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Abstract— This paper presents a novel framework for pe-
riodic event-triggered control (PETC) coupled with dynamic
quantization for linear systems. Unlike traditional time-driven
control methods, our approach leverages event-based mecha-
nisms to judiciously update control actions, thus minimizing
computational load and network traffic. We introduce a two-
level dynamic quantizer for encoding feedback information
with a single bit, thereby enhancing resource efficiency. The
proposed PETC mechanism decides the transmission instants
based on the quantized output samples. The resulting system
is modeled as a hybrid dynamical system to capture both
continuous and discrete dynamics. Sufficient conditions for
ensuring the stability of the closed-loop system are presented
in the form of a linear matrix inequality. Through numerical
simulations, we demonstrate that our approach captures the
initial output within a finite time and significantly reduces
data transmissions compared to traditional methods. This
paper makes key contributions in the integration of dynamic
quantization with PETC, leading to resource-efficient and
stable control systems.

I. INTRODUCTION

Event-triggered control (ETC) is an adaptive control
approach aimed at optimizing resource utilization while
mitigating the computational and communication load, see
[1]–[3] and the references therein. ETC diverges from
conventional time-driven control by not executing control
actions at fixed time intervals; instead, it triggers actions
based on specific events or system conditions. This approach
ensures that control updates only occur when necessary,
thereby enhancing resource efficiency and potentially re-
ducing network traffic. ETC finds particular relevance in
networked control systems (NCS), primarily due to limited
bandwidth constraints. A major challenge in ETC is the
prevention of Zeno events (infinite transmissions within
finite time) [4]–[6]. A viable solution to this issue involves
verifying the triggering rule at periodic time points, leading
to what is known as periodic event-triggered control (PETC),
as discussed in [7]–[9].
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Additionally, in digital implementations, the design of
quantizers becomes crucial because feedback information
is encoded using a finite number of bits. When the initial
signal magnitude to be quantized is unknown, preventing
quantizer saturation poses a technical challenge. An appeal-
ing approach in such scenarios is the dynamic quantizer in-
troduced by [10]–[12], where the quantizer range and levels
dynamically adjust based on state measurements. Notably,
the simultaneous consideration of dynamic quantization and
event-triggered implementation, though practical, has been
addressed in only a limited number of works within the
literature, such as [13]–[19]. All of these methods are based
on the dynamic quantizer introduced of [10]–[12] and the
information transmission is organized in a packet-based
fashion

Motivated by the above results and their limitations, this
work proposes a novel periodic event-triggering mechanism
based on quantized output information for linear systems.
In particular, we assume that the output measurement is
first quantized and sampled periodically while the PETC
decides which samples of the quantized output need to be
submitted to the controller. The proposed quantizer has been
established in our recent work [20] and is exploited here to
handle both the effect of sampling and quantization rather
as opposed to [20] where only the quantization aspect has
been investigated. The developed quantization approach is
dynamic and capable of capturing the unknown initial output
within a finite time. Furthermore, the quantizer comprises
solely two levels, making it possible to transmit feedback
information using only a single bit, which is an attractive
feature for practical implementation. Then, a novel PETC
is synthesized to produce the sequence of transmission
instants. The proposed PETC is dynamic in the sense that the
triggering threshold involves an internal dynamic variable,
which has been proven as efficient solution to further reduce
the amount of transmissions. In addition, as the triggering
condition is evaluated exclusively at periodic intervals, the
Zeno phenomenon is inherently averted because all inter-
transmission times are constrained to be greater than or
equal to the constant sampling period. Furthermore, the
sampling period is designed as the maximal allowable
transmission interval (MATI) of time-triggered controllers
based on the approach of [21].

The entire system is depicted as a hybrid dynamical
system, accommodating both continuous and discrete dy-
namics, as commonly encountered in NCS. Sufficient con-
ditions are provided to ensure the stability of the closed-
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loop system in the form of a linear matrix inequality (LMI).
Numerical simulations have been conducted to verify the
implementation and advantages of this approach. The simu-
lation outcomes validate the quantizer potential to effectively
capture the initial output within a finite time and while
the developed PETC significantly reduces data transmissions
compared to periodic sampling.

The main contributions of this paper include:
• A novel periodic event-triggering mechanism is pro-

posed to generate the sequence of transmission instants
based only on quantized output measurements.

