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Abstract— In this paper we propose a novel distributed
gradient-based two-time-scale algorithm for multi-agent off-
policy learning of linear approximation of the optimal action-
value function (Q-function) in Markov decision processes
(MDPs). The algorithm is composed of: 1) local parameter
updates based on an off-policy gradient temporal difference
learning algorithm with target policy belonging to either the
greedy or the Gibbs distribution class and stationary behavior
policies possibly different for each agent, and 2) a linear
stochastic time-varying consensus scheme. It is proved, under
general assumptions, that the parameter estimates generated by
the proposed algorithm weakly converge to a bounded invariant
set of the corresponding ordinary differential equation (ODE).
Simulation results illustrate effectiveness of the proposed algo-
rithm.

I. INTRODUCTION

Reinforcement learning (RL) provides a widely accepted
framework for decision making in unknown and stochastic
environments, e.g. [1], [2]. Numerous undoubtedly success-
ful solutions to practical problems, ranging from robotics
to board games, have been reported, e.g., [3]. RL problems
are mostly formulated using Markov Decision Processes
(MDPs) with unknown transition probabilities. The goal
is to find an optimal policy so that the total discounted
future reward is maximized. One of the most important
contributions to the RL field is the temporal-difference (TD)
learning, typically used to approximate the value function
of a given MDP [1], [4]. It is often desirable to evaluate
a given target policy by implementing different behavior
policies (off-policy learning, e.g., [5]–[7]). Among other
methods, Q-learning has been recognized as a promising
tool for finding the optimal policy in RL problems [1],
[8]. It provides estimates of the optimal Q-function (action-
value function), wherefrom the optimal policy itself can be
simply computed. The Q-learning algorithm is basically an
off-policy method, since it learns the optimal policy using
data generated by arbitrary non-optimal behavior policies.
Q-learning methodology has been extensively studied in the
literature, e.g. [9]–[13]. However, applications have remained
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limited to the problems with relatively small state and action
spaces. In order to overcome this, Q-learning with function
approximation has been treated in numerous papers, e.g.,
[10]–[12], [14], [15]. However, there is still a gap between
theory and practice, due possible divergence in off-policy
learning involving function approximation and bootstrapping
[1], [4], [13]–[15].

The focus of this paper is on distributed multi-agent Q-
learning based on linear function approximation, following
the approach to the single agent problems in [11]. In general,
distributed, decentralized and multi-agent RL methods have
attracted recently a lot of attention due to their high potential
for solving diverse problems within complex, intelligent and
networked systems (see e.g., [16] and numerous references
therein). The problem of distributed multi-agent state-value
function approximation has attracted great attention, e.g.,
[17]–[21], often within the actor-critic algorithms, e.g., [22]–
[25]. However, to the authors knowledge, multi-agent dis-
tributed Q-learning based on linear function approximation
has not yet been treated in the literature. Our main motivation
has been, in general, to provide: a) a new tool for effi-
cient collaborative exploration of possibly large state-action
spaces with provable convergence under fairly general con-
ditions and b) variance reduction owing to the collaborative
function implemented by the consensus scheme. A specific
system topology has been adopted, in which each agent can
observe transitions of a given MDP independently, using a
carefully chosen local behavior policy (Strict Information
Structure Constraint (SISC) [21]). The main line of thought
can be considered as an extension to distributed Q-learning
of the approaches based on consensus from [17], [19]–[21],
[25], [26].

We propose in this paper a new algorithm for distributed
multi-agent off-policy gradient temporal difference learning
of linear approximation to the optimal Q-function using
linear dynamic consensus iterations. The target policy is
assumed to belong to either the greedy or the Gibbs class,
and the behavior policies are assumed to be stationary and
different for each agent. In this way, the proposed algorithm
becomes a learning tool for distributed off-policy control (not
only for policy evaluation), similar to A3C or A2C [3], [11].
Assuming a general stochastic time-varying dynamic con-
sensus scheme and practically mild assumptions, a proof of
the weak convergence of parameter estimates to consensus is
provided, based on appropriately defined ordinary differential
equations (ODE’s) [7], [27]–[29]. The proof is based on the
properties of distributed stochastic approximation introduced
in [27] and the arguments related to stability from [11], [30].
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Simulation results illustrate characteristic properties of the
proposed algorithm.

