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Abstract— Motion stages in high-precision equipment, such
as lithography machines, are typically connected to the other
parts of the machine. Hysteretic behaviour of such (dynamic)
links is detrimental to the tracking performance. In this paper, a
quasi-linear frequency-domain approach is presented to analyze
the influence of such hysteretic dynamic links on closed-loop
tracking performance. The results are demonstrated by means
of an industrial relevant numerical example and prove the
need for development of compensation schemes for dynamic
link-induced disturbances. Moreover, it is shown that hysteresis
induced by dynamic links in motion systems primarily affects
performance in the low frequency range.

Index Terms— Dynamic links, motion stages, hysteresis, con-
trol, describing function

I. INTRODUCTION

Due to the ever-increasing complexity and down-sizing
of micro-chips, in combination with an increasing volume
demand from the market, lithography machines continuously
become faster and more accurate. Since these machines
heavily rely on their high-precision motion stages, even these
smallest sources of disturbances acting on the stages are
detrimental for positioning accuracy. One of the disturbances
is caused by physical connections or interfaces between
stages and the rest of the machine (the so-called dynamic
links), needed to supply for example electrical current [1],
[2], [3]. An example of a dynamic link is the cable slab
as illustrated in Fig. 1 for a dual-stroke wafer stage concept.
These dynamic links amongst others exhibit hysteretic behav-
ior due to internal friction, which is detrimental for tracking
performance. As model-based feedforward control is a key
enabler for tracking performance of high-precision motion
stages [4], [5], one should consider extending the structure of
the feedforward compensation in the presence of hysteresis
stemming from dynamic link-induced disturbances [2], [6],
which requires proper models and parameter identification.

Hysteresis is a nonlinear phenomenon that is present in
many different domains such as the magnetic, mechanical,
and the electrical domain [7]. It is important to remark that
the definition of hysteresis has received different interpre-
tations. As stated in [8], ”The very definition of hysteresis
varies from one area to another, from paper to paper.” Hys-
teresis is usually interpreted as i) a time-dependent relation
between input and output that cannot be expressed by a
single-valued function and ii) that results in a looping in
the input-output diagram [9]. However, many linear systems
show looping behavior while these are strictly speaking not
hysteretic [10]. Therefore, most publications limit the defini-
tion of hysteresis to specific properties. The most important
property mentioned in a large part of the literature is that

The authors are with the Department of Mechanical Engineer-
ing, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands, [d.w.t.alferink, r.h.b.fey, n.v.d.wouw,
m.f.heertjes]@tue.nl

Cable-slab x

Cable-slab y

Long-Stroke

Short-Stroke

xy

z

Fig. 1. Example of a dynamic link; cable slab in a wafer scanner.

hysteresis is rate-independent [10], [11], [12], [9], [13]. This
means that the output only depends on the value of the input.
It does not depend on its rate of change. Many different
hysteresis models were developed to capture the effects of
hysteresis (See e.g. [14]). Some well known examples are
the Preisach model [12], Prandtl-Ishlinskii’s model [7], and
the Bouc-Wen model [15].

Modeling and analysis of hysteresis is widely discussed
in literature as for example in piezo-electric actuators [16],
[17], [18]. In this situation, the hysteresis effect is present in
the input channel (externally). However, in case of motion
systems, mechanical hysteresis is present as nonlinear feed-
back (internally) depending on the output of the system [18].
In mechanical hysteresis models, the force is chosen as the
output because the mechanical hysteretic element is inducing
a disturbance force onto the system based on the stage
position. This makes the analysis of (internal) mechanical
hysteresis different compared to external hysteresis and is
much less discussed in literature [19]. In [19], a describing
function approach is discussed and used to analyze open-
loop dynamics, however, the detrimental effects of hysteresis
in a closed-loop setting on the position error dynamics are
not analyzed. In a control context, it is useful to have a
closed-form expression for the describing function of the
hysteresis map that gives an indication for its impact on
performance in a closed-loop control setting. Therefore,
the main contributions of this paper are i) a closed-form
(frequency-domain) expression for the describing function
for an elasto-plastic hysteresis model, and ii) providing novel
and intuitive insights on how hysteresis in dynamic links
affects tracking performance of a motion control application.