• A two-level dynamic quantizer is developed to encode
the feedback information using a single bit.

• The combined quantized periodic event-triggered con-
trol ensures an asymptotic stability of the closed-loop
system.

• The overall problem is described as a hybrid dynamical
system to account for the existing continuous-time and
discrete-time dynamics.

II. PRELIMINARIES AND NOTATIONS

We employ the symbols R,R>0, R≥0, N, and N>0, to
represent the sets of real numbers, positive real numbers,
non-negative real numbers, non-negative integers and posi-
tive integers, respectively. For any c ∈ R, |c| represents the
absolute value of c, and for any x ∈ Rn, the Euclidean
norms of x is denoted by |x|.The identity matrix with
dimension n ∈ N>0 is denoted by In.

III. PROBLEM FORMULATION

Consider a linear plant with the following dynamics

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(1)

where x(t) ∈ Rnx denotes the state of the plant, u(t) ∈ Rnu

is the control input, y(t) ∈ Rny is the available output for
measurement, for some nx, nu, ny ∈ N>0, and t ∈ R≥0.
The plant matrices A,B,C are constant with appropriate
dimensions. Assuming that the pair (A,B) is stabilizable
and the pair (A,C) is detectable, the following dynamic
output feedback controller is constructed to stabilize the
plant in continuous-time

ζ̇(t) = AKζ(t) +BKy(t)

u(t) = CKζ(t) +DKy(t),
(2)

where ζ(t) ∈ Rnζ , nζ ∈ N>0, denotes the state of the
controller. The controller matrices AK , BK , CK , DK are
constant with appropriate dimensions.
A. Implementation Scenario

The depicted deployment scenario is presented in Figure
1. In this context, it is assumed that the full state of the plant,
denoted as x, cannot be directly measured. Instead, only an
output y(t) can be conveyed to the controller through a digi-
tal network. In particular, the output y(t) is first quantized to
ȳ(t) and then sampled at periodic sampling times tk, k ∈ N.
Subsequently, an event-triggering mechanism is utilized to

determine the upcoming transmissions moment represented
as t̂k, k ∈ N, which is known as periodic event-triggered
control (PETC), and we refer by ȳ(t̂k) to value of ȳ(tk)
available at the controller at time t̂k, k ∈ N, see Figure 1.
For later use, define T := {tk}, T̂ := {t̂k}, k ∈ N, and note
that T̂ ⊆ T .

Plant Encoder

Sampler

PETC
mechanism

DecoderController

y(t)

ȳ(t)

ȳ(tk)

ȳ(t̂k)
u(t)

Fig. 1: Periodic event-triggered control with quantized output
feedback. (solid line) continuous-time; (dotted line) periodic in-
stants; (dash line) event-triggered instants.

Additionally, it is assumed that the initial value of the
output measurement is not known, which poses challenges
for designing a quantizer while avoiding saturation. While
static quantizers evade this issue by assuming an unlimited
range, this assumption is impractical. Instead, we adopt dy-
namic quantizers that adjust their range dynamically based
on the magnitudes of the input signal to prevent saturation.
We also assume that both y(t) and ȳ(t̂k) are available to the
PETC mechanism.
B. Dynamic quantization

We assume that the output measurement is first subject
to quantization before periodical sampling. Since the output
measurement is assumed to be known, a dynamic quantizer
is needed to capture the initial output using a finite quantiza-
tion level. We adopt the novel dynamic quantizer developed
in [20], which has the following dynamics

s(t) = ȳ(t)− y(t)

ȳ(t) = z (t) eβ(t)

β (t) = λq |z(t)|
∣∣∣∫ t

t0
z(τ)dτ

∣∣∣ λq > 0

(3)

with
ℓż(t) = z(t)− sgn (s(t)) , (4)

z(t) is the state of the low pass filter (LPF) as described in
Equation (4). The parameter ℓ > 0 denotes the time constant
of the LPF.

The first equation in (3) describes the quantization error.
The second and third equations in (3) illustrate the compu-
tation of the quantized value ȳ(t) through an exponential
function. The dynamics in (4) represent a linear first-order
filter, which calculates the average of the switching signal
sgn(s(t)), see [22]. The use of the exponential function in
(3) facilitates the rapid evolution of the quantized output ȳ(t)
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to capture the output y(t) within a finite time. It is important
to note that the quantizer (3)-(4) is solely dependent on
the sign of the quantization error s(t), which enables the
transmission of quantized information using only a single
bit.