The paper is organized as follows. In Section II we
formulate the problem and define the algorithm. Section III
is devoted to the description of the global algorithm model
at the network level. Section IV provides a convergence
analysis. Section V contains some illustrative simulation
results.

II. PROBLEM FORMULATION. DEFINITION OF THE
ALGORITHM

Consider N autonomous agents, attached one-to-one to
N Markov Decision Processes (MDPs), denoted as MDP(i),
i = 1, . . . , N . All the MDPs are characterized by the
quadruplets {S, A, p(s′|s, a), Ri(s, a, s

′)}, where S is a
finite set of states, A is a finite set of actions, p(s′|s, a)
defines probabilities of moving from s ∈ S to s′ ∈ S by
applying action a ∈ A, and Ri(s, a, s

′) is a local random
reward with distribution q(·|s, a, s′). Each MDP(i), applies
a fixed stationary behavior policy π(i)(a|s) (probability of
taking action a at state s), so that the state processes {Si(n)}
and the state-action processes {Si(n), Ai(n)} represent time-
homogenous Markov chains (n ≥ 0 is an integer denoting
transition time). We shall assume that (Si(n), Ai(n)) is in the
steady state and that µi denotes the underlying distribution.

Notice that, in general, in a hypothetical single agent case,
the target policy is characterized by a stationary distribution
π(a|s). The value function associated with π(a|s) is defined
by

V π(s) = Eπ

{ ∞∑
n=0

γnr(S(n), A(n))|S(0) = s

}
, (1)

where γ ∈ [0, 1) is a discount factor. The action-value
function under policy π(a|s) is defined as

Qπ(s, a) = Eπ

{ ∞∑
n=0

γnr(S(n), A(n))|S(0) = s,A(0) = a

}
.

(2)
The optimal Q-function Q∗(s, a) satisfies the following Bell-
man equation

Q∗(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)max
a′

Q∗(s′, a′), (3)

where r(s, a) denotes the one-step expected reward. The
optimal policy π∗ is defined by π∗ = argmaxπ Q

∗(s, a).
The optimal functions V ∗ and Q∗ can be computed using
dynamic programming. Alternatively, if the MDP model is
unknown, it can be computed by stochastic approximation.
The so-called Q-learning algorithm directly provides the
optimal Q-values in a tabular form [8].

Let ϕ : S × A → Rp be a function that maps each state-
action pair (s, a) to a feature vector ϕ(s, a). We shall use
the linear action-value function approximation in the form
Qθ(s, a) = θTϕ(s, a), ∥ϕ(s, a)∥ <∞, (s, a) ∈ S×A, where
θ ∈ Rp is a parameter vector (p << |S×A|). Following [11],
we shall employ two classes of stationary stochastic target
policies πθ(·|s): a) the greedy class, when the action is given

by argmaxa′∈AQθ(s, a
′), and b) the Gibbs class, when

πθ(a|s) ∼ exp{κ(Qθ(s, a))}, with an appropriately defined
differentiable function κ(x) (see, e.g., [11] and Section V).

Remark 1: Application of the greedy policy has the ob-
vious advantage of providing convergence to optimality for
any behavior policy. Notice, however, that the Gibbs class
is a “soft-max”-type solution (see the simulation results in
Section V).