The remainder of the paper is organized as follows.
Section II describes the problem statement in more detail.
Section III presents an elasto-plastic hysteresis model and
presents a quasi-linear frequency domain approach to obtain
intuitive insights on closed-loop performance by using this
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quasi-linear description in performance analysis. In Section
IV, the feedforward mismatch due to hysteresis is discussed
compared to the conventional feedforward strategy based on
inverse dynamics without hysteresis. The results obtained
throughout the paper are verified by an industrially relevant
numerical example in Section V. Conclusions and directions
for future work are given in Section VI.

II. PROBLEM STATEMENT

A short-stroke wafer stage as illustrated in Fig. 1 is often
modeled as a two-degree-of-freedom system as illustrated
in Fig. 2. Here, actuation is reflected by the force u(t)
with y1(t) the position of actuation, and y2(t) the measured
position also known as point of control (PoC). The point
masses are denoted by m1 and m2 (M := m1+m2) that are
connected by a viscous damper with damping coefficient b
and spring with stiffness k. The floating mass system is con-
nected to the fixed world by a (nonlinear) hysteresis element
H that represents a simplified dynamic link model for which
it is valid to assume that it is much more compliant compared
to the internal stiffness of the floating mass described by k.
This element H can be described by ϕ : R → R that maps
the position y1(t) to hysteresis disturbance force w(t) which
gives the effective (nett) force u(t) − w(t) acting on mass
m1. The transfer functions from u − w to positions y1 and
y2 are denoted by P1(s) and P2(s), respectively. These are
given by

P1(s) :=
Y1(s)

U(s)−W (s)
= Pr(s) +Pf,1(s),

P2(s) :=
Y2(s)

U(s)−W (s)
= Pr(s)−Pf,2(s),

(1)

where Pr(s) =
1

Ms2 represents the rigid body dynamics and
Pf,1(s) and Pf,2(s) describe the flexible dynamics of P1(s)
and P2(s), respectively. The flexible dynamics are given by

Pf,1(s) =
m2

2

M(m1m2s2 + bMs+ kM)
,

Pf,2(s) =
m1m2

M(m1m2s2 + bMs+ kM)
,

(2)

respectively. P1(s) represents a collocated transfer (sensor-
actuator) and P2(s) represents a non-collocated transfer.

A simplified scheme for motion control systems together
including this hysteresis function ϕ is illustrated in Fig. 3.
Note that the system dynamics from input force u(t) to
PoC y2(t) is nonlinear and this system is denoted as the
combined system P̂. Motion control systems heavily rely
on (acceleration-)feedforward control Cff = P−1

r ≈ Ms2

for tracking performance (r and its derivatives are a priori
known). Feedback control of such systems is primarily done

m1 m2

k

b

y1(t) y2(t)

u(t)

H

Fig. 2. Mass system with flexible dynamics including disturbance w(t)
induced by hysteresis element H .
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Fig. 3. Block diagram of a motion control system affected by hysteresis
operator ϕ with feedback and feedforward control.

using linear controllers C which can be designed in the
frequency-domain using loopshaping techniques. However,
as the motion system combination with the hysteresis map
ϕ yields a nonlinear system, it is no longer straightforward
how to use such frequency-domain techniques. Therefore,
this paper considers the problem of developing a quasi-
linear frequency-domain model approximation for elasto-
plastic (hysteresis) models ϕ. These elasto-plastic models are
developed to model friction in mechanical systems [11], [14],
and thus can be useful for these type of applications. When
solved, this will provide frequency-domain insights into how
the hysteretic behaviour of dynamics links dominantly affects
positioning performance.

