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Abstract— Model Predictive Path Following is an attractive
solution for motion control of mobile robots and other au-
tonomous systems. It requires solving a non-convex constrained
optimization problem at each sampling period. We focus on
a general approach to approximate Model predictive Path-
Following Control (MPFC) for a mobile robot using a Deep
neural network (DNN) that learns a set of base MPFC rep-
resentations via path primitives. We show that using simple
algebraic operations, any path can be followed with reasonable
accuracy, and we illustrate how to apply this approach for paths
described by linear segments and parabolic blends that can be
generated by a robotic path planning algorithm. Compared
to the computational requirements of MPFC, our proposed
approach requires significantly less memory and the execution
speed is two orders of magnitude faster. This makes our ap-
proach suitable for microcontroller implementation, with only
a small degradation of the path-following accuracy compared
to online MPFC.

I. INTRODUCTION

Model predictive Path-Following Control, i.e., the idea to
consider geometric references in Nonlinear Model Predictive
Control (NMPC) for motion control problems of mechatronic
or robotic systems and also for autonomous vehicles has
received widespread research attention, cf. [1]–[6]. In the
literature, it also goes under the name model predictive con-
touring control [7]. However, as with most NMPC schemes,
MPFC is based on the online solution of an optimal control
problem that involves nonlinear dynamics and thus it usually
results in a non-convex optimization problem.

Due to the considerable computational burden of NMPC,
the conceptual idea of learning the implicit NMPC feedback
law via neural networks is of renewed interest. We refer to
[8] for an early reference and, e.g., to [9]–[14] for recent
investigations. In the recent conference paper [15], we focus
on how to construct an efficient approximation of MPFC,
to be deployed on a microcontroller, using neural networks
for a fixed path. That is, therein we discuss how to learn
one Neural Network (NN) approximation for one given path.
Additionally, we show how to further reduce the memory
requirements of the NN using quantization, and how to
improve the path-following performance by adding a simple
online controller. Indeed, it appears that the problem of how
information about the control reference (setpoints, paths,
etc.) can be included in NN approximations of the MPC
feedback law has not received widespread attention.
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Fig. 1: Differential drive robot and its coordinate systems.

In the present paper, we turn towards the problem of learn-
ing an NN approximation of the MPFC feedback which can
handle a set of path primitives. These path primitives can be
transformed by a translation and rotation in Cartesian space,
such that, due to the symmetry properties of the underlying
robot model, much more general path references can be
followed using the same NN without any re-training. We also
argue that with our approach, embedded implementation of
MPFC becomes a viable option.

The remainder of the paper is structured as follows: In
Section II we recap the problem outline from [15] in compact
form, while in Section III present our main ideas. We show
how a tailored coordinate change allows us to exploit the
symmetry properties of the considered problem. We also
discuss the steps necessary to implement our main idea using
path primitives based on Linear Segments and Parabolic
Blends (LSPB), i.e., piecewise polynomials of first and
second degree. Section IV touches briefly upon the training
problem. Section V presents the results of a numerical case
study and our conclusions are in Section VI.

II. PRELIMINARIES

We recall MPFC for a differential drive robot as presented
in [15], which is itself based on [5], [16].

System Description: Figure 1 shows the state and control
variables of a differential drive robot. The axes XY define
the global frame, whereas the axes X̄Ȳ define the local frame
attached to the vehicle. The robot’s pose is ξ = [qx qy φ]T,
with q = [qx qy]

T the robot’s Cartesian position vector in
frame XY , and φ its orientation. The robot dynamics are
given by the rate of change of the pose in terms of the robot’s
forward speed s, and its angular velocity ω:

ξ̇ = f(ξ, u) =

s cos(φ)s sin(φ)
ω

 , ξ(0) = ξ0. (1)

We have ξ ∈ X ⊆ R3, and u = [s ω]T ∈ PC(U) ⊂ R2,
where PC(U) means that the inputs are piecewise continuous
and take values from the compact set U .
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State-Space Path Following: The goal of the path-
following problem is to make system (1) follow a geometric
reference without a priori specifying the timing when to be
where on the path. The path is given by

P = {ξ ∈ R3 | ∃ θ ∈ R 7→ ξ = p(θ)}. (2)