Introduce the global parameter vector Θ = [θT1 · · · θTN ]T ,
where θi ∈ Rp, i = 1, . . . , N , is the parameter vector
attached to MDP(i) and define the following optimization
problem

J(Θ) =
∑N

i=1 qiJi(θi) (4)
Subject to θ1 = · · · = θN = θ,

where Ji(θi) is the objective function attached to i-th agent
and qi > 0 a priori defined weighting coefficients. The main
idea is to locally minimize the projected Bellman error

Ji(θi) = ∥ΠiT
πθiQi;θi −Qi;θi∥2µi

(5)

using the stochastic gradient descent, where ∥Qi;θi∥2µi
=∑

s,aQ
2
i;θi

(s, a)µi(s, a) and Πi is the projection operator
that projects Q-functions into the linear space Fi = {Qi;θi :
θi ∈ Rp} w.r.t. ∥·∥µi

, i.e., ΠiQ̂i = argminfi∈Fi
∥Q̂i−fi∥µi

.
We shall use the arguments from [5], [9], [11] and rewrite

Ji as

Ji(θi) =E{δi(n+ 1; θi)ϕi(n)}T [E{ϕi(n)ϕi(n)T }]−1

× E{δi(n+ 1; θi)ϕi(n)} (6)

where ϕi(n) = ϕ(Si(n), Ai(n)),

δi(n+ 1; θi) = Ri(n+ 1) + γV̄i(n+ 1; θi)− θTϕi(n) (7)

is the temporal difference and V̄i(n+1; θi) = V̄i;θi(Si(n+1))
is the expected value of the next state under πθi , i.e.,

V̄i;θi(s) =
∑
a∈A

θTi ϕ(s, a)πθi(a|s). (8)

The Fréchet sub-gradient of Ji(θi) w.r.t. θi (denoted as
∂Ji(θi)) can be obtained following [11]. If ϕ̂i(n + 1; θi) is
an unbiased estimate of the sub-gradient of V̄i(n + 1; θi)
(given Si(n + 1)), we have, after denoting di(n + 1; θi) =
γϕ̂i(n+ 1; θi)− ϕi(n), the following expression

∂Ji(θi) =E{δi(n+ 1; θi)ϕi(n)}
+ γE{ϕ̂i(n+ 1; θi)ϕi(n)

T }w∗
i (θi), (9)

where

w∗
i (θi) = E{ϕi(n)ϕi(n)T }−1E{δi(n+ 1; θi)ϕi(n)}. (10)

Remark 2: In the case of the greedy policy class, an
appropriate choice for ϕ̂i(n + 1; θi) is ϕ̂i(n + 1; θi) =
ϕ(Si(n+ 1), A′

i(n+ 1)), where A′
i(n+ 1) is a maximizing

action of Qθi(Si(n+ 1), ·) [11].
When πθi(a|s) is differentiable w.r.t. θi, we have

∇θi V̄i;θi(s) =
∑
a∈A

[ϕ(s, a)+Qθi(s, a)∇ log πθi(a|s)]πθi(a|s).

(11)
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Consequently, we can sample A′
i(n + 1) ∼ πθi(n)(·|Si(n +

1)) and use ϕ̂(n + 1; θi(n)) = ϕ(Si(n + 1), A′
i(n + 1)) +

Qθi(Si(n + 1), A′
i(n + 1))∇ log πθi(A

′
i(n + 1)|Si(n + 1))

[11].
Coming back to (4), we come to the condition∑N
i=1 qi∂Ji(θi) = 0 subject to θ1 = · · · = θN = θ,

or
∑N

i=1 qi∂Ji(θ) = 0. The update equations given below
are aimed at following the negative sub-gradient to J(Θ)
for Θ = [θT · · · θT ]T . The new distributed algorithm is
composed of two main parts: 1) local parameter updates
based on the gradient descent methodology using local
state transition and reward observations from MDPs and 2)
convexification of current parameter estimates based on inter-
agent communications. The algorithm represents a multi-
agent version of the Greedy-GQ algorithm proposed in [11].
The updates are given by