III. ELASTO-PLASTIC HYSTERESIS

Elasto-plastic hysteresis models are rate-independent
though input-amplitude dependent. Elasto-plastic behavior
can be modeled by for example differential equation-based
models such as the Jenkins model which is explained in
Section III-A. Furthermore, a quasi-linear frequency-domain
interpretation for this elasto-plastic model is derived in
Section III-B. To conclude, the effect of hysteresis on the
combined system P̂ as illustrated in Fig. 3 is discussed by
means of the describing function in Section III-C.

A. Elasto-plastic (Jenkins) element

The Jenkins element contains a linear spring in series
with a Coulomb friction element, see Fig. 4. The differential
equation describing the dynamics of the Jenkins element is
given by

ẇ(t) =
1

2
kJ ẋ{1− sign(w2 − f2

c )−

sign(ẋw)(1 + sign(w2 − f2
c ))},

(3)

where the state w ∈ R represents the force of the Jenkins
element, and the input ẋ the time-derivative of the actual
displacement [1]. The model parameters are the slip-force
of the Coulomb element fc ∈ R>0, and the spring stiffness
kJ ∈ R>0. In this model, the element is operating as an elas-
tic linear spring as long as the slip-force fc is not exceeded
as shown in Fig. 5. If the force |w| = fc, then the spring
elongation remains constant, in other words, slipping (plastic
behavior) occurs. This model’s slipping behavior matches
the slip of flexible wiring in the cable-slab. There are other
models presented in literature to capture this phenomenon
[14] but considering them falls outside of the scope of this
paper.
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Fig. 4. Jenkins element also known as the elasto-plastic model.

B. Describing function elasto-plastic element

The describing function method [20] can be used to obtain
a quasi-linear frequency-domain interpretation of the elasto-
plastic models described above. With the describing function
method, the contribution of the fundamental harmonic of
the output signal is calculated after excitation with the input
displacement x(t) = A sin(ωt) with A ∈ R>0 the amplitude
and ω ∈ R>0 the angular excitation frequency. The higher-
order harmonics are generally neglected.

For the considered elasto-plastic model, i.e., the Jenkins
model, three modes of operation must be considered. Before
describing each mode, we define the dimensionless coeffi-
cient

ζ :=
fc
kJA

, (4)

for the Jenkins element. This coefficient is geometrically
related to the input(x)-output(w) plot illustrated in Fig. 5.
For the first mode, when ζ ≥ 1, the Jenkins element satisfies
kJx ≤ fc, ∀t, i.e., the Coulomb friction element does not
slip. In this case, the Jenkins element will never slip and
is operating in its linear range, and therefore, the transfer
is simply a gain with the stiffness value kJ . For the second
and third mode, the Jenkins element operates in its nonlinear
range which is illustrated in Fig. 6 for sinusoidal inputs
x(t) = A sin(ωt) as the Jenkins element will slip for some
t. In the second mode, the Jenkins model switches from
sticking to slipping (as illustrated by the blue dots) for
xw ≤ 0, i.e., when ζ ∈ (0, 0.5] (note that for ζ = 0,
the Jenkins element gives zero output when fc = 0, i.e.,
ζ = 0). In the third mode, sticking to slipping (as illustrated
by the blue dots) occurs for xw > 0, i.e., when ζ ∈ (0.5, 1)
(no switching occurs for ζ = 1). The distinction between
these modes is important for the derivation of the describing
function.