The variable θ(t) ∈ R is called the path parameter and
p(θ(t)) ∈ R3 is an explicit parameterization of P . The
crucial idea of path following is that the time evolution
t 7→ θ is not explicitly given. Put differently, the control
inputs u ∈ PC(U) and the timing θ : R+

0 → R+
0 can be

chosen such that the system (1) follows the path accurately.
Problem 1 (State-space path following):
1) Convergence to the path: the robot’s state ξ converges

to the path P such that limt→∞ ∥ξ(t)− p(θ)∥ = 0.
2) Constraint satisfaction: the constraints on the states ξ ∈

X and inputs u ∈ U are satisfied at all times.
3) Velocity convergence: θ̇ converges to a predefined

profile vr(t) such that limt→∞ ∥θ̇(t)− vr(t)∥ = 0.
We note that extensions to path following in output spaces
are given in [2]. Subsequently, we restrict our discussion to
path parametrizations of the form

p(θ) = [px(θ) py(θ) pφ(θ)]
T, (3)

with pφ(θ) = arctan
(

p′
y

p′
x

)
, p′x = ∂px

∂θ , p′y =
∂py

∂θ , and
px(θ), py(θ) at least twice continuously differentiable [5].

The conceptual idea of predictive path following is to
consider the path parameter θ as a virtual state, which is
controlled by the virtual input v. For the sake of simplicity,
the dynamics of θ are chosen as

θ̇ = v, θ(0) = θ0, (4)

where v ∈ PC(V), V .
= [0, v̄], and v̄ ∈ R. Model predictive

path following is formulated using the augmented system

ż = f(z, w) =


q̇x
q̇y
φ̇

θ̇

 =


s cos(φ)
s sin(φ)

ω
v

 ,

with the augmented state vector z = [ξT θ]T = [qx qy φ θ]T ∈
Z = X ×R+

0 and the augmented input vector w = [uT v]T =
[s ω v]T ∈ PC(U × V) ⊂ R3.

Moreover, system (1) is differentially flat, and [qx qy]
T is

one of its flat outputs [17]. Therefore there exists an input
ur = [sr ωr]

T which guarantees that the path (3) is exactly
followed by the system.

The vector ur is used as a reference for the input vectors
and can be built by observing that the first two equations
of system (1) satisfy s2 = q̇2x + q̇2y , and thus sr(θ, v) =

v
√
(p′x)

2
+
(
p′y
)2

. Furthermore, from the last equation of
system (1) we have ω = φ̇, which yields

ωr(θ, v) = v
(
(p′x)

2
+
(
p′y
)2)−1 (

p′xp
′′
y − p′yp

′′
x

)
, (5)

with p′′x = ∂2px

∂θ2 , and p′′y =
∂2py

∂θ2 . See [5], [18] for details.

Model Predictive Path Following Control (MPFC):
In this section we consider paths defined piecewise by a
set of coefficient vectors ςi ∈ Rnς , i = 1, . . . , Nς . For
the sake of simplicity, we restrict ourselves to polynomial
parametrizations [1]. To highlight the dependence of the path
parametrization on the coefficients ςi we write p(θ, ςi).

State-space MPFC considers the sampling period δ > 0
and the prediction horizon T = Nδ, N ∈ N [16]. The
extended state at the current sampling time tk = kδ is
zk =

[
ξ(tk) θ(tk)

]
and the extended control input is

w =
[
uT v

]T
. We have

ℓ(z, w; ς) =

∥∥∥∥ξ − p(θ; ς)
θ

∥∥∥∥2
Q

+

∥∥∥∥u− ur(θ, v; ς)
v − vr

∥∥∥∥2
R

, (6)

with Q = QT ⪰ 0 and R = RT ≻ 0, i.e., symmetric
positive (semi)definite diagonal matrices as the stage cost.
Given the extended state zk and the path coefficients ςi as
parametric data, the Optimal Control Problem (OCP) to be
solved repeatedly at each sampling instant tk reads

w∗ ∈ arg min
w∈PC(W)

∫ T

0

ℓ(z(τ), w(τ); ς)dτ

subject to ż(τ) = f(z(τ), w(τ)), z(0) = zk,

z(τ) ∈ Z, w(τ) ∈ W, ς = ςi.

(7)

Although this OCP is formulated in continuous time, our
MPFC implementation relies on a direct numerical so-
lution method (e.g., CasADi combined with ipopt [19])
and thus an optimal discrete-time input sequence w∗ =
{w∗

0 , . . . , w
∗
N−1} ∈ WN is computed at each time step.