We employ a quantization approach similar to that in [12],
where we initialize the control input u = 0 in (1) until the
quantizer captures the output y(t). Subsequently, we operate
the system in closed-loop mode by setting u = CKζ(t) +
DK ȳ(t). Hence, we have

u(t) =

{
0 t ≤ tc

CKζ(t) +DK ȳ(t) t > tc,
(5)

where tc ∈ R≥0 is the capturing time of the state. Note that
only the quantized value ȳ(t) is available at the controller
not the actual value y(t) as we will explain further. To that
end, similar to [12], we assume that plant dynamics (1) is
forward complete [23], which is an essential requirement to
ensure that the plant state does not explode in finite time
during the transient stage.

The following Lemma establishes the main characteristics
of the 2-level quantizer (3)-(4).

Lemma 1: Consider system (1) and the dynamic quan-
tizer (3). Pick the constant α in (3) such that α >
Re(λmax(A)) and set z(t0) = sgn(y0). Then, there exists a
finite capturing time tc ≥ 0 such that

1) |z(t)| = 1 ∀t ≤ tc and |z(t)| < 1 ∀t > tc;
2) |y(t)− ȳ(t)| ≤ ε ∀t ≥ tc and for some ε ≥ 0;
3) the capturing time tc is upper bounded by tc ≤

ln(|x0|)
|Re(λmax(A))−λq| + 5ℓ.

□
The proof of Lemma 1 follows from [24] and it is therefore
omitted. Property (1) means that the magnitude of LPF state
z(t) = 1 during the capturing stage and the magnitude of
z(t) < 1 after the state is captured. Property (2) implies
that the quantization error remains bounded after the state
has been successfully captured by the quantizer, unlike [12]
where zoom-in and zoom-out actions can be persistently
activated. Property (3) is the derived upper bound on the
estimated capturing time, which is finite. Note that the
implementation of the dynamic quantizer (3) only requires
the knowledge of the sign of the initial output measurement,
i.e. sgn(y(t0)) rather than its magnitude, which is not re-
strictive. Moreover, this requirement can be relaxed without
significant modification of the analysis. We chose to keep
with this requirement for convenience, see [24] for more
detail.
Problem statement. The aim of this paper is to design
the periodic sampling interval, the periodic event-triggered
controller, and the dynamic quantizer to ensure the closed-
loop stability while minimizing the volume of transmissions.

IV. HYBRID MODEL

In this section, we extract the dynamic characteristics
of the closed-loop system and represent it as a hybrid
dynamical system. To achieve this, it is important to em-
phasize that, because of the network, the controller can

solely acquire the quantized output measurement at specific
discrete-time instances. Accordingly, when considering the
effect of sampling and quantization, the controller dynamics
(2) becomes

ζ̇(t) = AKζ(t) +BK ȳ(t̂k)

u(t) = CKζ(t) +DK ȳ(t̂k),
(6)

where ȳ(t̂k) is the last submitted value of y to the controller.
We define

ey(t) := ȳ(t̂k)− ȳ(t) ∀t ∈ [t̂k, t̂k+1), k ∈ N, (7)

where ey(t) is the measurement error due to event-triggered
implementation. During the time interval between two
consecutive periodic sampling points [tk, tk+1], the sam-
pled output ȳ(tk) remains constant due to zero-order hold
(ZOH) implementation. At each periodic sampling moment
tk+1, k ∈ N, the value of ȳ(tk) is reset to ȳ(tk+1).
Additionally, between two consecutive transmission events
[t̂k, t̂k+1], the last transmitted value of the output ȳ(t̂k), is
held constant using ZOH.

Let the total error between the most recent transmitted
output value ȳ(t̂k) and the current output measurement y(t)
expressed as follows:

e(t) := ȳ(t̂k)− y(t) ∀t ∈ [t̂k, t̂k+1)

= s(t) + ey(t),
(8)

where s(t) is the quantization error as defined in (3). Then,
it holds that

ė(t) = −ẏ(t) = −Cẋ(t) t ∈ [t̂k, t̂k+1)

e(t̂+k ) = s(t̂+k ) + ey(t̂
+
k )

= s(t̂k).