From now, we focus on the derivation of the describing
function for the second mode, i.e. for ζ ∈ (0, 0.5]. The
output response of the Jenkins element after excitation by
a sinusoidal displacement x(t) for this mode is illustrated in
Fig. 7. As shown in this figure, this output force w(t) can be
subdivided into five segments i ∈ {1, 2, 3, 4, 5} indicated by
i where for segment i ∈ {1, 3, 5}, the Coulomb element

is slipping and thus |w(t)| = fc. For segment i ∈ {2, 4},

x

w
fc

−fc

1

kJ

Fig. 5. Displacement-force response for sinusoidal input.

x

w

ζ ∈ (0, 0.5]

ζ ∈ (0.5, 1)

Fig. 6. Two function evaluations for the elasto-plastic Jenkins model, for
ζ = 0.5, switching occurs when x = 0 (aligned with the w-axis). The
second and third mode are illustrated in black and red, respectively. Note
that the increase of ζ in this particular illustration is realized by decreasing
kJ and A, and increasing fc.

the Coulomb element is sticking, hence the output force is
calculated by w(t) = kJx(t)+w0 given some offset w0 due
to slipping behavior before sticking, or

Wi(t) =



fc, if i = 1,

kJA(sin(ωt)− 1) + fc, if i = 2,

− fc, if i = 3,

kJA(sin(ωt) + 1)− fc, if i = 4,

fc, if i = 5,

(5)

that gives the hysteretic force w(t) = Wi(t) when t ∈
[τi−1, τi] if ζ ∈ (0, 0.5]. The switching instants are denoted
by τi to go from sticking to slipping or vice-versa and are
given on the time-axis in Fig. 7. The time instants going
from sticking to slipping can be determined by the variable

γ = arcsin (2ζ − 1) , (6)

which can be obtained by solving W2(t) = W3(t).
The distribution of the output force w(t) in (5) is needed

for the calculation of the describing function. This describing
function can be calculated by

Dϕ(b1, a1, A) =
b1 + a1j

A
, (7)

given the Fourier coefficients a1, b1 of w(t) at the first
frequency component. The Fourier coefficients of w(t) at

0 π
2ω

γ+π
ω

3π
2ω

γ+2π
ω

2π
ω

−A

−fc

0

fc

A

1 2 3 4 5

time t [s]

fo
rc

e
w
(t
)

[N
]

Fig. 7. Elasto-plastic hysteresis excited by input displacement x(t)
indicated by [ ] with output force w(t) indicated by [ ]. The
element is sticking in the region for which W2(t) and W4(t) are active
(region where it coincides with [ ]) illustrated by the lines [ ] and
[ ], respectively. The element is slipping in the regions highlighted by
the light-blue area [ ]. First-order approximation by describing function
method indicated by [ ].
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this fundamental harmonic can be calculated by

a1 =
ω

π

5∑
i=1

∫ τi

τi−1

Wi(t) cos(ωt)dt,

b1 =
ω

π

5∑
i=1

∫ τi

τi−1

Wi(t) sin(ωt)dt.

(8)

which is the sum of integrals of each function part Wi(t) =
w(t), ∀t ∈ [τi−1, τi]. By solving (8) using (5), we obtain the
Fourier coefficients

a1 =
4fc
π

(1− ζ) ,

b1 =
4fc
π

1

2ζ

(π
4
+

γ

2
+ (2ζ − 1)

√
ζ(1− ζ)

)
,

(9)

for the second mode ζ ∈ (0, 0.5]. Following the same
methodology for the third mode of operation ζ ∈ (0.5, 1),
one will obtain the same expressions for a1 and b1 as in (9)
despite the different function division Wi(t). Therefore, the
describing function for the full nonlinear range ζ ∈ [0, 1] for
the Jenkins model reads

Dϕ(kJ , ζ)

= kJ
4ζ

π

{ 1

2ζ

(
(2ζ − 1)

√
ζ(1− ζ) +

γ

2
+

π

4

)
+ (1− ζ)j

}
,

(10)
where γ = arcsin(2ζ− 1). Note that the describing function
Dϕ is frequency independent as expected due to the rate-
independent property of the elasto-plastic model.

