moreover, we fix
the final time to tf = 1 as well as the initial and final position
to (xs, ys) = (1,−1) and (xf , yf ) = (0, 0), respectively.
The values of the horizontal speed vp, initial angle θs, final
angle θf and the number of samples N are varied depending
on the specific simulation goal. More specifically, we vary
the values of vp, θs, θf to examine the exactness of the first-
and second-order moment relaxation and N to investigate
the empirical convergence behavior as discussed next.
A. On the empirical convergence of solutions to problem (3)

We emphasize that the only difference between (2) and (3)
lies in the discretization of constraint (2a). Hence, by reduc-
ing the mesh size tf

N−1 , i.e., by increasing N , we expect a
better approximation of an optimal trajectory for (3) to an
optimal trajectory for (2). This means that for increasing N ,
the constraint (2a) should be violated less in-between the
sampling instances and the trajectory’s shape should appear
smoother. Indeed, if (13) is lossless, we have observed
that values already between N = 10 and N = 30 yield
satisfactory results. This is exemplified in Fig. 1 which de-
picts trajectories resulting from an exact first-order moment
relaxation for increasing N in (a), using the parameter values
vp = 4, θs = 0, θf = 3π

2 . The corresponding velocity
functions v(t) are shown in (c), illustrating the satisfaction
of constraint (2a). Magnified portions of (a) and (c) are
shown in (b) and (d), respectively. Starting with N =
30, the trajectories resulting from larger N can barely be
distinguished from each other. In addition, the constraint (2a)
is violated only by a negligible discretization error.
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Fig. 1: Optimal trajectories for (3) with their associated velocity v(t) using
the parameter values vp = 4, θs = 0, θf = 3π

2
and ( ): N = 5, ( ):

N = 8, ( ): N = 12, ( ): N = 30, ( ): N = 100, ( ): N = 150,
( ): N = 250.

If the standard SDP relaxation is not tight and Algorithm 1
is employed, this discretization error is larger. Depending
on the particular parameter configuration, the number of
samples N can be increased to reduce this error. Still,
in selected cases a significant error persists which is also
apparent in the corresponding non-smooth appearing trajec-
tory. To mitigate this problem, the second-order moment
relaxation can be solved instead, albeit at the expense of
an increased computational cost. Nevertheless, comparatively
low values of N are sufficient to improve the trajectory’s
quality. Unfortunately, due to this high computational bur-
den, the convergence behavior resulting from the second-
order moment relaxation could not be studied thoroughly.
However, for small N , it could be observed that trajectories
resulting from the second-order moment relaxation display
similar properties compared to trajectories stemming from
an exact first-order moment relaxation. On the other hand,
a slightly larger error in the satisfaction of constraint (2a)
in-between the sampling instances could be noticed. Hence,
we expect the convergence rate for these trajectories to be
comparable but slightly slower.

Remark 3: The problem size of (12) for d = 2 can
be reduced by eliminating variables through the constraints
hi(z) = 0, i = 1, . . . , N . For instance, Yalmip translates
the second-order moment relaxation for N = 10 into a
problem with 10 625 constraints, 2310 scalar variables and
one 231×231 matrix variable, if the equality constraints are
not exploited. In contrast, by eliminating decision variables
through the given constraints, the resulting problem reduces
to 8360 constraints and one 231 × 231 matrix variable.
While certain decision variables in the moment matrix can
be eliminated in this way, we could not reduce the size of the
moment matrix without sacrificing exactness of the second-
order moment relaxation for some parameter configurations.

B. Trajectory generation for problem (2)
For the simulation result depicted in Fig. 2, we set vp = 4,

θs = 0 and N = 12, while θf is varied. We note that
a symmetric behavior is observed if θf is held constant
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while θs is varied, i.e., it does not matter whether θf is
held fixed while varying θs or vice versa. This is coherent
with our problem setup since any trajectory generated for (1)
is undirected. Further, we note that the value of the param-
eter vp can have an impact on the exactness of the first-
order moment relaxation. More precisely, for certain fixed
parameters θs, θf , N , it is possible to induce an inexact first-
order moment relaxation to become exact by increasing vp.