θ′i(n) =θi(n) + αi(n)qi[δi(n+ 1; θi(n))ϕi(n)

− γϕ̂i(n+ 1; θi(n))ϕi(n)
Twi(n)] (12)

w′
i(n) =wi(n) + βi(n)[δi(n+ 1; θi(n))

− ϕi(n)
Twi(n)]ϕi(n). (13)

The initial values are chosen arbitrarily. The step size se-
quences {αi(n)} and {βi(n)} are composed of positive
numbers which satisfy αi(n) << βi(n), introducing two
time-scales, see [7]. The second part of the algorithm is given
by

θi(n+ 1) =

N∑
j=1

aij(n)θ
′
j(n); wi(n+ 1) = w′

i(n). (14)

We shall assume that aij(n) ≥ 0 are random variables,
elements of a time-varying random matrix A(n) = [aij(n)]
[29], [31], [32].

If one adopts that the agents are connected by communica-
tion links in accordance with a directed graph G = (N , E),
where N is the set of nodes and E the set of arcs, then
matrix A(n) has zeros at the same places as the graph
adjacency matrix AG(n) = AG and is row-stochastic, i.e.∑N

j=1 aij(n) = 1, i = 1, . . . , N , ∀n ≥ 0.
Remark 3: In (14) convexification is applied to the θ-

iterates only. It can be extended to the w-iterates, providing
additional smoothing at the expense of slower convergence
rate.

III. GLOBAL MODEL

Define Zi(n) = (Si(n), Si(n + 1)). After denoting z =
(s, s′), we introduce the following functions

gi(θ, w, z) = ϕ(s)δ̄i(s, s
′, θ)− γϕ̂(s′)ϕ(s)Tw, (15)

and

ki(θ, w, z) = ϕ(s)δ̄i(s, s
′, θ)− ϕ(s)ϕ(s)Tw, (16)

where δ̄i(s, s′, θ) = r(s, a, s′) + γV̄i(s
′, θ) − ϕ(s)T θ is the

expected temporal difference error [7]. For the mean values

we have

ḡi(θ, w) =bi −Ai(θ)θ − γBi(θ)w (17)
k̄i(θ, w) =bi −Ai(θ)θ − Ciw (18)

where bi =
∑

s,a,s′ Ri(s, a, s
′)p(s′|s, a)µi(s, a),

Ci = Ei{ϕi(n)ϕi(n)T }, Ai(θ) = Ci−
γ
∑

s,a,s′,b ϕ(s
′, b)ϕ(s, a)Tπθi(b|s)p(s′|s, a)µi(s, a),

Bi(θ) = Ei{ϕ̂i(n + 1, θi)ϕi(n)
T } (Ei{·} denotes the

expectation according to the probability law induced in
MDP(i)).

Let X(n) = [Θ(n)T
...W (n)T ]T , Θ(n) =

[θ1(n)
T · · · θN (n)T ]T , W (n) = [w1(n)

T · · ·wN (n)T ]T

and X ′(n) = [Θ′(n)T
...W ′(n)T ]T . Then, we have

X ′(n) = X(n) + Γ(n)F (X(n), n),

X(n+ 1) = diag{(A(n)⊗ Ip), INp}X ′(n), (19)

X(0) = X0, where ⊗ denotes the Kronecker’s product,
while Γ(n) = diag{α1(n), . . . , αN (n), β1(n), . . . , βN (n)}

⊗Ip, F (X(n), n) = [F θ(X(n), n)T
...Fw(X(n), n)T ]T ,

F θ(X(n), n) = [F θ
1 (X(n), n)T · · ·F θ

N (X(n), n)T ]T ,
Fw(X(n), n) = [Fw

1 (X(n), n)T · · ·Fw
N (X(n), n)T ]T ,

with F θ
i (X(n), n) = qigi(θi(n), wi(n), Zi(n + 1)) +

ϕi(n)ωi(n+1) and Fw
i (X(n), n) = ki(θi(n), wi(n), Zi(n+

1)) + ϕi(n)ωi(n + 1), where ωi(n + 1) is a zero-
mean noise term modeling a stochastic component in
Ri(Si(n), Ai(n), Si(n+ 1)), see [17].