(9)

Since e(t) is not reset to zero at every transmission instant
t̂k, stability guarantees becomes more challenging and re-
quires careful handling.

Let x̃ = (x, ζ) ∈ Rnx̃ with nx̃ := nx+nζ . Then, in view
of (1), (6), (8), we obtain

˙̃x = A1x̃+ B1e

ė = A2x̃+ B2e,
(10)

where

A1 =

A+BDKC BCK

BKC AK

 , B1 =

BDK

B


A2 =

[
−C(A+BDKC) −CBCK

]
, B2 =

[
−CBDK

]
.

(11)

We establish two supplementary time variables, denoted
as τ, τ̂ :: R≥0 → R≥0, which are defined as follows

τ̇(t) = 1 t ∈ [tk, tk+1)

τ(t+k ) = 0 t ∈ {tk}k∈N
(12)
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and
˙̂τ(t) = 1 t ∈ [t̂k, t̂k+1)

τ̂(t̂+k ) = 0 t ∈ {t̂k}k∈N.
(13)

The time variable τ is employed to measure the duration
between consecutive periodic sampling intervals [tk, tk+1],
and it undergoes a reset to zero at each periodic moment
tk. Similarly, τ̂ is utilized to monitor the time between
successive transmission events [t̂k, t̂k+1], and it is reset to
zero at each transmission event t̂k.

To provide a comprehensive overview of the entire sys-
tem, we present the fundamental structure of the proposed
periodic event-triggering mechanism in the following. A
detailed elaboration of this mechanism will be presented
in the subsequent section. We formulate a Periodic Event-
Triggered Control (PETC) system utilizing a dynamic vari-
able η which follows the dynamics described below, see also
[25]–[27],

η̇(t) =Ψ(y, η) t ∈ [tk, tk+1)

η(t+k ) = g(η, e) tk ∈ T \ T̂
η(t̂+k ) = ĝ(η, e) t̂k ∈ T̂ ,

(14)

where the details of functions Ψ(y, η), g(η, e) and ĝ(η, e)
will be provided later. It is worth noting that these func-
tions are determined solely based on locally accessible
information (y, e, η) at the ETC mechanism. The triggering
moments are determined by the following criterion:

t̂k+1 = min{t > t̂k | t ∈ T ∧ g(e, η) ⩽ 0} (15)

with t̂0 = 0. The ETC condition t ∈ T ∧ g(e, η) ⩽ 0
indicates that we only verify the rule g(e, η) ⩽ 0 at
periodic sampling times to implement the periodic ETC,
which automatically ensures that Zeno sampling can never
occur.

In view of (10)-(14), we derive the subsequent impulsive
model

˙̃x(t) =A1x̃(t) + B1e(t)

ė(t) =A2x̃(t) + B2e(t)

η̇(t) =Ψ(y, η)

τ̇(t) = 1

˙̂τ(t) = 1


t /∈ T

τ(t+k ) = 0

η(t+k ) = g(e, η)

}
tk ∈ T \ T̂

e(t̂+k ) = s(t)

η(t̂+k ) = ĝ(e, η)

τ(t̂+k ) = 0

τ̂(t̂+k ) = 0

 t̂k ∈ T̂

(16)

Let ξ := (x̃, e, η, τ, τ̂) ∈ Rnξ . Next, the hybrid dynamical

system is obtained

ξ̇ = F(ξ) ξ ∈ C
ξ+ ∈ G(ξ) ξ ∈ D,

(17)

where C := C1 ∪ C2 and D := D1 ∪ D2 with

C1 := {ξ ∈ X : |z| = 1}
C2 := {ξ ∈ X : |z| < 1 and τ ≤ T}

(18)

and

D1 :=
{
ξ ∈ Rnξ : τ = T and g(e, η) ⩾ 0

}
D2 :=

{
ξ ∈ Rnξ : τ = T and g(e, η) ⩽ 0

}
,

(19)

where the periodic sampling interval T > 0 will be given
later. The flow map F(ξ) is given by

F(ξ) :=


{
F1(ξ)