In the limit case ζ → 0, the describing function tends to

lim
ζ→0

Dϕ(kJ , ζ) =
4

π
kJζj, (11)

which is purely imaginary and, consequently, the phase is
going to ∠Dϕ = 90◦ with very small magnitude. When
ζ → 1, the elasto-plastic element behaves close to a linear
spring and the phase goes to 0 degrees with magnitude
kJ . Substitution of ζ = 1 in (10) results in the linear
mode of the Jenkins element, and the describing function
yields Dϕ = kJ . By plotting the magnitude and phase of
Dϕ(kJ , ζ) as a function of ζ as illustrated in Fig. 8 verifies
these observations. Note that the magnitude of the describing
function is always smaller than the spring stiffness kJ , i.e.,
|Dϕ| ≤ kJ , ∀ζ ∈ R≥0 in both the nonlinear and linear range
of ζ.

C. Quasi-linear response of the combined system

The describing function for the Jenkins element such as
derived in the previous subsection will be used for analyzing
the dynamics of the combined system P̂ in the frequency
domain. Using the expression Dϕ, a quasi-linear frequency
response P̂ϕ(jω) can be calculated of the combined system
P̂, or

P̂ϕ(jω) =
P2(jω)

1 +DϕP1(jω)
, (12)

that describes the transfer from u to output position y2. This
quasi-linear frequency response function P̂ϕ(jω) is depicted
in Fig. 9 for increasing values of ζ ∈ (0, 1] (decreasing
amplitudes A) for system parameters kJ = 104 N/m, fc =

kJ/100

kJ/10

kJ

|D
ϕ
|[

-]

10−2 10−1 100
0

45

90

coefficient ζ [-]

∠
D

ϕ
[◦

]

Fig. 8. Describing function Dϕ as a function of the dimensionless variable
ζ. Dϕ is a small imaginary number when ζ → 0, and goes to a strictly
real gain kJ when ζ → 1. For ζ ≥ 1, the elasto-plastic element behaves
as a linear gain/spring. The gray and red area indicate the first and second
mode of operation, respectively.

100 N, m1 = 5 kg, m2 = 17.5 kg, b = 90 Ns/m, and
k = 7.4·107 N/m. This figure shows that hysteresis primarily
affects the low frequency range dynamics.

Remark 1: The quasi-linear frequency response of u to
y2 denoted as the combined system P̂ϕ = P2(1+DϕP1)

−1

(see Fig. 3) tends to the floating mass P2 for all ζ ∈ R≥0

after the frequency

f⋆ =
1

2π

√
kJ
M

. (13)

The rationale behind (13) is as follows. The magnitude of
the quasi-linear P̂ϕ(jω) is given by

|P̂ϕ(jω)| =
∣∣∣∣ P2(jω)

1 +DϕP1(jω)

∣∣∣∣ ≥ |P2(jω)|
1 + kJ |P1(jω)|

. (14)

As dynamic links are much more compliant than motion
stages as stated in Section II, and based on results from
the describing function of P̂ϕ(jω) (k ≫ kJ ) as illustrated
in Fig. 9, it can be said that ω⋆ satisfies kJ |P1(jω

⋆)| = 1
in the rigid body region (in the region where Pr ≫ Pf,i

for i = 1, 2), and therefore P1(jω
⋆) ≈ Pr(jω

⋆) with
ω⋆ = 2πf⋆. By substitution of P1 = Pr, one would find
(13). Note that this is strictly true for ζ ≥ 1 as for this
situation, the elasto-plastic element is operating as a linear
spring and the system can be reduced to the floating mass
system connected to the fixed world by a linear spring with
spring stiffness kJ . From this, it can be concluded that the
describing function of the combined system P̂ϕ(jω) tends to
the floating mass transfer P2(jω) for ω > ω⋆ for all possible
operation modes of the elasto-plastic element.

Next section will provide insights how to quantify the
feedforward mismatch based on the quasi-linear frequency
response Dϕ.