Also, we introduce F̄ (X) = [F̄ θ(X)T
...F̄w(X)T ]T , where

F̄ θ
i (X) = qiḡi(θ, w) and F̄w

i (X) = k̄i(θ, w), i = 1, . . . , N .
1) Consensus Part: Define Ψ(n|k) = A(n) · · ·A(k) for

n ≥ k, Ψ(n|n + 1) = IN . Let Fn be an increasing
sequence of σ-algebras, such that Fn measures {X(k), k ≤
n,A(k), k < n}.

(A1) There is a scalar α0 > 0 such that aii(n) ≥ α0, and,
for i ̸= j, either aij(n) = 0 or aij(n) ≥ α0.

(A2) Graph G is strongly connected.
(A3) There are a scalar p0 > 0 and an integer n0 such

that PF̃n
(agent j communicates to agent i on the interval

[n, n + n0]) ≥ p0, for all n and i, j = 1, . . . N such that
(i, j)-th element of AG ̸= 0.

Lemma 1 ( [27], [29]): Let (A1)–(A3) hold. Then
Ψ(k) = limn Ψ(n|k) exists with probability 1 (w.p.1) and
its rows are all equal; moreover, E{|Ψ(n|k) − Ψ(k)|} and
EFk

{|Ψ(n|k) − Ψ(k)|} → 0 geometrically as n − k → ∞,
uniformly in k (w.p.1); also, EFk

{Ψ(n|k)} converges to
Ψ(k) geometrically, uniformly in k, as n→ ∞ (| · | denotes
the infinity norm).

(A4) There is a N × N matrix Ψ̄ such that
E{|EFk

{Ψ(n)}−Ψ̄|} → 0 as n−k → ∞, which, according
to Lemma 1 and [27], has the form Ψ̄ = [Ψ̂T · · · Ψ̂T ]T , where
Ψ̂ = [ψ̄1 · · · ψ̄N ]T .

Specific values of Ψ̂ follow from the network properties
and the weights of the arcs. In the following, we shall adopt
that ψ̄i = 1/N , i = 1, . . . , N , in order to avoid ambiguities
w.r.t. qi (see also [17]). On the other hand, for qi = 1 we
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can obtain arbitrary desired values of ψ̄i, i = 1, . . . , N , by
appropriate definition of matrices A(n) [29].

(A5) Sequence {A(n)} is independent of the processes in
MDP(i), i = 1, . . . , N .

IV. CONVERGENCE ANALYSIS

(A6) Sequence {X(n)} is tight (bounded in probability),
see, e.g., [28].

Remark 4: Assumption (A6) is frequent for weak con-
vergence proofs, in general. As stated in [27], [28], one
can achieve, w.l.o.g., that {X(n)} is tight by an adequate
projection or truncation of the estimates (see [27], [28,
Section IV.A]).

(A7) Matrix Ci is nonsingular, i = 1, . . . , N .
(A8) For any θi, the policy π∞

θi
(a|s) = limc→∞ π∞

cθi
(a|s)

exists and its convergence is uniform on compact sets,
(s, a) ∈ S ×A.

(A9) Matrix
∑N

i=1 qi[Ci− γ
∑

s,a,s′,b ϕ(s
′, b)

ϕ(s, a)Tπ(b|s′)p(s′|s, a)µi(s, a)] is nonsingular for any
π(b|s′) ∈ L, where L = {π∞

θ : θ ∈ Rd} is bounded w.p.1
[11].