Typically, in MPC we only apply the first element w = w∗
0

of the sequence w∗ to control the system. Conceptually, the
MPFC feedback controller based on (7) can be expressed as
the map M : R4 × Rnς → W

w =
[
uT v

]T
= M(zk, ςi). (8)

Note that w entails the robot command u and the virtual
input v which controls the evolution of the path parameter
θ, cf. (4). Hence only u is applied to the robot. Also, note
that the path coefficient vector ς is constant inside the OCP.
This simplifies the training of the neural network. See [1]
for an MPFC example where the path coefficients vary.

Deep Neural Networks: Eventually, we want to approx-
imate the MPFC map (8) and hence we aim to avoid
repeatedly solving the OCP online. Neural networks are
excellent candidates for the underlying regression tasks due
to the universal approximation theorem [20]. In the case of
MPC, their online evaluation (i.e. after training) is compu-
tationally quite efficient, see, e.g., [9], [15]. We define the
mapping wD = D(z, ς; Θ), where [zT ςT]T is the input to the
network, Θ is a set of NΘ unknown parameters, which are
determined during training. The training as such is based on
data obtained from solving the OCP (7) for different initial
conditions and different path data. Once the neural network
D(z, ς; Θ) is trained, we use it to infer the current inputs

wD = D(z, ς; Θ) ≈ M(z, ς)

instead of solving (7) at each sampling period.
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Fig. 2: Frames related through translation by c and rotation
by ϕ: point r̄ in XY : [rx ry]

T, whereas in X̂Ŷ : [r̂x r̂y]
T.

III. GENERALIZED DNN-BASED MPFC APPROXIMATION

This section presents our main contribution. Recall that in
(8) we have introduced M which maps the initial condition
z and the path coefficients ς to control actions. With slight
abuse of notation, let us consider the path parametrization
p(θ) from (2) as the second input argument of M from (8).

A. Main Idea

Consider two MPFC problems defined for different paths
P , parametrized by p(θ), and P̂ , given by p̂(θ). We denote
the corresponding maps M(z, p(θ)) and M(ẑ, p̂(θ)). Let the
the parametrizations p(θ) and p̂(θ) satisfy

p̂ = Tp(p, c, ϕ) =

[
R−1

ϕ (pxy − c)

pφ − ϕ

]
, (9a)

with pxy = [px py]
T. Put differently, P̂ is given in the X̂Ŷ

coordinate frame, while P is given in the XY coordinate
frame, cf. Fig. 2. Moreover, due to the kinematic nature of
(1), the corresponding state vectors z and ẑ satisfy

ẑ = Tz(z, c, ϕ) =

R−1
ϕ (q − c)

φ− ϕ
θ

 . (9b)

Note that r̂ = R−1
ϕ (r − c), relates r = [rx ry]

T, i.e., the
Cartesian coordinates of point r̄ with respect to the global
frame XY , to r̂ = [r̂x r̂y]

T, i.e, the coordinates of the same
point r̄ in frame X̂Ŷ . The constant vector c = [cx cy]

T

defines the origin of the frame X̂Ŷ with respect to XY , and
the angle ϕ is the rotation of X̂Ŷ with respect to XY , cf.
Fig. 2. Moreover, the rotation matrix Rϕ ∈ R2×2 is given by

Rϕ = R(ϕ) =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
. (9c)

Proposition 1 (Rotation and translation invariance):
Consider two paths P and P̂ , parametrized by p(θ) and
p̂(θ), respectively. Suppose that the corresponding MPFC
problems are feasible with respect to the constraints of
OCP (7). Let the corresponding MPFC-input maps be given
by M(z, p(θ)) and M(ẑ, p̂(θ)) and suppose that for all θ
the parametrizations p(θ) and p̂(θ) satisfy (9a) for some
values of c and ϕ. Then under the change of coordinates
of the path p(θ) (9a) and of the state z (9b) we have that
M(z, p(θ)) = M(Tz(z, c, ϕ), Tp(p, c, ϕ)) = M(ẑ, p̂(θ)).