IV. FEEDFORWARD MISMATCH DUE TO HYSTERESIS

In the context of Fig. 3, this section focuses on finding a
relation for the feedforward mismatch on the error dynamics
(e) in the presence of the hysteresis model ϕ. We will
exploit the frequency-domain interpretation for ϕ via the
describing function Dϕ. For the derivation, the following type
of sensitivity transfer is defined:

Sϕ
1 = (1 +DϕP1)

−1, (15)

2821



−100

−80

−60

−40

f⋆|P̂
ϕ
(j
ω
)|

[d
B

]

10−1 100 101
−180

−90

0

90

180

frequency f [Hz]

∠
P̂

ϕ
(j
ω
)

[◦
]

ζ = 0.1
ζ = 0.18
ζ = 0.32
ζ = 0.56
ζ = 1

Fig. 9. Quasi-linear frequency response function P̂ϕ(jω) for increasing
ζ ∈ (0, 1] with 0dB = 1m/N, the resonance frequency of the two-degree-
of-freedom system lies above the presented frequency range.

which indicates the transfer from u(t) to u(t) − w(t). The
output position y2 of the non-collocated system, i.e., the point
of control is given by the describing function approximation

y2 ≈ P2P
−1
r Sϕ

1r +P2CSϕ
1e. (16)

This results in the quasi-linear frequency response function
of the error e as a function of the reference r given by

e ≈ 1−P2P
−1
r Sϕ

1

1 +P2CSϕ
1

r. (17)

Eq. (17) can be used to calculate the relative difference of the
error with Sϕ

1 as in (15) and without (Sϕ
1 = 1) the dynamic

link model, which gives the approximation:

E(jω) := e(jω)

ê(jω)
=

(CP2 + 1)(Pr −P2S
ϕ
1 )

Pf,2(CP2S
ϕ
1 + 1)

, (18)

where ê(jω) describes the error with ϕ = 0 (Sϕ
1 = 1). As

setpoint trajectories r are dominant in the low frequency
range and the dynamics of the combined system P̂ deviates
from the floating mass system P2 in the low frequency range
as shown earlier in Fig. 9, it is important to obtain intuitive
insights in how the feedforward mismatch described by (18)
evolves for low frequencies. This can be approximated using
L(jω) = CP2 ≫ 1, Pr(jω) ≫ Pf,2 when ω → 0, and
therefore it can be said that

E(jω) ≈ CP2
rDϕ

Pf,2(C+Dϕ)
, when ω → 0. (19)

In case of high-bandwidth controlled motion systems, one
can make the valid assumption that |C(jω)| ≫ |Dϕ|, ∀ω.
The approximation in (19) then further simplifies to

E(jω) ≈ Ẽ(jω) = P2
rDϕP

−1
f,2, when ω → 0, (20)

where Ẽ acts as an asymptote for the error mismatch function
E in the low-frequency range (as will be illustrated in Section
V) by quadruple integrator characteristics. In the situation of
the fourth-order system given in (1), the crossover frequency
of this low frequency approximation (|Ẽ(jωc)| = 1) becomes

fc =
1

2π

(
k|Dϕ|
m1m2

) 1
4

, ωc = 2πfc (21)

which implies that for input frequencies fin < fc, a feed-
forward mismatch due to hysteresis can be expected. Note
that for high frequencies, the feedforward mismatch tends to
zero knowing that for ω → ∞ =⇒ Sϕ

1 → 1, Pr > P2, and
given the fact that the open-loop L generally has a positive
relative degree, or ω → ∞ =⇒ L(jω) → 0. This gives a
high frequency approximation of (18) as

Ê(jω) = Pr/Pf,2 = 1, when ω → ∞. (22)

In conclusion, hysteresis appears to be a low frequency range
effect for motion control systems. Next section will verify
the presented results by means of a numerical example.

V. NUMERICAL MOTION CONTROL EXAMPLE

The non-collocated control problem as illustrated in Fig. 2
is used to verify the results obtained in the previous sections.
The control architecture as illustrated in Fig. 3 is used where
the feedback controller stabilizes the closed-loop system and
rejects disturbances whereas the feedforward controller is
used for improved tracking. The transfer functions P1(s) and
P2(s) as given in (1) describe the floating mass dynamics
from actuator force u to position y1 and y2, respectively.
The feedback controller C as in Fig. 3 is constructed by a
lead-lag filter in combination with a second-order lowpass
filter:

C(s) = K

(
f2
f1

)
s+ 2πf1
s+ 2πf2

(2πflp)
2

s2 + 4βπflps+ (2πflp)2
.