Assume that αi(n) = α and βi(n) = β. According to [27],
let nα be a sequence tending to ∞ and satisfying α

1
2nα → 0

as α → 0. For t ≥ 0, t ∈ R, define Xα,β(·) as Xα,β(t) =
X(n) for t ∈ [(n − nα)α, (n − nα + 1)α) (for details, see
[27]).

Theorem 1: Let (A1)–(A9) hold. Let Xα,β(n) be gen-
erated by (12), (13) and (14), with αi(n) = α >
0, βi(n) = β > 0, β >> α. Define Xα,β(0) =
[θT0 · · · θT0 wT

1,0 · · ·wT
N,0]

T . Then Xα,β(·) is tight and con-
verges weakly at the fast time-scale to a process W (·) =
[w1(·)T · · ·wN (·)T ]T generated by

ẇi = k̄i(θi, wi), (20)

(i = 1, . . . , N ), for any given θ1, . . . , θN , and at the slow
time-scale to Θ(·) = [θ(·)T · · · θ(·)T ]T , where

θ̇ =
1

N

N∑
i=1

qiḡi(θ, w̄
∗
i (θ)), (21)

with w̄∗
i (θ) obtained as the unique solution (w.r.t. wi) of

k̄i(θ, wi) = bi −Ai(θ)θ − Ciwi = 0. (22)
Proof: At the start, it is essential to verify the basic

assumptions from [27, Theorem 3.1]. We conclude in a
straightforward way that the assumptions C(3.2) and C(3.3)
from [27] are satisfied for our algorithm, and that C(3.4)
holds for the communications within the network. Therefore,
one can show that supα,n≥nα

1
α2E{|X(n+1)−X(n)|2} <

∞, { 1
α |X(n+1)−X(n)|, n ≥ nα} is uniformly integrable,

{Xα,β(·)} is tight and the limit paths are Lipschitz contin-
uous [27, Theorem 3.1, Part 1].

According to [27], the formulation of the asymptotic mean
ODE (21) follows from the demonstration that the Mf (t)
defined by

Mf (t) =f(X(t))− f(X(0)) (23)

+

∫ t

0

f ′X(X(s))diag{Ψ̄⊗ Ip, INp}F̄ (X(s))ds,

is a Lipschitz-continuous martingale, where f(·) a real
valued function with compact support and continuous second
derivatives [27]. The technical part of the derivation is based
on the Skorokhod embedding [28]. As X(·) is Lipschitz
continuous and Mf (0) = 0, it follows that Mf (t) = 0. This
implies that Ẋ = diag{Ψ̄ ⊗ Ip, INp}F̄ (X). By (A1)–(A5),
all the rows of Ψ̄ are equal. It follows that N p-dimensional
vector components of Θ must be equal, i.e., we obtain that
Θ(·) = [θ(·)T · · · θ(·)T ] and that θ(·) satisfies the ODE from
(21).

ODE in (20) follows directly from the two-time-scale
property of the algorithm. Existence and uniqueness of the
solution to k̄i(θ, wi) = 0 w.r.t. wi follows from (A7), so
that the ODE ẇi = k̄i(θ, wi) admits a unique, globally
asymptotically stable equilibrium w̄∗

i for any fixed θ.
Theorem 2: Let the assumptions of Theorem 1 be satis-

fied. Then, for any integers n′α,β such that αn′α,β → ∞ as
α→ 0, there exist positive numbers {Tα,β} with Tα,β → ∞
as (β, α/β) → 0, such that for any ϵ > 0

lim sup
β→0,α/β→0

P{(θα,βi (n′α,β + k)) /∈ Nϵ(Σ̄θ̄)} = 0 (24)

for some k ∈ [0, Tα,β/α], i = 1, . . . , N , where Σ̄θ is a
bounded set of stationary points θ̄ ∈ Rp of the criterion
J(θ), satisfying

∑N
i=1 qigi(θ̄, w̄

∗
i (θ̄)) = 0.