Proof: Due to space constraints, we only sketch
the main steps of the proof. For both problems, the co-
ordinate transformation (9) implies that the inputs w =
M(Tz(z, p̄, ϕ)) and ŵ = M(ẑ, p̂(θ)), do not change and
thus the input constraints are invariant under the considered
transformation. Recall that the states of the kinematic robot
model refer to the position and orientation of the robot. Thus,
going from M(ẑ, p̂(θ)) to M(z, p(θ)) the state constraints are
changed from the box set Z = {z ∈ R4 | z ≤ z ≤ z},
to another box-shaped set in rotated coordinates ẑ ∈ Ẑ
due to the transformation (9b). Thus the state constraints
are equivalent, i.e., ẑ ∈ Ẑ ⇐⇒ z ∈ Z . To prove that
u = û, it remains to show that the cost function is also
the same for both problems. Note that if the stage cost
(6) for both problems is the same, then so are the cost
functions. The speed reference vr is a constant not affected
by the transformations. From the rotation and translation,
we have that pφ = p̂φ + ϕ, pxy = Rϕp̂xy + c and we get
px = p̂x cosϕ− p̂y sinϕ+ cx, py = p̂x sinϕ+ p̂y cosϕ+ cy .
It follows that p′x = p̂′x cosϕ − p̂′y sinϕ, p′y = p̂′x sinϕ +

p̂′y cosϕ. Using the identity 1 = cos2 ϕ+sin2 ϕ, it is easy to
show that (p′x)

2 + (p′y)
2 = (p̂′x)

2 + (p̂′y)
2, and thus sr = ŝr.

Similarly, p′′x = p̂′′x cosϕ− p̂′′y sinϕ, p′′y = p̂′′x sinϕ+ p̂′′y cosϕ.
Moreover, we have that p̂′xp̂

′′
y − p̂′yp̂

′′
x = p′xp

′′
y − p′yp

′′
x, and

thus ω̂r = ωr holds. Note that Q = diag(q1, q2, q3, 0), i.e.,
the value of the path parameter θ is not penalized in the
optimization problem. It remains to show that ∥ξ − p∥2

Q̄
=

∥ξ̂ − p̂∥2
Q̄

, with ξ̂ = R̄−1
ϕ (ξ − ξ̄), Q̄ = diag(q1, q2, q3),

R̄ϕ =
[
Rϕ 0

0 1

]
, and ξ̄ = [cx cy ϕ]. Consider e = ξ − p

and ê = ξ̂− p̂ = R̄−1
ϕ (ξ− ξ̄)− p̂, then R̄ϕê = ξ− (ξ̄+ R̄ϕp̂).

Note that ξ̄ + R̄ϕp̂ = p. That is, R̄ϕê = e. Finally, because
a rotation matrix does not change the magnitude of a vector
(i.e., det(R̄ϕ) = 1), then ∥R̄ϕê∥2Q̄ = ∥ê∥2

Q̄
.

Proposition 1 implies that for any path p(θ) and state z,
we can solve w = M(ẑ, p̂(θ)) instead of w = M(z, p(θ)),
for any combination of ϕ and c, at the expense of applying
the coordinate transformation (9) to the system state and the
path. From the optimization point of view, this may not be of
much advantage. However, we can efficiently learn a DNN
approximation of the base MPC problem w = M(ẑ, p̂(θ))
for given paths (see Fig. 3) and then apply the coordinate
transformation (9) only to adapt to different paths without
re-optimization. Specifically, we detail this idea using path
primitives p̂(θ; ς̂), with ς̂ = η ∈ R+

0 , of the form

p̂y = ηp̂2x = η̄θ2, p̂x = g(η)θ, η̄ = η (g(η))
2
, (10)

where g : R+
0 → R+ is a scaling factor dependent on η.

The notion of path primitive is in reference to the concept
of motion primitives [21] as here we learn a controller on
path primitives and adapt to specific paths online.

B. Path Primitives and Path Planning

To be able to follow the path accurately, the following
conditions need to be met so that the tuning of (7) (i.e.,
the selection of matrices Q and R) works for all values
of η (i.e., different curvatures). First, we consider how to
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Fig. 3: Two path primitives used to learn the MPFC input
by the NN: a line (η̆ = 0), and a quadratic ( η̆ = 1).

compute the scaling factor g(η) = ∆p̂x∆θ−1 for a given
η. Let Γ(η) denote the length of a path segment for a
unit change in the X̂ axis, i.e., ∆p̂x = 1. For η ≥ 0,
the length of p̂y = ηp̂2x from 0 to ∆p̂x is given by
Γ(η) =

∫ 1

0

√
1 + (2ηx)2dx. For a line p̂y = 0, we get

that Γ(0) = ∆p̂x = 1. For η > 0, integrating the above
expression we get: Γ(η) = 1

2

(√
1 + (2η)2 + arcsinh(2η)

2η

)
.