}
for ξ ∈ C1{

F2(ξ)
}

for ξ ∈ C2
(20)

with

F1(ξ) :=



A1x̃(t)

A2x̃(t)

Ψ(y, η)

1

1


, F2(ξ) :=



A1x̃(t) + B1e(t)

A2x̃(t) + B2e(t)

Ψ(y, η)

1

1


(21)

and the jump map G(ξ) in (17) is given by

G(ξ) :=


{
G1(ξ)

}
ξ ∈ D1 \ D2{

G2(ξ)
}

ξ ∈ D2

∅ ξ /∈ D1

(22)

with

G1(ξ) :=



x̃(tk)

e(tk)

g(e, η)

0

τ̂(tk)


, G2(ξ) :=



x̃(t̂k)

s(t̂k)

ĝ(e, η)

0

0


(23)

The system operates along the trajectory on F(ξ) as long
as there is no zoom event, and the triggering condition
remains intact; otherwise, the system undergoes a discon-
tinuous transition. The jump map in (23) can be interpreted
as follows. When ξ ∈ D1 \ D2, this implies that a periodic
sampling occurs but not a transmission and hence only η(t)
and τ(t) are updated. When ξ ∈ D2, this implies that both
a periodic sampling and a transmission occur.

V. EVENT-TRIGGERING MECHANISM

The construction of the event-triggering mechanism is
presented in this section. We first state the following result,
which will be used later to prove our main theorem.

Lemma 2: Consider system (17)-(23) and define C̃ :=
[C 0]. Suppose there exist positive scalars εx, εy, σ̃ > 0
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and a symmetric positive definit P such thatAT
1 P + PA1 + εxInx̃

+AT
2 A2 + εyC̃

T C̃ PB1

BT
1 P −σ̃Ine

 ⩽ 0,

(24)
then the storage function V (x̃) = x̃TPx̃ satisfies

⟨∇V (x̃),A1x̃+ B1e⟩ ≤−εx|x̃|2 − |A2x̃|2 − εy|y|2 + σ̃|e|2
(25)

for all e ∈ Rne and x̃ ∈ Rnx̃ . ■
The proof of Lemma 2 has been omitted due to space

limit. Lemma 2 establishes a stability property based on the
L2-gain for ˙̃x = A1x̃ + B1e from |e| to (|A2x̃|, |y|), see
also e.g. [28], [29].

Let W (e) := |e|. Consequently, in light of (17), we have
that ∀x̃ ∈ Rnx̃ and almost all e ∈ Rne

⟨∇W (e),A2x̃+ B2e⟩ ⩽ |A2x̃|+ L|e|, (26)

where L := |B2|. The required functions for the dynamics
of η in (14) are

Ψ(y, η) := εy|y|2 − ϑη

g(e, η) := σ(µ− 1
µ )|e|

2 + η

ĝ(e, η) := max(ϵ, σµ|e|2 + η)

(27)

for some small ϑ, ϵ > 0 arbitrarily chosen, µ ∈ (0, 1), σ =√
σ̃ and σ̃ comes from Lemma 2.
The selection of the sampling period T is such that it

falls within the range of (0, T ), where the upper limit T is
defined as

T (σ, L) :=


1
Lr arctan(r) σ > L

1
L σ = L

1
Lr arctanh(r) σ < L

(28)

with r :=

√∣∣∣( σ
L̃
)2 − 1

∣∣∣. To illustrate how the time T is

derived, let ϕ be the solution to the differential system

dϕ
dτ :=

{
−2L̃ϕ(τ)− σ(ϕ2(τ) + 1) τ ∈ [0, T ]

0 τ > T,
(29)

where L̃ is defines as L̃ := L + ν, where L = |B2| for
any ν > 0, and the constant σ is determined based on
the findings of Lemma 2. Subsequently, the time constant
T represents the duration it takes for ϕ to transition from
ϕ(0) = 1

µ to ϕ(T ) = µ, with µ ∈ (0, 1). The calculation of
this time constant is presented in (28), which can be obtained
by following a methodology similar to that employed in
[28].

Now we have all the ingredients to formulate the main
result of this paper. The proof has been omitted due to space
constraints.