Proof: According to Theorem 1, there exists a set
M = M(ω) ⊂ Rp which represents a compact connected
invariant set to θ̇ = 1

N

∑N
i=1 qiḡi(θ, w̄

∗
i (θ)), such that

(θi(n), wi(n)) → {(θ̄, w̄∗
i (θ̄)) : θ̄ ∈M}, i = 1, . . . , N .

We shall apply the ODE methodology proposed by Borkar
and Meyn [30]. We want to show that the following limit
exists limc→∞

1
cN

∑N
i=1 qiḡi(cθ, w̄

∗
i (cθ)) = ḡ∞(θ), that the

convergence is uniform and that zero is the unique global
exponentially stable equilibrium to the ODE θ̇ = ḡ∞(θ).
Following [11], we obtain that

ḡ∞(θ) = 1
N

∑N
i=1 qi∂∥

1
c (bi − γBi(cθ)w̄

∗
i (θ))

−Ai(cθ)θ∥2C−1
i

. (25)

Owing to (A8), the limit A∞
i (θ) = limc→∞Ai(cθ)

exists and the convergence is uniform. Let N∞(θ) =
2
∑N

i=1 qiA
∞T
i (θ)A∞

i (θ), and also let {N1, . . . , NK} =
{N∞(θ) : θ ∈ Rp} be constant values of N∞(θ) in K non-
overlapping regions of Rp, denoted as R̄j , j = 1, . . . ,K (in
accordance with the regions in which A∞

i (θ) are constant).
Consequently, Nj = N∞(θ), ∀θ ∈ Rp, for some j. It follows
that

θ̇ = −
K∑
j=1

I{θ ∈ R̄j}Njθ, (26)

where I{·} is the indicator function.
Adopting W (θ(t)) = 1

2θ(t)
T θ(t) as a Lyapunov function,

where θ(t) is a solution of (26), we can obtain, by using the
arguments from [11], that

Ẇ =
1

2
(θ(t)T θ̇(t) + θ̇(t)T θ(t)) ≤ −ρ∥θ(t)∥2,
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Fig. 1. Diagram of the simulated MDPs.

where Nj +N
T
j ≥ 2ρI , ρ > 0, having in mind that matrices

Nj are normal, j = 1, . . . ,K. Therefore, zero is the unique
globally asymptotically stable equilibrium to θ̇ = ḡ∞(θ), so
that the result follows.

Remark 5: Notice that the multi-agent environment intro-
duces a relaxation of the condition (A9) w.r.t. the single agent
case treated in [11], due to freedom in choosing weights qi.

Remark 6: Theorem 2 shows that in the case when the
algorithm utilizes projection of the parameter estimates to
a ball at the origin B(ρB) ⊂ Rp (ensuring (A6)), one can
always find such a radius ρB <∞ that Σ̄θ ⊂ B(ρB).

Remark 7: Asymptotic rate of convergence of the algo-
rithm can be expressed in terms of a stochastic differential
equation (SDE) [24], [25], [28]. It is possible to show that the
proposed algorithm ensures lower error covariance than in
the case of alternative single-agent methods, due to averaging
over the multi-agent network [27].

V. SIMULATION RESULTS

In this section we demonstrate the algorithm’s conver-
gence properties using simulations. The underlying MDP is
assumed to be a class of the Boyan chain [5], [17], [21],
[33]. Fig. 1 depicts the MDP diagram.

There are two possible actions in this scenario: either to
take action ah, which means staying on the current main
route or road, or to take action aexit, which involves exiting
and using alternative route. State 15 is the goal state where
the process terminates. When aexit action is chosen, the
constant reward R(s, aexit, s′) = −2.5 is received for all
the states involved and there is the probability pexitstuck = 0.2
of staying in the same state. If action ah is chosen, a reward
of −1 is received for any transition between states and the
probability of remaining in the same state increases as 1− 1

s .
The discount factor of γ = 0.9 is applied. The probability
of choosing action aexit in state s, denoted as π(aexit|s), is
the control policy that needs to be optimized. Feature vec-
tors used in Q-function approximation have dimensionality
p = 14, 7 for each of two possible actions, represented

by Gaussian radial basis functions defined as e−
(s−zi)

2

2σ2 ,
where i ranges from 1 to 7, zi takes values from the set
{1, 3, 5, 7, 9, 11, 13} and σ2 = 2. Simulations are carried out
over multiple episodes since State 15 is the absorbing state.