The OCP depends on the parameter vr. We aim at having
the robot follow the path at its maximum forward speed
smax whenever the path error remains small. In such cases,
v = vr, ∆θ = vr∆t, and Γ(η) = smax∆t. With vr = 1,
the two previous expressions yield Γ(η) = smax∆θ, and
g(η) = ∆x

∆θ = smax
Γ(η) .

For example, for a line, we have Γ(0) = 1 and thus g(0) =
smax. The path parameterization is then p̂y = 0; p̂x = smaxθ.

In applications, a planning algorithm provides a path
consisting of nς polynomials of the form

px,i(θ) = ax,iθ
2 + bx,iθ + cx,i, (11a)

py,i(θ) = ay,iθ
2 + by,iθ + cy,i. (11b)

For each segment i, we have θi ≤ θ ≤ θi. To avoid differ-
entiability issues at the intersection of paths, two adjacent
polynomials satisfy

px,i(θi) = px,i+1(θi+1), py,i(θi) = py,i+1(θi+1),

p′x,i(θi) = p′x,i+1(θi+1), p′y,i(θi) = p′y,i+1(θi+1),

i.e., two polynomials connect at the same coordinates, and
the tangents are equal.

The key parameters to determine from (11) are ηi, ci, and
ϕi, which are given by

ci = [cx,i cy,i], ϕi = arctan2(by,i, bx,i), (12a)

ς̂i = ηi = ay,ib
−2
x,i cosϕi. (12b)

Remark 1 (Negative curvature): Note that we train our
network using only positive curvatures η̆k ≥ 0. Thus, if a
parabolic segment of the path has ηi ≥ 0, wD does not
need to be transformed and can be used directly in the
control input u applied to the robot. That is, using (9) and
(12), we can compute ẑ = Tz(z, ci, ϕi), and consequently
wD = D(ẑ, ηi; Θ).

However, if ηi < 0, we need to further transform
the network input and the inferred output. If [ẑT, ηi]

T =
[q̂x q̂y φ̂ θ ηi]

T is the input to the network resulting from
the transformation for ηi < 0, the input to the DNN trained

Robot

∫

Path
Planner H T

MPFC-
DNN

+

E P

w
s
ω

v

ξ

θ

e

wP

wD

p(θ; ς)

c
ϕ
ς̂

ẑ
ς̂

z

MPFC-DNN+P

Fig. 4: Block diagram of the proposed controller.

using only η̆k ≥ 0 is [q̂x − q̂y − ϕ̂ θ − ηi]
T. From the

DNN output wD = [s ω v]T, we compute the control input
applied to the robot as u = [s − ω]T.

The proposed control approach is summarized in Fig. 4.
A planner generates a piecewise path p(θ; ς) in the global
frame XY . The rotation ϕ, translation c, and path description
ς̂ in frame X̂Ŷ of the current path primitive are computed
using (12). The transformation T maps z to ẑ via (9). Inside
the dashed block (MPFC-DNN) is the MPFC controller
approximated by a DNN. This block takes the path primitive
information ẑ, ς̂ as input, and outputs the augmented control
input wD. Block E computes the path deviation e used by
the P controllers, cf. [15]. The vector wP is added to wD to
compute the input w. The forward velocity s and the angular
velocity ω are applied to the robot, whereas the path velocity
v is integrated to compute θ.

IV. TRAINING IMPLEMENTATION

To generate a training set T that is not too large, we use
a corridor, as presented in [15]. The idea is as follows: for
different values of η̆k ≥ 0, k = 1, . . . , Nη , and at specific
points θk,i, i = 1, . . . , Nk in path p̂(θ, η̆k), we select differ-
ent poses ξk,i,j , j = 1, . . . , Nc that are inside an orthogonal
cuboid centered at θk,i. Fig. 5 illustrates a corridor for η̆ = 1:
At specific base points on the path p(θk,i, η̆k), several points
qk,i,j (representing the robot’s relative Cartesian position to
the path) are computed inside a box (a cuboid, when the
robot’s orientation φ is also considered) whose axes are
tangential and normal to p(θk,i, η̆k). In Fig. 5, each axis is
divided into three, given 9 different poses inside each box.