Each (a) and (b) in Fig. 2 display a trajectory produced by
Algorithm 1, and an optimal trajectory for (3) with θf = 0
and θf = π

4 , respectively. This optimal trajectory is obtained
through the second-order moment relaxation combined with
the algorithm from [10]. The associated velocity functions
are depicted in (c) and (d). In the configuration θf = θs = 0
there exists an additional optimal trajectory which is not
plotted in (a) for the purpose of clarity. As can be inferred
from this figure, the shape of the suboptimal trajectory
with θf = θs deviates more from the optimal trajectory
compared to the case where θf ̸= θs. Indeed, the cost value
associated with the suboptimal trajectory drifts further apart
from the optimal value of (6) as the configuration θf = θs
is approached. We note that throughout our simulations, we
have never identified a case for which the first-order moment
relaxation is exact if the values of θs and θf coincide, even
if vp is increased. In fact, it seems as if the rank of a
solution Z∗ to (13) becomes more “unstable” as θs and θf
approach each other, i.e., as rank(Z∗) = 1 transitions to
rank(Z∗) = 3.
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(a) Trajectories using θf = 0.
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(c) Constraint satisfaction (2a) of (a).
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(d) Constraint satisfaction (2a) of (b).

Fig. 2: Trajectories generated for (3) with their associated velocity v(t)
using the parameter values N = 12, vp = 4 and θs = 0. ( ), ( )
correspond to optimal trajectories for (3) and ( ), ( ) to suboptimal
trajectories produced by Algorithm 1.

C. Exactness of the second-order moment relaxation

This subsection presents the results of two simulation
studies dedicated to showing that the second-order moment
relaxation of (6) or (15) is sufficient to exactly solve these
two problems. To render the simulation time tolerable, while
retaining an adequate dimension of the sample space R2N ,
the number of samples of constraint (2a) is set to N = 5
for the larger study and to N = 7 for the smaller study.
While larger values of N were not considered, we expect

that the exactness of the second-order moment relaxation
of (6) and (15) is maintained.

The larger simulation study focuses on our specific prob-
lem setup (6). For this simulation we proceeded as follows.

We equidistantly sample the parameter space (θs, θf , vp) ∈
R3, where θs, θf ∈ [0, 2π] and vp ∈ [3, 6]. We iterate
through each parameter configuration and check whether a
solution Z∗ of (13) is of rank one. If rank(Z∗) > 1, the
second-order moment relaxation, i.e., (12) for d = 2 is
solved. In total, this procedure was conducted 106 times.
In about 74.91% of the time, (13) was lossless whereas in
24.85%+0.24% of the time we established that rank(Z∗) =
3 such that the second-order moment relaxation, was solved.
More specifically, the 24.85% signify that the second-order
moment relaxation yielded a global minimizer for (6) while
in the remaining 0.24% numerical problems occurred in
solving this SDP. We note that for increasing values of vp,
numerical issues in solving (12) for d = 2 emerged more
frequently. This could not be observed for d = 1.

In an effort to prove the exactness of (12) with d = 2
for (6), we noticed that the particular structure of the cost
function, as determined by Q in (10), may not be relevant for
this phenomenon. This is supported by the smaller simulation
study which we discuss in the following. First, we express
each quadratic polynomial p from Conjecture 1 as p(z) =(
1 z⊤

)
A
(
1 z⊤

)⊤
and randomly draw the entries of the

coefficient matrix A = A⊤ from the uniform distribution in
the interval [−T, T ], with different values for T ∈ R. Then,
for varying vp and T , the second-order moment relaxation is
solved in case the first-order moment relaxation did not yield
an optimal point for (15). This procedure was performed 105

times in total with different parameter choices of T and vp,
which are specified in Table I. In this study, we decided
to conduct more trials for lower values vp since we have
observed that higher values of vp typically tighten the first-
order moment relaxation for some fixed A. Therefore, if
lower values of vp induce an exact second-order moment
relaxation, we also expect this relaxation to be exact for
higher values of vp. Otherwise, the chosen parameter values
and number of trails have not been chosen according to any
system. For a more convincing result in this setup, covering
a wider range of parameter configurations, more trials would
need to be performed. In almost all cases, specified in Table I,
we obtained an optimality certificate by recovering a global
minimizer for (15). Only negligible selected cases could be
identified for which a minimizer with the algorithm from [10]
could not be constructed. In these cases, however, the first-
and second-order moment relaxation had the same optimal
value, indicating that the global optimum of (15) is attained.

vp
T

1 10 100 5000 70 000 500 000
√
7 10 000 16 000 11 000 3000 1500 6200
4 3000 21 000 7000 2000 5000 4000√
70 800 400 1600 1400 300 500
10 500 2000 500 1300 700 300

TABLE I: Number of times the first- or second-order moment relaxation
of (15) is solved, partitioned according to different parameter combinations.

1964



VI. CONCLUSIONS

We have proposed a novel approach for convexifying the
minimum energy problem for the unicycle model through
semidefinite moment relaxations. As has been supported
by numerical results, the constructed approximate solutions
are highly satisfactory. Beyond that, we conjecture that the
second-order moment relaxation of minimizing a quadratic
polynomial over an n-dimensional torus represents a tight
and tractable convex formulation.