We analyzed performance of the proposed algorithm
(12), (13), (14), with 10 agents involved, communicat-
ing according to a sparse time-invariant communication
graph where each agent communicates with 2-3 ran-
domly selected other agents, under the following three
setups: 1) The agents use different state-invariant behav-
ior policies such that, when initiated in State 1, they

are all capable of reaching any other state with pos-
itive probability. The following behavior policies (exit
probabilities in each state) are assumed: πb(a

exit|s) =
[0.15, 0.24, 0.13, 0.38, 0.55, 0.89, 0.64, 0.97, 0.75, 0.69]. The
greedy target policy is selected. 2) The agents use the
same non-restrictive behavior policies as in case 1), but
the target policy is selected from the Gibbs class, when
πθ(a|s) = eθ

T ϕ(s,a)/τ∑
a′∈A eθT ϕ(s,a′)/τ , with the “temperature” pa-

rameter τ set to a relatively low value of 1/50. 3) The
agents use the same state-invariant behavior policies, but
they cannot visit all the states with positive probability, i.e.
the following are each agents starting and stopping (absorb-
ing) states [(1, 9), (1, 5), (1, 7), (1, 6), (5, 13), (3, 14), (8, 14),
(1, 6), (6, 6), (6, 15)] (the first agent always starts in State 1
and stops in State 9, etc.). The target policy is the same as
in the case 2) (Gibbs with τ = 1/50). The step sizes in all
three cases are set to α = 0.001 and β = 1.5 (respecting
the need for two time-scales). Fig. 2 shows the average of
the exact value functions corresponding to the agents’ policy
estimates (exactly calculated in each time step and averaged
over all the agents and states) versus the number of iterations.
It is interesting to observe that, although it is known that the
optimal policy is deterministic, we get better results in case
2) (Gibbs policy) than in case 1) (greedy policy). A possible
explanation is that the Gibbs stochastic policy is capable to
better adapt to the imprecision in the Q-function estimates
which are due to the assumed linear approximation. Of
course, in the case of tabular features the greedy target policy
converges to the optimal one. It is also evident that the agents
can approach the optimal policy together even in the case 3),
i.e., when the individual agents are not capable of learning
due to their local behavior/exploration restrictions. Fig 3
shows the final value function approximations obtained by
the algorithm, together with the true optimal value function
and the average of the exact value functions corresponding
to the final policies estimated by each agent (they have
converged to almost the same values due to the consensus
scheme). It is evident from both figures that case 2) shows
the best performance, followed by the cases 1) and 3).

VI. CONCLUSION

In this paper, we have proposed a novel algorithm for
distributed off-policy gradient based Q-learning algorithm
with linear function approximation in a collaborative multi-
agent setting. Under nonrestrictive assumptions, we have
proved, after formulating asymptotic mean ODEs for the
algorithm, that the parameter estimates weakly converge to
consensus, as required. Efficiency of the proposed algorithm
has been illustrated by simulation. It is shown that function
parallelization introduced by the proposed multi agent algo-
rithm leads to advantages w.r.t. the single agent case in the
sense of much more efficient state exploration and reduced
covariance of the parameter estimates.

In further work, the proposed algorithm could be extended
to the cases of nonlinear value function approximations (such
as those using deep neural networks [3]).
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Fig. 2. Evolution of the average of the exact value functions corresponding
to the agents’ optimal policy estimates under the three described scenarios.
The horizontal line is the optimal average value function.
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