−1 −0.5 0.5 1

0.5

1

X̂

Ŷ

p(θ,η̆k)

q(θk,i,j)

p(θk,i,η̆k)

Fig. 5: Simplified 2-dimensional view of a corridor used to
build the training set for η̆k = 1.
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Fig. 6: Reference path using LSPB. It consist of 4 linear and
3 parabolic segments; start left side, end right side.

For our example, we build Nη = 11 paths, with η̆0 =
0, η̆1 = 1, . . . , η̆10 = 10. We split each path into equidistant
segments between −g(η̆k)dk ≤ θ ≤ g(η̆k)dk, i.e., the
number of points Nk depends on the length of the path. The
path parameter limit factors dk, dk are application-dependent.
Here we use dk = dk = 1 for all values of k. Each axis
of a cuboid is split into 10, 10, and 10 equidistant points
(Nc = 1000). The set Zk contains all augmented states
ẑ = [ξT

k,i,j θk,i]
T related to a specific path p̂(θ, η̆k).

To solve the OCP (7), and consequently find w =
M(ẑ, η̆k), ∀ ẑ ∈ Zk, k = 1, . . . , Nη , according to (8),
we use the Optimization Engine (OpEn) [22]. The training
set T consists of NcNkNη vectors [ẑT M(ẑ, η̂k)

T]T for all
z ∈ Zk, k = 1, . . . , Nη . The discretization interval and the
considered horizon length in (7) are δ = 0.01 s and T = 0.6
s, respectively. We observe that for the considered LSPB
setup, networks of around 10.000 parameters perform well.
The training is done using Keras/TensorFlow [23], [24].

V. RESULTS

Our reference path is shown in Fig. 6. It has 7 segments,
described by (11). The path is constructed to highlight some
characteristics of the presented approach. From (12), the
linear segments all have η1 = η3 = η5 = η7 = 0, the values
ηi for the parabolic blends are η2 = −9.5, η4 = 5.5, η6 =
6.2. Note that curvature values of the parabolic blends are
not used to build the training set (i.e., ηi ̸= η̆k; i = 2, 4, 6;
k = 1, . . . , Nη), meaning that the network generalizes well.
Also, note that η2 = −9.5 has a negative curvature, which
requires a sign inversion, cf. Remark 1.

We utilize OpEn, the same solver employed during train-
ing, as our reference implementation, denoted MPFC-OpEn,
to solve (7).

A. Discussion

In Fig. 7 a comparison of the path followed by the
simulated robot in the Cartesian XY plane using different
implementations: : OpEn (visually indistinguishable from
the reference path p(θ; ς)), the approximation using a deep
neural network using base paths p̂(θ; η) (DNN, 32-bit float),
and the same network plus a P controller (DNN+P) In Fig. 8

−3 −2 −1 0 1

−3

−2

−1

0

θ = 0

θ = 23

θ = 50 X [m]

Y
[m

]

OpEn
DNN

DNN+P

Fig. 7: Path followed by a simulated robot using different
MPFC implementations.

0 10 20 30 40 50 60 70

−0.5

0

0.5

1

θ

s [m/s]
ω [rad/s]
v [s−1]

Fig. 8: Control inputs applied to the robot computed by
MPFC-OpEn while following the reference path in Fig. 7.

show the inputs computed by MPFC-OpEn. Recall that the
path speed reference is vr = 1, and notice in Fig. 8 how the
path speed equals v = 1 most of the time, except near tight
curvatures (e.g., θ ≈ 23). Also, s = smax = 0.26 mostly
around the linear segments (e.g., θ ≈ 35), except around
the curves. At other parts of the paths, the MPFC algorithm
reduces the speed s to decrease path deviation.

The absolute Cartesian position error is shown in Fig. 9.
The OpEn implementation is the most accurate, DNN is two
orders of magnitude worse than the OpEn implementation
on average. To improve the performance of the DNN, we
add an online compensation based on two proportional
(P) controllers, as presented in [15]. The input to the P-
controllers are the Cartesian position error of the robot in the
directions normal and tangential to the current path reference
p(θ, ηi). The implementation of a DNN with a P-control
compensation is denoted as DNN+P, and reduces the DNN
worst-case error by an order of magnitude. Finally, Table I
compares the computation time of MPFC based on OpEn
against MPFC based on DNN+P. Note that the proposed
DNN approach is two orders of magnitude faster on a PC.