Possible future work includes incorporating constraints in
the problem setup, e.g., hard input constraints. Furthermore,
this approach could be applied to other optimal control
problems, e.g., the Brockett integrator. In this context it
should be considered that with the proposed approach, an
infinite-dimensional optimization problem with more deci-
sion variables directly leads to a finite-dimensional optimiza-
tion problem with more decision variables and thus, we are
faced with a higher computational burden. In this case, it
may be possible to exploit symmetries or further sparsities
in the corresponding semidefinite relaxation, see, e.g., [26]
or [29].
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APPENDIX

A. Proof of Theorem 1
To infer that a solution to (2) can be obtained from a

solution of (1), we show that a solution of (2) satisfies the
constraints in problem (2) and that the cost functionals are
equal up to a constant. By inserting a solution of (1) into
the constraints of problem (2), we readily conclude that the
constraints are satisfied. Due to the relation

ẍ(t)2 + ÿ(t)2 =

(
d

dt
cos(θ(t))vp

)2

+

(
d

dt
sin(θ(t))vp

)2

= v2p θ̇(t)
2 = v2pu(t)

2, t ∈ Ω, (16)

we establish that the cost functional in (2) is equivalent to
the one in (1), where vp can be omitted since it is a constant.

It remains to show that, given a solution x, y ∈ H2(Ω) ⊂
C1(Ω̄) of (2), there exists some θ ∈ H1(Ω) satisfying the
constraints in problem (1). In the following, we assume
w.l.o.g. that the constraint (2a) is scaled such that ẋ(t)2 +
ẏ(t)2 = 1 for t ∈ Ω̄. Let u, v : R → R be given by
u(t) = ẋ(t), v(t) = ẏ(t) for t ∈ Ω̄ = [0, tf ] and

u(t) = ẋ(0) for t < 0, u(t) = ẋ(tf ) for t > tf ,

v(t) = ẏ(0) for t < 0, v(t) = ẏ(tf ) for t > tf .

1965



Then, the mapping R → R2 given by t 7→ (u(t), v(t)) into
the unit circle is continuous. By Theorem 26.2 from [5], there
exists some θ ∈ C(R) with u(t) = cos(θ(t)) and v(t) =
sin(θ(t)) for t ∈ R. It remains to show that θ ∈ H1(Ω).

First note that for some a < 0 and b > tf with [0, tf ] ⊂
(a, b) we have that u, v ∈ C([a, b]), u|(a,0), v|(a,0) ∈
H1(a, 0), u|(0,tf ), v|(0,tf ) ∈ H1(0, tf ), u|(tf ,b), v|(tf ,b) ∈
H1(tf , b). By Theorem 5.14 in [3] we infer u, v ∈ H1(a, b).

Next, we show that for any t0 ∈ [0, tf ] there exists some
ϵ > 0 with It0 := (t0 − ϵ, t0 + ϵ) ⊂ (a, b) and θ ∈ H1(It0).
Assume cos(θ(t0)) ̸= 0 and let f ∈ C1(R) be given by θ 7→
sin(θ). Then, the derivative of f does not vanish at θ(t0). By
the inverse function theorem, there exists some δ > 0 such
that f : U → V for U := (t0−δ0, t0+δ0) and V := f(U) is
a diffeomorphism with inverse g : V → U . If θ(t) ∈ U , then
f(θ(t)) = v(t) and thus θ(t) = g(v(t)). Since θ ∈ C(R),
we can pick some ϵ > 0 with θ(It0) ⊂ U such that θ(t) =
g(v(t)) for t ∈ It0 . Due to our assumption, we can ensure
that the derivative of g is bounded. Then, by applying the
chain rule from Proposition 7.1.12 in [4] we conclude that
θ ∈ H1(It0) and θ̇(t) = g′(v(t))v̇(t) for almost all t ∈ It0 .
Whenever cos(θ(t0)) = 0, then sin(θ(t0)) ̸= 0 and we pick
an inverse of the map θ 7→ cos(θ) instead.

For every t ∈ Ω̄, we can hence construct an interval It :=
(t− ϵ, t+ ϵ) with some ϵ > 0 as above. Let It̃1 ∪· · ·∪It̃n be
a sub-covering of the open-covering ∪t∈Ω̄It of Ω̄. Then, we
construct a partition 0 = t0 < t1 < · · · < tm = tf of Ω̄ such
that for any j = 0, . . . ,m−1, there exists some k = 1, . . . , n
with (tj , tj+1) ⊂ It̃k . We then infer θ ∈ H1(tj , tj+1), j =
0, . . . ,m − 1. Again by Theorem 5.14 in [3], we conclude
that θ ∈ H1(Ω) as was to be shown. ■

B. Some properties of the space S ({ti}ni=0)

In the following, let the interval I = (a, b) and its partition
be as in Definition 1 and denote Ii := (ti−1, ti) for i =
1, . . . , n. Further, let α0, α1, βi ∈ R, i = 0, . . . , n in (4) be
fixed. We introduce some additional notation. The space of
infinitely differentiable functions with compact support on
I is denoted as C∞

0 (I). We denote the closure of C∞
0 (I)

by H2,2
0 (I). Lastly, we define |s|2L2(I)

:=
∫
I
|s(t)|2 dt and

|s|2H2(I) :=
∫
I
|s(t)|2 + |ṡ(t)|2 + |s̈(t)|2 dt.