Theorem 1: Consider the hybrid system (17). Let the
sampling period designed as in (28), the triggering rule
constructed based on (27) and the dynamic quantizer is
designed as in (3). Suppose that the required conditions in
Lemma 2 are verified. Then it holds that the set A = {ξ ∈

Rnξ : σ
µ |eq|

2 < ϵ} is globally asymptotically stable for some
ϵ > 0.

VI. ILLUSTRATIVE EXAMPLE

Consider the following LTI control system

ẋ =


1.3 −0.2 6.7 −5.6

−0.6 −4.3 0 0.7

1.1 4.3 −6.7 5.9

0.1 4.3 1.3 −2.1

x+


0 0

5.7 0

1.1 −3.1

1.1 0

u

y =
[
1 0 1 −1

]
x.

(30)
We design the controller gain K to set the eigenvalues
of A − BK at {−1,−2,−3,−4} and we design the
observer gain L to set the eigenvalues of A − LC at
{−5,−8,−11,−20}.

We develop the hybrid model (17) as described in Section
IV. We check the required conditions of Lemma 2 and found
that (24) is feasible and leads to T = 0.0206. Finally, we
pick ϑ = 0.01 and thus all parameters of the ETM (27) are
set. For the dynamic quantizer, we take α = 4 and ℓ = 0.1.
We examine the approach on MATLAB simulation with
ξ(0, 0) = (0.10,−0.1,−0.20, 0.20, 0, 0, 0.35, 0, 0, 0). When
the simulation is executed for a duration of 5 seconds, the
resulting minimum sampling interval τmin and the average
time between samples τavg were found to be τmin = 0.0206
and τavg = 0.1661, respectively. We note that the minimum
time between transmissions τmin = T while the average
time between transmissions τavg tends to be greater than
T . This observation aligns with our analysis and serves
to validate the advantages of this approach over traditional
periodic sampling. The closed-loop response is depicted in
Figures 2-3 shown below.

The plant output y(t) and the quantized output ȳ(t) are
presented in Figure 2 where we see that the quantizer
captures the output in a short time thanks to the zoom-out
actions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
a

g
n

it
u

d
e

Fig. 2: Trajectories of the Plant output and its quantized
value.

Figure 3 shows the periodic time instants and the trans-
mission instants.
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Fig. 3: Periodic and transmissions instants.

VII. CONCLUSION

We have tackled the challenge of stabilizing output feed-
back linear time-invariant systems with unknown initial
conditions and output measurement subject to both sampling
and quantization. To overcome these communication limita-
tions, we have developed a novel quantized periodic event-
triggering approach to ensure closed-loop system stability.
The quantizer captures the initial output within a finite
time using only two quantization levels, allowing for 1-bit
data transmission. Additionally, the periodic event-triggering
mechanism guarantees that time intervals between transmis-
sions consistently exceed a predefined threshold, preventing
Zeno phenomena. Numerical results confirm an over 80%
reduction in transmissions, highlighting the benefit of the
approach.

Future work includes extending this approach to nonlinear
plant models and the investigation of different implementa-
tion scenarios such as distributed control architectures with
asynchronous data transmissions.
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[21] D. Nešić, A.R. Teel, and D. Carnevale. Explicit computation of the
sampling period in emulation of controllers for nonlinear sampled-
data systems. IEEE Transactions on Automatic Control, 54(3):619–
624, 2009.

[22] Vadim I. Utkin. Sliding Modes in Control and Optimization. Springer
Berlin Heildelberg, 1992.

[23] D. Angeli, E.D. Sontag, and Y. Wang. Forward completeness,
unboundedness observability, and their lyapunov characterizations.
Systems & Control Letters, 38(4):209–217, 1999.

[24] D. Almakhles and M. Abdelrahim. Asynchronous dynamic quanti-
zation for nonlinear systems with one-bit data transmission. Systems
& Control Letters, 181:105630, 2023.

[25] A. Girard. Dynamic triggering mechanisms for event-triggered
control. IEEE Transactions on Automatic Control, 60(7):1992–1997,
2015.

[26] V.S. Dolk, D.P. Borgers, and W.P.M.H. Heemels. Output-based
and decentralized dynamic event-triggered control with guaranteed
Lp-gain performance and Zeno-freeness. IEEE Transactions on
Automatic Control, 62(1):34–49, 2017.

[27] R. Postoyan, P. Tabuada, D. Nešić, and A. Anta. A framework for the
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