(23)
Given the parameters as in Table I, a bandwidth frequency
of fbw = 120Hz is obtained.

TABLE I
MODEL, AND CONTROLLER PARAMETERS.

m1 m2 b k kJ fc K f1 f2 flp β
5 17.5 90 7.4 · 107 20 0.05 6.2 · 106 60 240 700 0.6
kg kg Ns/m N/m N/m N N/m Hz Hz Hz [-]

The closed-loop system is excited by the reference signal
r(t) = Ar sin(2πfint) for increasing input frequencies fin
with amplitude Ar = 10mm. The amplitude Ay of the output
entering the Jenkins element (y1) is unknown. However, in
case of accurate tracking Ar ≈ Ay . This leads to a coefficient
of ζ = 0.25 resulting in a magnitude of |Dϕ| ≈ 0.3 · kJ and
phase of ∠Dϕ ≈ 50◦ as can be seen from Fig. 8. Note
that the closed-loop quasi-linear frequency response is not
significantly affected as the combined plant P̂ tends to the
floating mass design beyond f⋆ = 0.15Hz. For small ζ this
frequency is even lower due to its small gain. However, based
on (21), a feedforward mismatch can be expected for input
frequencies up to at least fc = 7.6 Hz which is significantly
higher than f⋆.

By (18), one can approximate the frequency up to which a
feedforward mismatch will increase tracking errors compared
to the (presumed) floating mass situation. This result is
depicted in Fig. 10 and shows that there is a significant
feedforward mismatch for references with sinusoids up to
10Hz.

To verify the accuracy of the describing function approach
and thus our conclusions based on the feedforward mismatch
obtained by quasi-linear E(jω), time-series simulations are
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Fig. 10. Feedforward mismatch obtained by E in (18) indicated by [ ]
based on quasi-linear frequency response of hysteresis ϕ by the describing
function method. The low frequency asymptotic approximation Ẽ(jω) as in
(20) is indicated by [ ].

performed. Three input frequencies fin ∈ {5, 10, 15}Hz are
used to analyze the accuracy of the describing function in
a closed-loop setting and to evaluate the exact feedforward
mismatch obtained from |E| in Fig. 10. The results are
illustrated in Fig. 11 and indeed match the expected results
from quasi-linear estimates E(jω). The describing function
showed fairly accurate results in terms of magnitude and
phase of the steady state response. The simulation results,
that matches expectations from the describing function, show
that the detrimental effects of hysteresis in dynamic links for
input frequencies below 15 Hz from a feedforward perspec-
tive can indeed be significant. It is important to mention
that stage reference trajectories have their main frequency
contributions in this low frequency range. In order to improve
tracking performance of reference trajectories, one should
therefore extend the feedforward structure of wafer stages to
deal with these detrimental hysteretic effects.
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Fig. 11. Simulation results of steady-state response of the feedforward
and feedback controlled two-degrees-of-freedom system with and without
hysteresis, indicated by [ ] and [ ], respectively. The describing
function approximation is indicated by [ ].

VI. CONCLUSIONS AND FUTURE WORK

This paper evaluated the effects of hysteresis in motion
systems induced by a simplified model of a dynamic link
system. It has been shown that the detrimental effects are
dominantly present in the low frequency range. As such, it
may have impact on tracking performance of scanning stages
of wafer scanners. The describing function approach provides
a fairly accurate approximation in terms of steady-state error
magnitude and phase. However, higher-order harmonics are
clearly visible and cannot be neglected for performance
analysis. Future work includes modeling and identification
of hysteresis models in motion control applications for
feedforward purposes.
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