Before we show that any s ∈ S ({ti}ni=0) has to satisfy (5),
we need to establish the following lemma.

Lemma 1: To any feasible s ∈ H2(I) of (4), we can pair
a feasible s1 ∈ H2(I) satisfying (5) such that J(s1) ≤ J(s).

Proof: We begin the proof by choosing s1 such that

s1(ti) = s(ti), i = 1, . . . , n− 1. (17)

Note that

0 ≤
∫
I

|s̈(t)− s̈1(t)|2 dt

=

∫
I

|s̈(t)|2 − 2s̈(t)s̈1(t) + 2|s̈1(t)|2 − |s̈1(t)|2 dt

= J(s)− J(s1)− 2

n∑
i=1

∫
Ii

(s̈(t)− s̈1(t)) s̈1(t) dt. (18)

Now, let Ii be fixed but arbitrary. Integrating by parts twice
combined with (4a), (4b), (5) and (17) yields∫

Ii

(s̈(t)− s̈1(t)) s̈1(t) dt

= lim
ϵ→0

(
[(ṡ(t)− ṡ1(t))s̈1|Ii(t)]

ti−ϵ
ti−1+ϵ

)
−
∫
Ii

(ṡ(t)− ṡ1(t))
d3

dt3
(s1|Ii(t)) dt

=

∫
Ii

(s(t)− s1(t))
d4

dt4
(s1|Ii(t)) dt

− lim
ϵ→0

([
(s(t)− s1(t))

d3

dt3
(s1|Ii(t))

]ti−ϵ

ti−1+ϵ

)
= 0,

where s̈|Ii(t) := d2

dt2 s|Ii(t) and we take the limit ϵ→ 0 since
the second derivative of s and s1 might be discontinuous. As
Ii was chosen arbitrarily, (18) shows J(s1) ≤ J(s).

Equipped with this lemma, we can show that any s ∈
S ({ti}ni=0) is a cubic polynomial on Ii.

Lemma 2: The space S ({ti}ni=0) is finite-dimensional
and linear. Specifically, any s ∈ S ({ti}ni=0) satisfies (5).

Proof: The strong form of the cost functional in
problem (4) is given by (5), which can be derived through the
Euler-Lagrange equations. We argue now that any solution
to (4) needs to satisfy (5). To this end, let Ii be fixed
but arbitrary. Further, let s1 ∈ H2(I) be some solution
for (4). Due to Lemma 1 we can construct another solution
s2 ∈ H2(I) to (4) satisfying (5) such that

s1(ti−1) = s2(ti−1), s1(ti) = s2(ti). (19)

Pick arbitrary but fixed admissible variations ηs1 , ηs2 ∈
H2

0 (Ii). Then, with J i(s) :=
∫
Ii
|s̈(t)|2 dt, we have

d

dϵ
J i(s1 + ϵηs1)

∣∣
ϵ=0

= 0 (20)

and d
dϵJ

i(s2 + ϵηs2)
∣∣
ϵ=0

= 0. Thus,∫
Ii

s̈1(t)η̈s1(t) dt =

∫
Ii

s̈2(t)η̈s2(t) dt = 0. (21)

Now, consider the particular choices ηs1 = s1−s2 ∈ H2
0 (Ii)

and ηs2 = s2 − s1 ∈ H2
0 (Ii). Then, (21) implies∫

Ii

s̈1(t)η̈s1(t) + s̈2(t)η̈s2(t) dt = |s̈1 − s̈2|2L2(Ii)
= 0.

Since |s̈1|L2(Ii) and |s1|H2(Ii) are equivalent in H2,2
0 (Ii),

this implies |s1 − s2|H2(Ii) = 0. Hence, a weak solution
to (20) is unique in H2(Ii). A classical solution to (20) is
given by a function satisfying (5). Due to the condition (19)
and since a classical solution is also a weak solution, and
therefore unique, every solution of (4) has to satisfy (5).

Consequently, any minimizing function for (4) is a cubic
polynomial on Ii satisfying (4a) and (4b). Since the space
of polynomials of fixed order is a finite-dimensional linear
space, only finitely many unknowns need to be determined
in order to characterize the space S ({ti}ni=0).
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