B. Application on Low-Cost Embedded Hardware?

The inference of a relatively small network like the one
used here (around 10.000 parameters), is executed much
faster than solving OCP (7). Also, the resulting network
of the approach presented here is only twice as large as
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Fig. 9: Cartesian position error with respect to the reference
path for all implementations.

Implementation Mean [s] Std. [s] Worst [s]
OpEn (PC) 1.6E-3 3.6E-4 5.6E-3
DNN+P (PC) 3.7E-5 6.4E-6 1.5E-4

TABLE I: Mean, standard deviation (Std.), worst-case exe-
cution (Worst) time in seconds for 10000 steps close to the
path. The table is split into MPFC implementations on a
personal computer.

the network learned for a single path in [15]. In this
previous work, we deployed a quantized neural network
on a MicroController Unit (MCU) to perform hardware-
in-the-loop simulations of the path-following problem, with
inference time of around 400µs. Thus, as this approach relies
on a similar neural network, and at each sampling period
performs only the additional operations (9) and (12), it is
likely feasible to deploy the DNN proposed here on an MCU
using fast sampling rates (i.e., sampling period δ ≤ 10 ms),
in particular if the network is quantized as in [15].

VI. CONCLUSIONS

This paper presented a novel approach to approximate
a model predictive path-following control problem using
neural networks. Specifically, we have shown that the prob-
lem structure can be exploited to learn one neural network
approximation based on path primitives. The key idea is
to exploit the underlying symmetry properties of the robot.
Under these conditions, a neural network must only learn the
MPFC mapping for a small set of path primitives, to be able
to follow a path derived from e.g., a path planning algorithm.
We illustrated our approach using a piecewise polynomial
path constructed using linear segments and parabolic blends.

Based on simulations on a laptop computer, we show that
this approach requires only a fraction of the memory and runs
on average two orders of magnitude faster than an MPFC
implementation based on online optimization. This opens a
new avenue towards the feasibility of real-time implementa-
tion of path-following control on microcontrollers and other
embedded platforms.
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and C. Jones, “Recurrent neural network based mpc for process
industries,” in 2019 18th European Control Conference (ECC). IEEE,
2019, pp. 1005–1010.

[12] E. T. Maddalena, C. d. S. Moraes, G. Waltrich, and C. N. Jones,
“A neural network architecture to learn explicit mpc controllers from
data,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11 362–11 367, 2020.

[13] G. Bai, Y. Meng, L. Liu, Q. Gu, J. Huang, G. Liang, G. Wang, L. Liu,
X. Chang, and X. Gan, “Path tracking for car-like robots based on
neural networks with nmpc as learning samples,” Electronics, vol. 11,
no. 24, p. 4232, 2022.

[14] P. Saha, L. Guerrero-Bonilla, M. Egerstedt, and S. Mukhopadhyay,
“Learning deep neural network controller for path following of unicy-
cle robots,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp.
248–255, 2022.

[15] P. Zometa and T. Faulwasser, “Quantized deep path-following control
on a microcontroller,” in 2023 European Control Conference (ECC),
2023, pp. 1–6.

[16] T. Faulwasser and R. Findeisen, “Nonlinear model predictive path-
following control,” in Nonlinear model predictive control. Springer,
2009, pp. 335–343.

[17] P. Martin, R. Murray, and P. Rouchon, “Flat systems,” in Proc. of the
4th European Control Conf, 1997, pp. 211–264.

[18] T. Faulwasser, V. Hagenmeyer, and R. Findeisen, “Optimal exact path-
following for constrained differentially flat systems,” in Proc. of 18th
IFAC World Congress, Milano, Italy, 2011, pp. 9875–9880.

[19] J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “Casadi: a
software framework for nonlinear optimization and optimal control,”
Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36,
2019.

[20] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp.
303–314, 1989.

[21] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE transactions
on robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

[22] P. Sopasakis, E. Fresk, and P. Patrinos, “OpEn: Code generation for
embedded nonconvex optimization,” in IFAC World Congress, Berlin,
Germany, 2020.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “TensorFlow: a system
for Large-Scale machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp.
265–283.

[24] F. Chollet et al., “Keras,” https://keras.io, 2015.

3177


